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To the conventional Peierls-Hubbard model, involving both on-site ( U) and nearest-neighbor ( V)

Coulomb repulsions, we add "o5'-diagonal" terms, not expressible purely in terms of site densities,
representing bond-bond ( F) and mixed bond-site (X) electron-electron repulsive interactions in-

volving nearest neighbors. We review earlier analyses of these interactions and discuss relative
magnitudes of the parameters in applications to real materials. As a specific illustration, we investi-

gate the e6'ects of the o8'-diagonal 8' and X terms on dimerization in the one-dimensional, half-
filled-band Peierls-Hubbard models, which have been widely applied to conjugated polymers (such
as trans-polyacetylene) and to related quasi-one-dimensional charge-density wave (CDW) systems.
Using both weak- and strong-coupling perturbation theory for large systems and exact diagonaliza-
tions of small systems, we investigate thoroughly the nature of the ground state of the model. For a
broad range of the site-diagonal Hubbard parameters (U, V), including the values believed to be
relevant to trans-polyacetylene, we find that the ofF-'diagonal terms (F,X) initially enhance dimeri-

zation, thereby stabilizing the dimerized [or bond-order-wave (BOW)] ground state. For (unphysi-

cally) large values of 8'relative to U and V, dimerization is destroyed, and the BOW ground state
goes over to a ferromagnetic ground state or a CDW ground state, depending on the relative sizes of
U, V, and 8'. We conclude with a general discussion of the applicability of the Peierls-Hubbard
models to quasi-one-dimensional materials, including the potential importance of the breaking of
charge conjugation ("particle-hole" ) symmetry by the X term.

I. INTRODUCTION

The role of electron-electron (e-e) interactions in
solid-state systems continues to be the subject of intense
investigation and debate. Much of the recent discussion
has been stimulated by experimental work on exciting
novel materials, including high-temperature supercon-
ducting copper oxides, "heavy-fermion" systems, organic
synthetic metals, and halogen-bridged transition-metal
chains. Unlike conventional metals, for which standard
single-electron (band) theories describe quantitatively the
electronic structures and excitations, these new "correlat-
ed" materials are thought to have properties strongly
influenced or even dominated by many-body effects aris-
ing from strong e-e interactions. Indeed, most current
theoretical models of the high-T, materials are predicat-
ed on the dominance of strong Coulomb interactions.
Similarly, in the synthetic metals, a class of organic elec-
tronic materials which subsumes conducting polymers
and a variety of charge-transfer salts including supercon-
ductors, models involving direct e-e effects are becoming
increasingly common.

In the area of conducting polymers, the debate between
advocates of single-electron approaches and those sup-
porting many-body theories has been particularly long
standing. Consider the case of polyacetylene —(CH}„—
the quasi-one-dimensional conjugated polymer that, in
the theorist's idealized world, corresponds to the infinite
limit of the finite polyenes, Cz„Hz„+2. In the chemical
literature the existence of bond alternation ("dimeriza-

tion"}, the origin of the optical gap, and the nature of the
electronic excitations in conjugated m.-electron systems
like the finite polyenes have been debated for over fifty
years. ' On one side are the Huckel single-electron
theories, in which the optical gap is due entirely to the
bond alternation or dimerization that exists because of
the coupling of nuclear and electronic motions. On the
other side are the Pariser-Parr-Pople (PPP) models,
which fit very accurately the observed electronic excita-
tions (both the optical gap and optically forbidden transi-
tions) in finite polyenes by assuming that e eefects dom--

inate and that bond alternation is a secondary effect. In
the physics literature, the same debate has been couched
in terms of electron-phonon (e-ph) versus e einteraction-s.
The standard physicists' single-electron approach to
(CH)„—the celebrated Su-Schrieffer-Heeger (SSH}
model —can be viewed as one of the class of Peierls mod-
els in which e-ph interactions dominate and the optical
gap is linked directly to the bond alternation. In con-
trast, the Hubbard models applied to (CH)„(Refs. 2,
8—15) treat the limit of doininant e einteractions -and as-
sume that the polymer is essentially a Mott-Hubbard in-
sulator with ancillary e-ph interactions.

In fact, experimental results in finite polyenes and po-
lyacetylene indicate that both e-p and e-e interactions
play important roles, with some observables affected
more by the former, and some by the latter, interactions.
To go beyond this qualitative statement it is essential to
have tractable models that capture the essence of both e-p
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and e-e interactions and that represent faithfully their
combined, or competing, effects. This is clearly the case
not only for conducting polymers but also for the entire
class of novel materials; for example, in the high-T, su-

perconducting oxides the relation between structural
changes (tetragonal to orthorhombic transitions),
"breathing modes, " and electronic properties must be
modeled correctly before the materials can be understood
fully.

For conjugated polymers, the extended Peierls-
Hubbard or PPP-plus-phonon models have been widely
accepted as examples of theories correctly incorporating
the effects of both e-ph and e-e interactions. Considerable
effort has gone into obtaining perturbative, ' mean-
field, ' and true many-body ' ' "" ' solutions to these
models. Recently, however, fundamental objections have
been raised' to the very manner in which these theories
model e-e interactions. The crucial objection is that both
the PPP and Hubbard models incorporate only (lattice)
site-diagonal parts of the e-e interactions. Since, howev-
er, the Coulomb potential between two electrons depends
only on the distance between them and is thus transla-
tionally invariant, independent of the underlying nuclear
lattice, a first-principles theory must also contain terms
that are not diagonal in a site representation. To exem-
plify this rediscovery (by physicists) of the "off-diagonal"
terms in the Coulomb interaction when it is represented
in terms of the Wannier functions appropriate to tight-
binding models, we again consider the specific case of po-
lyacetylene. If PJ(r) is the Wannier function localized
around the jth (CH) unit, then the general e-e interaction
matrix element has the form '

= f Jdr dr'P;'(r)PJ'(r')V, , (r r')Pk(r)P—I(r') .

and

2 IV—:(i,i + 1
~ V, , ~i + l,i ) (1.2a)

For i =k and j=l, these matrix elements involve only
on-site densities: For exam. pie, for i =j =k =I, the ma-
trix element is proportional to the on-site Hubbard U
(Ref. 7) and for i =k,j=I =i+1, the matrix element is
proportional to the nearest-neighbor Hubbard V. For
other combinations of i,j,k, l, off-diagonal terms arise.
Specifically, the two such terms involving only nearest
neighbors are

In a second quantized approach, the 8 and X terms
take the forms

and

Hw~ "—:IV X +t, I+ &~I,I+ i
1

Hx""=X2 III I+i("t+"I+i) ~

1

(1.3a)

(1.3b)

Here the (Hermitian, nearest-neighbor) bond-charge
operator B»+, is defined by

1 1+1=~ l o I+1,o I+]. cr 1 cr (1.4a}

and the on-site charge density is

nl = ~ Cl aCl 0 (1.4b)

In (1.4), c, annihilates an electron with spin 0 in the
Wannier orbital at site 1. From (1.3)and (1.4) one sees ex-
plicitly the fact noted above that these "bond-charge-
bond-charge" ( 8') and mixed "bond-charge —site-charge"
(X) repulsions are not diagonal in a site representation
and hence are not incorporated in the standard PPP or
extended Hubbard models.

In the specific context of (CH)„, the potential impor-
tance of this omission is readily recognized. In the ab-
sence of e-e interactions, the ground state of (CH)„ is (in
the physical terminology) the 2kF bond-order-wave
(BOW) predicted by Peierls theorem, which (in chemical
terms) corresponds to an alternating pattern of single
(long} and double (short) bonds. Since there is one n-
electron per site, the band is half filled and the 2kF insta-
bility produces the dimerization —bond-alternation pattern
indicated in Fig. 1; the chemical double bonds are physi-
cally shorter than the single bonds by roughly 0.1 A. ' If
one includes e-e interaction effects via the standard Hub-
bard model, one finds unambiguously [using exact (nu-
merical} many-body methods] that (for the expected
range of e-ph couplings) the on-site Coulomb repulsion
actually enhances dimerization up to fairly large values
( U )6to) (Refs. 13—15) and that dimerization persists for
all finite U, with the results for the Peierls-Hubbard mod-
el smoothly joining those obtained for the spin-Peierls
model at very large U. "' Further, a nearest-neighbor
diagonal repulsion ( V) enhances dimerization still more
(for V & U/2). '5 Although in addition to these exact nu-
merical studies one can provide an appealing explanation

X—= (i,i + 1~ V, , ~i,i ) . (1.2b)

Physically, W()0), which is in fact just the standard
(Fock) exchange term between neighboring Wannier or-
bitals, corresponds to the Coulomb repulsion between
electrons "localized*' on the bond between sites i and
i+1. In contrast, X is a mixed bond-site term and is
often referred to as a density-dependent hopping; ' as we
shall later show, it has the important characteristic that
it breaks the particle-hole symmetry of the standard Hub-
bard model.
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FIG. 1. A schematic illustration of bond alternation-
dimerization in trans-(CH)„.
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of this phenomenon using "barrier to resonance" argu-
ments, these results are still widely regarded as counter
to the conventional wisdom that Coulomb interactions
should suppress the buildup of charge anywhere, on the
sites or on the bonds. On the basis of this intuition, the
bond-bond repulsion would seem to suppress dimeriza-
tion, since it opposes the buildup of charge on the bonds.
Thus, the absence of 8' and X in the standard extended
Peierls-Hubbard models suggests a priori that these mod-
els may artificially favor the continuation of dimerization
in the half-filled band into the region of intermediate to
strong Coulomb interaction.

More generally, the omission of terms such as 8'and X
raises significant questions about the appropriateness of
Hubbard or PPP-like models for describing e-e interac-
tions in the whole class of novel solid-state materials. In
fact, it has been proposed that the X and W terms are the
mechanisms driving superconductivity and ferromagne-
tism, ' respectively. In view of the very wide-spread
application of these models, this issue is obviously impor-
tant and must be investigated in a thorough and definitive
manner. In the ensuing article, we examine carefully
several aspects of this problem, focusing on the effect of
W and X on dimerization in the half-filled band. Our re-
sults will speak directly to the issue of the applicability of
these models.

Perhaps the first general comment that should be made
in the context of the off-diagonal e-e interaction terms is
that their existence has long been recognized. In the
original derivations of the PPP models for m-electron
motion in finite polyenes, these terms were discussed and
their magnitudes estimated. Their exclusion —the "zero
differential overlap" approximation —in the model was
justified by earlier (essentially exact) studies of benzene
and was examined further in a number of later papers. '

In addition, in his original studies of e-e interaction
effects in the narrow bands characteristic of transition
metals, Hubbard discussed these off-diagonal terms and,
on the basis of specific estimates, concluded that they
were small coinpared to the on-site terms and could safe-

ly be neglected. Taken together these chemical and phys-
ical studies do suggest that Peierls-Hubbard models are a
reasonable point of departure for studying the effects of
e-e interaction in conduction polymers and related novel
materials. However, to understand in detail the potential
effects of W, X, and related terms in these systems, it is
necessary to solve exactly a model including these terms
and to compare this solution with that of the convention-
al Peierls-Hubbard models.

In the case of the specific question of the effect of W
and X on dimerization in the half-filled band, the early
quantitative analyses were limited to first-order, weak-
coupling perturbation theory' and to variational
methods. More recently, studies using both exact-
valence-bond methods and "g-ology" arguments, have
further clarified several aspects of the potential effects of
the W and X terins. In the present article (briefer, less-
detailed versions of which have appeared previously ),
we extend these analyses, treating both weak- and
strong-coupling perturbation theory consistently to
second order and performing exact diagonalizations on

finite-size systems which are sufBciently large to reflect
the true behavior of the models. From these different ap-
proaches we obtain a fully consistent picture of the na-
ture of the ground state in the quasi-one-dimensional
half-filled band with both diagonal and off-diagonal e-e
interactions. Whereas the previous first-order
perturbation-theory results (applicable only for
U, V,X, W, . . . all small and comparable) suggest that W
suppresses dimerization monotonically, for typical ex-
pected values of the on-site parameters U and V the di-
merization does not decrease but rather holds up well as
W is increased before dropping discontinuously to zero in
a ferromagnetic phase for W ) W, . Indeed, for the inter-
mediate coupling range U-4to and V ( U/2, the dimeri-
zation initially increases with 8' and, for the values of
( U, V,X, W, . . . ) thought to be relevant to (CH)„, dimeri-
zation is typically enhanced over its value at W=O. An
argument supporting this seemingly counter-intuitive re-
sult is given below in our treatment of the strong-
coupling limit.

To present our results cogently, we have organized the
remainder of the article into four sections. In Sec. II we
introduce the model Hamiltonian, including both e-ph
and e-e interactions, both diagonal and off-diagonal, up to
nearest neighbors. These terms include U, V, X, and 8'.
We illustrate directly, using a (partially solvable) one-
dimensional Kronig-Penny band-theory model plus
screened Coulomb interaction, that the e-e interaction pa-
rameters cannot be assigned arbitrary values but must be
determined consistently. Except for the case of extreme
screening, we find U & V & X & W, consistent with earlier
estimates in benzene and in the 3d transition metals.
In Sec. III, we explore first weak-coupling perturbation
theory and then examine two distinct but related strong-
coupling expansions. Section IV contains our exact-
diagonalization calculations. We find that the analytic
results from a dirner calculation reflect many of the quali-
tative features of, and provide useful insight into, our ex-
act results on 4, 6, 8, and 10 site rings. The convergence
of these results indicates that, at least for determining the
phase diagram describing the ground state, it is unneces-
sary to go to systems of larger size. Section V contains
our conclusions and a discussion of their relevance for
real materials. The two appendices present technical de-
tails of our weak-coupling perturbation-theory calcula-
tions and our numerical scheme for exact diagonaliza-
tion.

II. A PKIKRLS-HUBBARD MODEL
WITH OFF-DIAGONAL COULOMB INTERACTIONS

A. Hamiltonian

To analyze the effects of off-diagonal Coulomb terms in
quasi-one-dimensional systems, we consider the modified
Peierls-Hubbard Hamiltonian

+ WX (Bl,l+i)
1

(2.1)

H = —g (tO —a5l )Bl l+, + ,'I!:+5!+,'M g Ul——
1 1 1

+ U g nltnli+ V g nlnl+ i+X g B!!+i(nl+ nl+ i)
1 1 1
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where, the operators in (2.1) have been defined in Sec. I.
In H, to is the hopping integral for the uniform lattice, a
is the e-ph coupling, 61 is the relative displacement be-
tween the ions at sites I and I + 1, K represents the cost of
distorting the lattice, and M is the mass of the (CH) unit
at site I with velocity vi. As we do not expect quantum
phonons to be important for realistic values of M, for
most of our discussion we consider only the M —+ ~ (adi-
abatic) limit, where Ui =—0. We briefly discuss the anti-
adiabatic limit in Sec. IIIC. Finally, U, V, X, and 8'
model the e-e interactions. As discussed above, U
represents the on-site Coulomb repulsion, V the nearest-
neighbor repulsion, X is the "mixed" term involving both
site-charge and bond-charge repulsive effects, and W is
the pure bond-charge-bond-charge repulsion.

In restricting our considerations to U, V, X, and W, we
have ignored longer-range, many-body terms correspond-
ing to matrix elements in (1.1) in which differences in the
indices are greater than one. We have chosen this re-
stricted model both to limit the number of parameters
and to permit ready comparison of its results, which in-
corporate off-diagonal effects, with the results of the
well-studied Peierls-extended Hubbard ' ' models.

For U = V = W =X=0, this model reduces to the SSH
Hamiltonian, in the (adiabatic) limit of classical ion dis-
placements. Consistent with Peierls theorem, the ground
state is a 2kF BOW. In the half-filled band, this is a
dimerized or bond-alternated ground state, which in the
case of trans-(CH}„produces the structure shown in Fig.
1. For W=X=O, this Hamiltonian is the conventional
extended Peierls-Hubbard ' ' model that has widely
been used to model conducting polymers and in particu-
lar to investigate the competition between e-ph and ee-
interactions in these systems. When both IV and X are
included, the model represents the effects of all Coulomb
interactions —both on- and off-diagonal —up to and in-
cluding nearest-neighbor matrix elements.

In terms of the Coulomb potential V, ,(x) and the
Wannier functions P„(x)—:P(x —na)—which, since we
are considering a single-band model, we can assume to be
real—the interaction constants in (2.1) can be expressed
as

U= x x' x V, , x —x' x'

V= x x' x V, , x —x' x' —a

X =f dx dx'P (x) V, , (x —x'}P(x')P(x' a), —

and

(2.2a)

(2.2b)

(2.2c)

B. Values of the parameters

Since all the e einteraction p-arameters in (2.1) and
(2.2) arise from the Coulomb potential, they cannot be as-
signed arbitrary values but must be determined con-
sistently. In the case of d bands in transition metals,
Hubbard has estimated U-20 eV, V-6 eV, X-—,

' eV,

2W= Jdx dx'P(x)P(x —a)V, , (x —x')P(x')P(x' —a) .

(2.2d)

and IV- —,', eV. In the case of finite polyenes, this deter-
mination has been carried out in detail for (isolated) ben-
zene, with the results that V=16.93 eV, V=9.027 eV,
X=3.313 eV, and 8=0.462 eV. Thus, the typical range
of parameters is U & V & X & W. To obtain a more intui-
tive feeling for how these parameters might vary in
quasi-one-dimensional conjugated polymers, we turn to a
very simple model that permits us to incorporate the two
most significant physical effects determining U, V, I, and
8'. If we assume naively that the interaction is just the
Coulomb potential (possibly suppressed by a constant
dielectric function), the relative sizes of the parameters
will be determined solely by the localization length —call
it 1/so—of the Wannier functions, P. In practice, in the
solid-state materials, the Coulomb potential affecting m

electrons on a single chain may be screened both by the
effects of m-electron motion on neighboring chains and by
o electrons on the same chain; a screening length —call it
g—can be introduced to model these effects.

A simple but consistent one-dimensional model incor-
porating these effects begins with the Kronig-Penny mod-
el for the potential arising from the ions:

d
p

ek(x)+ VKp(x }4k{x)= s/, ei, (x), (2.3a)
2nl

where

VKp(x) =— (2.3b)

The localized atomic orbitals (for a single 5 function) are
then

(2.3c)

Since these atomic orbitals are not orthogonal, to solve
this problem completely, one should calculate the true
eigenfunctions %k(x) and Wannier function P(x) given
by

P(x)= —g%&(x) .1

However, in the tight-binding limit (boa »1), the true
Wannier functions closely resemble these atomic orbitals.
Notice that if this tight-binding limit is not at least ap-
proximately valid, many additional effects—for example,
second-neighbor hopping —must be added to the model
Hamiltonian, and the entire framework must be reexam-
ined. Thus, consistent with our other approximations, we
assume tight binding and approximate the %'annier func-
tions by atomic orbitals for purposes of determining the
sizes of the Coulomb parameters analytically. We also
have computed the true Wannier functions numerically.
The atomic orbitals and true Wannier functions are com-
pared in Fig. 2.

First we examine the hopping integral for this model.
By solving for the allowed spectrum of the period KP
model, assuming boa »1, and equating the actual band-
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T TABLE I. The numerical values of the nearest-neighbor hop-
ping integral to, its derivative a with respect to the lattice spac-
ing a, and the second to fifth neighbor hopping integrals t„,
2 n 5, in units of (A /2ma ). The values in parentheses are
calculated from the approximate bandwidth [Eq. (2.4}].

0.5—

to

tp

t3

t4

voa = ln10

1.26( 1.06)
3.52(2.44)

—0.15
0.03

—0.01
0.00

pa =ln2

0.35(0.48)
0.19(0.33)
0.21
0.07

—0.02
—0.04

i I I I I I I I i I I I I I I I T I I I I I I I I

width with 4to (the band width of a one-dimensional
tight-binding model with bare hopping to) we find

—2 0 2 4
n

I T I
I

I T T T

I
T i T I

I
I T I I

I
I I

and

2
KpQto-— 2(TToa) e

2ma

d TTT2
2 -~oaaa = (

—to) = 2(~oa) e
2ma

(2.4a)

(2.4b)

More precisely, the hopping integrals t& I between sites 1

and I' are calculated from

t y ik(l-I')

k

(2.4')

0.5—

0 =

I ( T ) i I i i T i I «« I

where ez are the eigenvalues from Eq. (2.3a). Consistent
with the conventions of the literature, we denote the
nearest-neighbor hopping ( I /' = 1) by —to but the
further-neighbor hopping (1 I'=n, n ~—2) by t„(t, is
typically reserved for a symmetry-breaking nearest-
neighbor term). The numerical values of tTT, aa, and the
further-neighbor hopping integrals t„are listed in Table
I.—2 0 2

n

FIG. 2. Wannier function (solid) and atomic orbital (dotted)
for the Kronig-Penny model with (a) exp( —~pa)=0. 1 and (b)

exp( —Kpa) =0.5. For case (b), the tight-binding approximation
is not good.

To introduce variable-range screening consistently
within our one-dimensional kinematics, we take
V, ,(x)=(ga/2$)e ~"~~~. Notice that for the extreme-
screening limit, (~0, this reduces to a 5 function. Then,
introducing P= 1/TTo(, y '=—2+P, 5 '=4 —P and em-
ploying equations (2.2a)—(2.2d) and (2.3), we find

U/g =ItoaPy (4+P),

V/g =aTTaP5[165e ' ~—P( 1+2TToa +85)e ' ],
(2.5a)

(2.5b)

KoQ 3P,~ 8y —2«aa PX/g =TToaP5e '
Sy 1+—— —e ' ~ +e

P 2 P 2
(2.5c)

2KoQ
~oa pe + o +2 2 — ~~+ 2y

y p p25
(2.5d)

The separate dependence on the screening (g) and over-
laP (Tto) Parameters is aPParent.

From the form of (2.5) one can see that U, V, and all
the longer-ranged diagonal terms will always contain

contributions dependent only on the range of the
potential —here determined by g—and not suppressed by

Kp0the overlap factor (e ' ). This is clearly the origin of
the familiar result that for narrow bands, for which
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TABLE II. The values calculated from the true %annier functions {and from the atomic orbitals) of the Coloumb parameters for
various ratios of the overlap (ao) and screening (g) parameters. In the table we have taken zoa=lnlO. An important qualitative
difference between the two cases is the possibility that, for strong screening, the X term calculated using the %annier function can be
negative.

V/U
X/U
8'/U

so(=4

0.6600(0.6855)
0.0079(0.2845)
0.0010(0.0488)

vo(= 2

0.4453(0.5367)
0.0095(0.2565)
0.0021(0.0446)

0.2185(0.2704)
0.0058(0.2143)
0.0038(0.0392)

0.0738(0.1081)
—0.0046{0.1810)

0.0057(0.0340)

Iron =
—,'o (0)

0.0149(0.0561)
—0.0223(0.1495)

0.0074(0.0280)

KpQto-e ' is very small, the diagonal Coulomb terms are
dominant. Note, however, even if the band is not nar-
row, if the potential is not strongly screened, one still ex-
pects the diagonal terms to be more important numerical-
ly than the off-diagonal terms. In Table II we present
values of U, V, X, and W determined from (2.5) for a
range of g and Iro, as well as the values calculated numeri-
cally using the true Wannier functions. In general, we
see U ) V )X ) W. In the extreme screening limit
((~0), using atomic wave functions, we find from (2.5)
that U =gaza,

2KpQ
V =genoa ( I+2ajro)e ' =2W,

KpQ
and X =—', g~oae '; thus here one has U &X ) V=28'.
Use of the true Wannier functions gives even smaller
values for 8' and X, as well as a negative value for X in
the extreme screening limit.

When the off-diagonal terms are not a priori negligible,
the central issue is the extent to which they produce re-
sults qualitatively different from those predicted in their
absence. To answer this question correctly, it is clear
that —whatever the relative values of V, X, and 8—one
must anticipate that U & V, X, W'and hence must adopt a
method that gives correct results in this parameter re-
gime. Since, as we shall see, U does not contribute to
first-order weak-coupling perturbation theory, these
first-order predictions are likely to be unreliable in the ex-
pected parameter regime and for consistency one is com-
pelled to go at least to second order. Actually, since in
many materials one expects U=4to, to be certain of the
results one should use (numerically) exact many-body
methods known to be reliable in the intermediate-
coupling regime. Further, to gain insight into the results
of these methods, strong-coupling perturbation expan-
sions should be studied. In the ensuing sections, we dis-
cuss all these approaches.

III. LIMITING BEHAVIOR

A. Weak-coupling perturbation theory

1. Second-order perturbation theory

To compare with previous results, ' we 6rst study the
model in the weak-coupling perturbation theory valid for
small e-e couplings. Diff'erentiating the energy, E(5), for
a uniform dimerization, 5I=( —1)'5, one can obtain an
implicit equation for the dimerization 5o which yields the
minimum energy, BE/B5~s =0. Expanding about the

0

minimum-energy value of the dimerization for
U = V =X= W =0,5oo, we obtain in Appendix A an ex-
pression for the linear shift in 5o to second order in the
coupling s:

5o/5oo —1=CU U;+CU U U;U +O(U;U Uk), (3.1)

where [U, j=[U, V, X, W]/2to. We have evaluated the
coefficients numerically for a range of parameters and
system sizes, and representative values are listed in Table
III.

In first order in the U; one obtains (see Appendix A)
the analytic result:

5o )/5oo 1 =c, X —6W+ V
1 d

J

(3.2)

and re, =2a /tox:. This agrees with the previous
perturbation-theory results, ' ' except that these earlier

where c„ is a positive coefficient related to elliptic func-
tions,

d (&k/2N't X B=+&I, U
I

TABLE III. Values for various A. of the coefticients in Eq. (3.1), the expansion for weak correlations of the dimerization amplitude.
Here [u, u, w, x]=[U, V, IVX]/2to and 5~a500/to, and we have collected terms in a manner convenient for the weak-coupling
analysis.

+{V—6w) —(u —6w)

0.150

0.204
0.204
0.250
0.250

98
100
98

100
74
76

0.0525
0.0531
0.1303
0.1303
0.2106
0.2106

3.708
3.375
1.456
1.456
0.775
0.775

9.970
9.071
6.234
6.234
4.712
4.712

1.297
0.993
0.341
0.305
0.101
0.127

2.079
1.722
0.383
0.366
0.015
0.085

3.646
3.240
1.242
1.220
0.625
0.637

—2.694
—3.163

0.752
0.757
0.622
0.625

41.53
41.54

5.92
5.92
0.02
0.04

248.86
249.34

35.54
35.58
0.16
0.17

88.73
85.70
34.57
34.57
17.92
17.99
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studies ignored the X term entirely, assuming that it was
negligible in a dimerized state. ' As our calculations
show, this is true only for X&&1. For normal polyace-
tylene parameters (((,=0.204, d-2A. ) even in the extreme
screening limit for which V=2W, 50("/boo —1 is positive
(and dimerization is enhanced) for

0.6 I

\

l ~

'l ~

0.4—

( I
t

I I I I
i

I I I I
t

I I I I

1' X=O 150
2' A.=O 204
3: A,=0.250

X &X,=0.24(6W —V)- W .

However, since for realistic parameters U »( V, X, W),
first-order perturbation theory is not a reliable guide even
for weak Coulomb interactions. The most important
term in second order, CUU, is negative for large to inter-
mediate A, . For weak effective e-ph couplings (and not-
too-small rings), however, CUU &0, supporting the well-
known observation that 5 increases with weak interac-
tions. ' ' V suppresses dimerization in second order
since Cvr is negative, but the first order enhancement
dominates. 8'suppresses and X enhances dimerization in
second order.

In Fig. 3 the shift in the dimerization is shown for the
values of the couplings obtained from the Kronig-Penny
model. To summarize, if one consistently includes all
terms through second order, U, V, and X enhance dimeri-
zation while 8' suppresses it. Overall Coulomb interac-
tions enhance dimerization, This agrees with the numeri-
cal diagonalizations and strong-coupling arguments that
follow, except as regards the behavior of 8'. Here, how-
ever, one must be careful to note that in both the numeri-
cal diagonalizations and strong-coupling arguments that
the values of U (and occasionally V as well) are intermedi-
ate to large and hence outside the range of validity of per-
turbation theory. Since the perturbation-theory argu-
ments assume that U, V, X, and Ware all small and com-
parable, this disagreement is neither worrying nor
surprising.

2. "g-ology"

Although not strictly a finite order, weak-coupling per-
turbation theory, the familiar studies known as "g-
ology" ' amount to the summation of the (logarithmic-
ally) leading terms in all orders of (weak-coupling) pertur-
bation theory. These g-ology studies show that for
meak e-e interactions, superconducting states —both sing-
let and triplet —can be favored for certain ranges of the
parameters X, U, V, and W. These results are not in any
obvious disagreement with our results, discussed in the
following, that establish for intermediate to strong values
of the normal "diagonal" Coulomb repulsions U and V,
the ground state becomes a ferromagnetic phase. In par-
ticular, in connection with the possibility of triplet super-
conductivity, we will show below that if 8' can increase
without limit, the ferromagnetic (FM) state will, for any
fixed value of V, eventually become the ground state; we
note also that this result is also confirmed by recent work

C)

0 P
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

3
I I I I I I I I I I I I I I I I I I I I I I I I

1/Log

FIG. 3. (50/500 —1), calculated from second-order weak-
coupling perturbation theory using the coeScients at A. and X
from Table III, for the atomic wave functions (Jahn-Teller,
dashed; nonJahn-Teller, dotted) and the true %'annier functions
(Jahn-Teller, solid; non Jahn-Teller, dotted) of the Kronig-Penny
model, vs Kog. V/U, X/U, and W/U for representative values
of Kog are given in Table II. For this figure we have taken
U/2to =0.1.

of Hirsch, ' who generates a ferromagnetic interaction by
focusing on values of W which are effectively in the
strong-coupling regime.

B. Strong-coupling perturbation theory

To complement our weak-coupling analysis and to pro-
vide intuitive interpretations for the results of our exact
diagonalizations, we next analyze the Hamiltonian (2.1)
in the strong-coupling limit. More precisely, we consider
two related but distinct strong-coupling regimes: (1) the
conventional U~ ~ limit; and (2) the to =a =X=0 limit,
in which no single-particle hopping occurs. For the pur-
pose of this analysis we find it convenient to rewrite H us-
ing spin (S() and "pseudospin" (rJ() operators:

S( ——((I( I II( I), S( —c( tc( t, aiid S( —c( tc( I
Z —] +

and (T(
l +—

The singly occupied sites have their normal spin notation,
~1) and ~l). The zero- and doubly occupied sites are
denoted respectively by ~

—)(o'= —
—,
'

) and by
~+ )(o'=+ —,'). Note that S('(rf=crj(S(=0 i e , a g—ive. n.

site cannot have both nonzero spin and nonzero
pseudospin —which follows trivially from their
definitions. In these variables the Hamiltonian becomes

H = —g [to —2X(1+o(+o(+()—(x5(]B((+(+—,'K g 5( —4WQ S( S(+I+2U g ohio('
1 I I I

+4WQ —,'(o'(+o'(+I+a( o(++I)+ '1 g crfo(+I +(U+'4V) g 0 f+( V+ W)X
I

8'
( l

(3.3)
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The first term, which involves single-particle hopping, is
the only term which connects spin and pseudospin states
(on adjacent sites}. The third term is an isotropic fer-
romagnetic exchange of strength 48' involving only spin
operators. The rest of the terms involve only pseudospin
operators. The fourth term is a measure of double occu-
pancy and the fifth term is a pair hopping and a repulsive
or attractive V-like term, depending on the relative mag-
nitudes of V and 8'. The last two terms just shift the zero
of energy. Note (1) that when cr'i+o f+, =0, as it is in the
FM and extreme charge-density-wave (CDW) phases dis-
cussed below, the only effect of X is to renormalize tp to
tx = ra —2X; and (2) that the fifth term is the Hamiltonian
of the one-dimensional XXZ spin chain ' with z-
component coupling y = V/W —l.

txt'= [tx —W( U —V)]'~ and a'=a

For given to and X, since the effective t' decreases with
W, the effective e-ph coupling nA, '—=2a' /kt' increases
with 8'due both to the increase in a' and the decrease in
t . This leads to the initially surprising conclusion that,
for large U, the dimerization should initially increase with
8', the bond-bond repulsion. This result is confirmed by
the exact calculations of Sec. IV.

In the limit described by (3.6), when W reaches a criti-
cal value W, =tz/(U —V), the spin coupling becomes
ferromagnetic. The spins will tend to align, forming a
ferromagnetic (FM) phase with 4SI SI+,——2, so that the
effective Hamiltonian reduces to

The U~ ~x) limit and spin-Peierls theory
H,s- ,'K +—5—I+NV .

1

(3.&)

In the limit that U~ 00, double occupancy of any site
is energetically not allowed and, for the half-filled band,
the ground state is described entirely in terms of spin
states (zero pseudospin). Acting on these spin states, the
Hamiltonian (3.3) will either produce new spin states (call
these terms Ho) or they will produce (the suppressed)
double occupancy and hence will couple spin states only
indirectly through excitations to virtual pseudospin states
(call these terms H'). In second-order perturbation
theory, one has forinally

H'
H,~=HO— (3.4)

I, XBI,I+1
I

'2

(3.5)

where tlx=tz —a5&. Expanding the last term keeping
only those terms which connect spin states, we thus see
that, in this limit, the Hamiltonian (3.3) reduces to the
effective spin-Peierls Hamiltonian" '

H,q= ,'K g 5(+NV—
1

2
tI, X —W (4SI SI+, —1) .

I U —V
(3.6)

The main effect of 8', then, is to suppress antifer-
romagnetism. Further, to lowest order in 5I, the spin
coupling is proportional to

&I ~ —W( U —V) = [t~ —W( U —V) ] 2at~5i +0 (5~()—

where 6 is the energy of the virtual states above the spin
manifold. Clearly, only the effective single-particle hop-
ping term contributes to H', for which 6- U —V,

32 and
(3.4) yields

H,ff= ,'K +5i+(V—+W)N —4WQ Si Si+,
1

The minimum-energy configuration thus has 5I=O and
E =NV. Hence, in the U~ 00 limit, our strong-coupling
argument shows that for large W the ground state of (2.1}
for the half-filled band is an undimerized FM phase with
energy E =NV. Again, these results are confirmed by the
exact diagonalization of Sec. IV B.

2. The zero-hopping limit and pseudospin theory

We can explore a different region of the "phase" dia-
gram of (2.1) by ignoring all (linear) hopping terms —thus
setting to =a=X=O—and considering only U, V, and 8'.
As we shall see, this limit also provides useful insight into
our exact diagonalization results.

To begin we consider the additional simplification
8'=0. Then, since U and V are diagonal in the site rep-
resentation, it is straightforward to analyze the possible
ground states. For U & 2V, the phase with each site sing-

ly occupied is the ground state. For latter convenience,
we call this a spin-density wave (SDW), although strictly
speaking the many degenerate spin configurations lead to
no fixed spin periodicity; further, since in the absence of
8'and to all spin alignments are degenerate, this phase is
not the FM phase seen in the large 8'limit. In fact, this
is just the phase that in the presence of nonzero to and a,
would be the normal BOW. For U &2V, the phase with
each alternate site doubly occupied is the ground state.
This is clearly a CDW. Since 8' &0, interfaces between
regions of spins and pseudospins will cost energy, so the
ground state will still have only one phase: either all
spins (SDW) or all pseudospins (CDW).

As shown in the previous subsection, for nonzero 8'—
but to=a=X=0=the pure spin phase is a FM phase
with energy E =NV. In the pseudospin (CDW) phase,
the effective Harniltonian is

Hps =N( —,
' U+ V+ W)

T

+4W g crl o I+i+o (of+ )+ —1 O'Io i+)'
t' 2a'r'5(+0 (5I ),— — (3.7) (3.9)

where As a)ready noted, the term involving the o. operators in
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From the known results for the XXZ chain, ' we have

f (
—1)=1, f (0)=4/m, and f (y)~~y~ for y~k~.

Thus in the U/28'versus V/W plane, the phase diagram
is as sketched in Fig. 4. In particular, for 8'~0 we find

V=-,' U+28 (3.13)

Oq5

0
0 2

V/to

DV
I—like)

as the boundary between the CD& (large V) and FM
(small V) phases. Although nonzero hopping shifts the
boundary, Eq. (3.13) gives good agreement with the exact
diagonalization results of Sec. IV in the region
8', V, U»to.

Finally, we note that this strong-coupling analysis also
shows that within the CDW phase there is a second-order
transition at V =2 K from an JF-like to an antiferromag-
netic Ising-like CD%. Since the parameter range in-
volved is unlikely to be relevant for real materials, we
have not looked for this effect in our exact diagonaliza-
tions.

FIG. 4. The phase diagram of the Hamiltonian (2.1) in the
zero-hopping limit t, a,X~0. C. Antiadiabatic limit

(3.9) is the Hamiltonian of the one-dimensional XXZ spin
chain. Thus the ground-state energy in the pseudospin

31

phase is

E» ——X U+ V+ W Wf—2 8' (3.10)

HXXZ =4g (+I+I+I++l~l+ I+ Y~l+I+I)
I

(3.11)

The FM-COW phase boundary is therefore determined
by

where f (y) is the pe—r site ground-state energy of the
XXZ spin chain, with Hamiltonian

Up to now we have ignored the quantum nature of the
lattice. We turn now to briefly discuss the effects of
quantum fluctuations of the lattice on the dimerization by
considering the unphysical limit of the mass of the (CH)
unit going to zero—the antiadiabatic limit. Fradkin and
Hirsch show that for spin- —,

' electrons at half-filling the
properties of the system near the dimerization transition
at small but finite mass are controlled by the behavior at
M=O. For M=O the phonons can be integrated out in a
manner that allows simple interpretation of the resulting
efFective e einteractio-n. The statistical mechanics of the
Hamiltonian can be constructed from the partition func-
tion

Z =Tr exp( 13JI) . —
r

V= —'U+ V+ O' —Wf —12 (3.12) Reformulating Z as a path integral and setting the (CH)
unit mass to zero, we ~nd

Z=TrT, I ~ exp — ~ ~& I & +& I ~ ~I, I+& ++~
I3

I

The Gaussian integrals over 5I(r) can be performed,
yielding

However, for 8',z &0 this term does not cause a static
BOW distortion, though the correlation functions

CKZ =Tr exp —P H, — g BI2I+,
I

Thus in this antiadiabatic limit we see that the e-ph cou-
pling produces an effective bond-bond attraction:

A'

efF

&Bow(9)=

are not zero. For 8',z & 0 the FM phase discussed above
is found. Thus, even this extreme limit, the above
strong-coupling considerations are qualitatively correct.
We do not expect quantum phonons to significantly alter
the phase diagram for realistic masses, and we do not
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IV. EXACT DIAGONALIZATIONS

A. Analytic results for the ground state of the dimer

As a prelude to our (numerical) exact diagonalizations,
we present the analytic results for the half-filled
"dimer" —that is, two electrons on two sites —described
by the Hamiltonian in (2.1). Although its limited size
does lead to a few artifacts, the dimer provides surpris-
ingly accurate insight into many aspects of the behavior
of the larger system, and thus we find it instructive to
present the analysis in detail.

For comparison with the numerical results, we use
periodic boundary conditions, so that c 3

=c, and similar-
ly for all other operators. Incorporating these conditions
and restricting the sums in (2.1) to 1=1,2 yields the expli-
cit Hamiltonian

Hd = 2[tp X(n&+n2)]B~ 2+ U(n~tn~i+n2tn2i )

+2Vn, n2+2W(B~ 2) (4.1)

where the factors of 2 arise from the periodic boundary
conditions. Since there is no possibility of bond alterna-
tion with only one bond, no explicit e-ph coupling ap-
pears, and the hopping term is simply taken as fo ~ Fur-
ther, in the half-filled dimer one has n

&
+n2 =—2; thus just

as in the case of the U~ ao limit discussed in Sec. III B,
the X term simply renormalizes the hopping to
t =to —2X.

Simple counting shows that there are six possible states
for two electrons on two sites. As basis states we choose

/1, 1):—c2tc q t /0),

consider them further. For a more detailed analysis of
the effects of finite phonon frequencies in the "g-ology"
approach, see Ref. 26.

matrix with eigenvalues

W„s ( V) = —,', I (2 V —U) + [( U 2V) —+64t ]' (4.2)

where 2 V & U, so that the value of W for which "dimeri-
zation" disappears for V=O (point A) is, for the parame-
ters in Fig. 5, W„s (0)=0.31t, while the "triple point" (B)

E,=8W+-'U+ V+ ~ g

where

b, =[(U —2V) +(Sto —16X) ]'

The ground state "phase diagram" for the dimer follows
immediately by comparing these eigenenergies. For
U= U=4t (intermediate coupling), this diagram as a
function of Wlr and V jt is shown in Fig. 5. The three
different regions of the diagram are labeled by the nature
of the ground state and the boundaries are indicated by
the letters A through D.

For small values of W, in the region below the curves
AB and BD, the state E is always the ground state.
This state, which in the absence of e-e interactions is just
the k=0 band state, corresponds to the "dimerized-
80%"' phase and indeed, in the larger systems shows
nonzero values of the dim erization parameter
5, =(—I)'50. In the region bounded by AB and BC, the
triplet state is the ground state; as our prior strong-
coupling arguments suggest and our later exact calcula-
tions confirm, this corresponds to the ferromagnetic (FM)
phase found in larger systems. Finally, in the region
bounded by BC and BD, the ground state is the state

~
A ), with energy U; this corresponds to the CDW phase

in larger systems.
The boundaries between the phases can be determined

analytically. One finds that the BOW-FM boundary—
line AB—is given by

1
~1,0) = (c~t&c, &+c~ttct& )~0),

2

1, —1)=—c2ic, i 0),
1.5

c
I I I

I
I I I

—(c,(c, t
—c', tc, ) ) I0),v'2

~S)=— —(c, tc, &+c tc &)~0),
2

Triplet (FM&

Eg g~= 2V
CD%

—(cqtcq) —c2tc2g)lo) .
2

As the notation suggests, the first three states are, respec-
tively, the Sz =+1, 0, and —1 components of the spin
triplet state and, by the spin symmetry of H, must all
have the same energy. The state ~0, 0) is a spin singlet
made entirely from singly-occupied states, while ~S) and

~
A ) are, respectively, spin singlets made from symmetric

and antisymmetric combinations of the two states involv-
ing double occupancies. Trivial algebra leads to the fol-
lowing results: (1) the triplet states are threefold degen-
erate eigenstates of Hd, with eigenvalue Er =2V; (2) the
state

~
A ) is also an eigenstate, with eigenvalue U; and (3)

the states
~ 0,0 ) and

~
S ) are coupled, leading to a 2 X 2

0.5

E
D

O ~ i i i I i i i ~ I ( i i ~ I

1 8 3
v/t,

FIG. 5. The phase diagram as a function of V/t and 8'/t for
the half-filled dimer for intermediate coupling U=4t =4to
—8X.
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occursat W=t/2, V=2t, for U=4t.
The FM-CD% boundary is simply given by 2V= U,

independent of F. Our strong-coupling arguments sug-
gest, and our numerical results confirm, that this is an ar-
tifact of the dimer and that in fact the boundary is at
2 V = U +48' in large systems.

Finally, the CD%-BOW boundary —line BD—is given
by

W' ( V) =—' I(U —2V)+ [(2V —U)'+64t2]'i'I, (4.3)

To study the effects of off-diagonal e-e interactions in a
definitive way in the region of intermediate coupling anti-
cipated to apply to many novel materials, we have calcu-
lated numerically the "exact" ground state of finite rings
described by the Hamiltonian (2.1) using a version of the
Lanczos method. The details of the approach are given
in Appendix B. To demonstrate the convergence of our
results as a function of system size, we investigate 4, 6, 8,
and 10 site rings.

As in the previous sections, we focus on the phase dia-

where 2V & U. Hence, for the dimer, the "BOW" phase
persists even as V~ 00, with the critical value of 8' that
destroys "dimerization" behaving as W, -2t /(2V —U)
for V- oo. As we shall see, this persistence of dimeriza-
tion to large V is also an artifact of the dimer. For larger
systems, the CDW state becomes the ground state (for
W=O) near the (naive) estimate 2V=U. Despite these
artifacts, however, the dimer guides our intuition in a
qualitatively accurate way and, combined with the
strong-coupling arguments, allows us to interpret the
exact-diagonalization results in an appealing and unambi-
guous manner.

B. Numerical studies of finite-size rings

gram as a function of W and V at fixed U. Since weak
coupling and strong coupling have been analyzed pertur-
batively above, we examine here values of U in the
intermediate-coupling range; the U =4tp results shown in
Fig. 6 are typical. Based on our earlier strong-coupling
and dimer results, we anticipate that the primary effect of
X {for these intermediate values of U) on the ground state
and dimerization will be a renormalization of tp to
t =tp —2X; we present data confirming this after discuss-
ing our other results. For comparison and definiteness,
we use the conventional SSH-polyacetylene parameters
a=4. 1 eV/A, K=21 eV/A, and to=2.5 eV. Hence
A, =—2a /mEt0=0. 204.

In Fig, 6 we show the phase diagram, determined nu-
merically by the Lanczos procedure described in Appen-
dix B, for an 8-site ring; comparison with results on 4-,
6-, and 10-site rings suggests this diagram reflects the
infinite-ring behavior. In Figs. 7 and 8 we show the actu-
al value of 50, the optimal dimerization, versus W for 4,
6, 8, and 10 site rings when U =4tp and V=O or
V=0.3U, respectively. Several points are immediately
apparent from these figures.

First, the dimerized-BOW persists for a substantial
range of Coulomb repulsion, both diagonal and off diago-
nal. In particular, as shown in Fig. 7, even for V =0, W
does not destroy dimerization until 8', =0.24tp =0.6 CU.
This agrees very well with our strong-coupling estimate
of W, /to=to/(U —V), which for U=4to, V=O gives
W, /to=0. 25to. Further, as also suggested by our
strong-coupling estimates, the dimerization actually in-
creases monotonically with W, before dropping rapidly to
zero in a "first-order phase transition" at 8', . Thus, al-
though the basic intuition that 8' opposes a BOW and
will eventually destroy dimerization is correct, earlier

03 I I I I
I

I I I I
I

I I I s
I

I I

C)

5

0.5 0.1

2
v/t,

0 I I I I I I I t I I I I I I I I I I I

0 1 3
0 I I I I

0.2
w/t,

0.3

FIG. 6. The phase diagram as a function of V/to and W/to
for intermediate coupling U=4t=10 eV, and X=O. Phase
boundaries are plotted for an 8-site ring. The ground-state eave
function changes discontinuously across solid lines, smoothly
across the dotted line.

FIG. 7. Dimerization as a function of W/to for U =4to =10
eV and V =X=0 for 4-, 6-, 8-, and 10-site rings. For the 4-site
ring, the dotted line gives results for the lowest-energy dimer-
ized state even though for this small ring the ground state is not
dimerized for intermediate values 0.10 & 8'/to & 0.225 of 8'/to.
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FIG. 8. Dimerization as a function of W/tp for U=4tp=10
eV, V=3 eV, and X=O for 4-, 6-, 8-, and 10-site rings. For the
4-site ring, the dotted line gives results for the lowest-energy
dimerized state even though for this small ring the ground state
is not dimerized for intermediate values 0.16& 8'/tp &0.29 of
W!tp.

conclusions —based on first-order perturbation-theory
estimates' —that (for V=O) W should lead to a continu-
ous and rapid decrease in dimerization are incorrect.

Second, for 0& V & U/2, the dimerized phase persists
until still larger values of W; and again 8'increases di-
merization (slightly) until the BOW-FM boundary is
reached. This is indicated quantitatively in Fig. 8, in
which the value of 5O versus W is plotted for U =4to =10
eV and V=1.2to=3 eV, again for 4, 6, 8, and 10 site

FIG. 10. Bond-charge measurements on the 8-site ring as a
function of W/tp for U=10 eV and V=O: (a) bond-bond corre-
lation (multiplied by ~ ), (b) average bond charge, and (c) alter-

nating bond charge, which is proportional to the dimerization.

rings. Note the increase in W„' consistent with Fig. 6,
here we find W, (V=3)=0.32to=0.8 eV. Here our
strong-coupling estimate that W, /to=to/(U —V) gives

W, =0.36to=0.9 eV. Further, the increase in dimeriza-
tion versus W predicted by the strong-coupling argu-
ments is still present, albeit in weaker form than for
V=O. Note that this V=3 eV example is expected to
show greater deviation than the V=O case from the
strong-coupling estimates, since it is nearer the V- U/2
boundary between the BOW and CDW phases where the

I I I I
I

I I I l
I

I I l I
I

I 1

1.2—
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I
I I I
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0.004

I

X 0.8
C4

0.6

I I I I

0.4
0 0.2 0.3

I i i i i I i i i i I

O. i
a8/to

0.2

FIG. 9. The energy difference E(6)—E(0) at the phase
boundary in Fig. 6 between the BOW and CDW phases. The
values of ( V, 8') are (a) (5.892 eV, 0.3 eV); (b) (6.084 eV, 0.2 eV);
(c) (6.135 eV, 0.18 eV); and (d) (6.210 eV, 0.15 eV). As 5 is de-
creased, these solid "BOW" curves become dotted as soon as
the "CDW" solution becomes energetically favorable.

FIG. 11. Energy per site on the 8-site ring as a function of
W/tp for U= 10 eV and V= 3 eV. For large 8'/tp, the ground-
state energy for the FM is E/N= V, independent of W'. For
small W/tp, the curves are for (t,X) equal to (a) (2.5 eV, 0); (b)
(2.5 eV, 0.25 eV) and (2.0 eV, 0); and (c) (2.5 eV, 0.5 eV) and (1.5
eV, 0). For parameter sets (b) and (c) the two different curves
are indistinguishable on this scale.
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I l directly to 8'in the Hamiltonian, is suppressed monoton-
ically as 8'is turned on. Counter to naive intuition, how-
ever, the auerage bond charge, (8 ) =(1/N) gl BI I+&,
does not fall off as dramatically as the correlation and
indeed, for small 8' the bond charge stays remarkably
flat. Meanwhile, the alternating bond charge, which is
related to the dimerization by

0.18—

0.16
0

l

I

I

I

I

I

I

I

I

l

I i ii

I

I

I

I

I

I

I

I

I

I

0.1 0.2
w/t, ,

l

t

I

I

I

I

I

I

I

I

0.3

FIG. 12. Dimerizatian as a function of 8'/to for the parame-
ters of Fig. 11. In (b) and (c) the dotted lines are for X=O.

strong-coupling analysis of dimerization breaks down.
Third, both Figs. 7 and 8 show that the distinction be-

tween "Jahn-Teller" (here, 4N) and "non-Jahn-Teller"
(4N+2) system persists even away from the band-theory
limit. However, they also suggest that systems with
N ~ 8 are near the converged large-N behavior. Inciden-
tally, the dotted regions of the 4-site ring results in Figs.
7 and 8 reflect the dimerization observed in the BOW
phase. However, the actual ground state of the 4-site sys-
tem at values of W in these dotted regions is a different,
small-ring phase, which does not appear in the larger
rings. Thus the solid line for the 4-site system, which
shows the dimerization going to zero at relatively small
values of 8', although strictly correct, is essentially an ar-
tifact of the small-system size. The dotted line, which ex-
plicitly ignores this small-ring phase and plots the dimeri-
zation assuming the BOW state remains the ground state
until the transition to the ferromagnetic phase, shows
more clearly the true finite-size effects on 8' and on 50 vs

Fourth, the phase boundaries in Fig. 6 in general
reflect a "first-order transition" in the dimerization order
parameter, 50: that is, there is a sudden qualitative
change in the nature of the ground state, and 5O drops
discontinuously from a finite value to zero. However, for
the short segment of the BOW-CDW boundary near
W=O—the range is roughly 0( 8'(0.1 eV—the transi-
tion becomes second order. This is shown in Fig. 9,
which plots E(5)—E(0) for points on the BOW-CDW
boundary; for 8'(0.1 eU, the transition becomes second
order. Except for this short segment, the dimerized
phase has nonzero dimerization on its boundary.

Increasing 8', of course, must suppress bond-bond
correlations. In Fig. 10, the bond-bond correlation, aver-
age bond charge, and alternating bond-charge are plotted
as a function of 8'for intermediate coupling, U =4to and
V=O, on the 8-site ring. As we would expect, the bond-
bond correlation (8 ) =(1/N) gl BI I+&, which couples

(8' ) =(1/N) g (
—1)'BI I +,=K5/a,

increases with IV, as we have seen earlier. In sum, while
8' must suppress bond-bond correlations, the effects on
average and alternating bond charge may be quite
different. In particular, we predict and observe that the
dominant effect of F is to increase the effective e-ph cou-
pling and so enhance the dimerization.

The effect of X on these results as indicated in Figs. 11
and 12. In Fig. 11, the ground-state energy at fixed V
(=3 eV} is plotted versus W for three values of the
effective hopping, t; they are t=2.5 eV, t=2.0 eV, and
t = 1.5 eV. As expected from our strong-coupling
analysis, the BOW-FM boundary moves to lower values
of 8'as the effective hopping is decreased. In Fig. 11, the
curve labeled (a) is for to =2.5 eV, X=O. That labeled (b)
is actually two curves, one for to=2.0 eV, X=O and one
for to=2.5 eV, X=0.25 eV). They are indistinguishable
on this scale. Similarly, the curve labeled (c} is again two
curves: to=1.5 eV, X=O and to=2.5 eV, X=0.5 eV.
Clearly, for these values of U(=4to) and V(=1 2to}, .
BOW-FM boundary behaves as suggested by the case of
the dimer, depending only on t =to —2X.

In Fig. 12 we show the effect of X on the dimerization
versus W' plot. The parameters and the labeling of the
curves are the same as in Fig. 11. Again, the alues of
both 8', and 5 are virtually indistinguishable. In case (c),
however, one can see a slight enhancement (-0.3%) of
dimerization with X (to=2.5 eV, X=0.5 eV) beyond
what one would expect from simply renormalizing the
band width (to=1.5 eV, X=O). Nevertheless, the over-
riding effect of X in intermediate to strong coupling is
indeed to renormalize to to t = to —2X. Thus as far as di-
merization in the half-filled band is concerned, one can in
effect use the X=O results with to determined by the ac-
tual band width to determine both 5 and 8'„' if nonzero
X is used, to must be suitably increased to compensate, so
that the actual band width, now given by 4t, remains
correct.

In summary, our exact diagonalizations confirm the re-
sults predicted from the weak-coupling, strong-coupling,
and (analytic) dimer arguments. For intermediate
strength e-e interactions, the BOW phase persists even in
the presence of off-diagonal interactions. Within the
dimerized phase, at fixed V dimerization actually in-
creases (slightly) with W. Thus, at least for small values
of 8'and for the range of e-ph couplings considered here,
the extended Peierls-Hubbard models with no off-
diagonal terms actually underestimate the enhancement
of dimerization caused by Coulomb interactionst For
large values of 8'—and fixed U and V—the off-diagonal
Coulomb interactions generate a new ferromagnetic
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phase. In view of our analysis in Sec. II on the relative
sizes of the diagonal and ofF-diagonal terms, it remains
unclear whether this range of parameters can be achieved
in any real materials. Finally, the role of X, for the inter-
mediate e-e interactions in the half-filled band, is primari-
ly to renormalize to to to —2X. We shall discuss further
the implications of all these results for the modeling of
real conducting polymers and other novel materials in
the following section.

V. DISCUSSION AND CONCLUSIONS

Taken together with prior work, our combined weak-
and strong-coupling perturbation-theory and exact-
diagonalization results present a unified picture of the
effect of short-ranged e-e interactions on dimerization in
the half-filled band. Previous studies ' ' established
that diagonal Coulomb repulsion terms (U, V) enhance
dimerization substantially for intermediate values
( U-4to, V (U/2) and for small e-ph couplings (1,=0.2).
Only for (unphysically) large value of A, do diagonal
Coulomb interactions uniformly suppress dimeriza-
tion. ' Our results establish that off-diagonal terms
( W, X) of the same range and internally consistent magni-
tudes do not alter these results; even strong Coulomb in-
teractions, provided the parameters are determined con-
sistently, do not destroy dimerization.

Focusing first on W we have shown that in half-611ed
band for intermediate U and V, the dimerization actually
increases with the addition of (small) W. Further, the di-
merization remains large until W reaches a critical value,
W„at which point there occurs a (first order) phase tran-
sition between the dimerized BOW phase and the undi-
merized ferromagnetic phase that exists for large W. In
real materials, the presence of such large values of W—
for the given U and V—seems dubious but remains an
open question. It is conceivable that the recently ob-
served organic ferromagnetic materials may be modeled
using parameters in this range. However, for (CH)„and
the other conjugated polymers, the experimentally ob-
served dimerization requires, within the model Hamil-
tonian, W ( W, . Importantly, one still finds dimerization
for strong, internally consistent Coulomb interactions;
the assumption of weak e-e interactions is not re-
quired. ' ' This is fortunate, for in the case of (CH)„,
such an assumption appears inconsistent with both ob-
served spin density ratio and optical absorption involv-
ing neutral and charged solitons. '

For intermediate strength U and V, the primary quan-
titative efFect of including an "X"term in the case of the
half-filled band is to renormalize the hopping term to to
t = to —2X. This of course affects the values of the model
parameters used to fit the properties of real materials, but
for a given t, both 5 within the dimerized phase and W,
remain virtually unchanged as to and X are varied.

Regarding the values of the various model parameters,
it is essential to recognize that they cannot be chosen or
varied arbitrarily. A11 the e-e interaction parameters
derive from the (possibly screened) Coulomb potential
and, except for strong screening, one has U & V & X & $V.

In several real materials this ordering is confirmed by de-

tailed fits, and in particular one finds U» W. This in-
equality makes any first-order, weak-coupling perturba-
tive treatment a priori suspect, since only V, X, and W
enter in first order; the (generally much larger) U term
enters only in second and higher orders. Indeed, our re-
sults suggest that to determine the true effects of e-e in-
teractions for internally consistent values of the parame-
ters, one must use methods that provide the correct solu-
tion to the many-body problem in the intermediate-
coupling regime.

%hen one adds e-e interactions to a single-electron
model describing real materials, it is essential to reevalu-
ate the other interaction parameters to obtain a con-
sistent fit to the full range of experimental observables.
Previous studies of diagonal Coulomb forces ' ' have
shown that the inclusion of intermediate strength U and
V (( U/2) increases both the optical gap and the dimeri-
zation; hence, to fit the experimental data, one requires a
weaker e-ph coupling (A, ) when e-e interactions are in-
cluded. In the case of off-diagonal terms in the half-filled
band, the most prominent effect of this sort is the renor-
malization by the X term of the hopping, as already dis-
cussed. Clearly, to keep the full band width constant, one
must increase to if X is included.

In addition to these quantitative effects, the off-
diagonal terms can have important qualitative conse-
quences. The mixed bond-site term X breaks charge-
conjugation-particle-hole symmetry; its inclusion in mod-
els of (CH)„may thus help explain the puzzling "intensi-
ty anomaly" in polaron/bipolaron optical absorption
experiments and also the ratio of neutral (S —S ) to
charged (S+—S ) soliton pairs in the decay channels of
electron-hole pairs in photoexcitation of trans-(CH)„. 'o

In both these cases, the X term may well be more impor-
tant than the straightforward next-nearest-neighbor hop-
ping term which we called t2 above; within a tight-—~oa
binding model, t2 ~ e to. IfX terms are included in H,
the effective hopping acquires an effective band-filling
dependence; this may be quite significant in applying
Hubbard-like models to situations other than the half-
filled band. For instance, if X is repulsive for electrons
(near the bottom of a band) it will be attractive for holes
(near the top of the band). As a consequence, the X term
has recently been discussed as a possible source of elec-
tronically driven superconductivity. One specific
mechanism by which the "density-dependent hopping
term" X can lead to superconductivity in a two-band,
two-dimensional model is discussed in Ref. 38.

Finally, we turn to the general issue of the applicability
of the standard Hubbard model. Here it is useful to place
our work in the context of several recent articles that, in
one way or another, have revisited the original analyses
that justified the "zero differential overlap"' approxi-
mation that neglects off-diagonal terms. ' First, we have
shown that first-order perturbation theory' is not a reli-
able basis on which to question the validity of the extend-
ed Hubbard model, since conclusions based on perturba-
tion theory about the effects of off-diagonal terms on di-
merization are not valid for realistic, self-consistent
values of the Coulomb interaction parameters. Second,
although our study focused explicitly on (an exact numer-
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ical solution for) short-ranged Coulomb effects, involving
only on-site and nearest-neighbor interactions, our results
are consistent with two recent variational studies involv-
ing (approximate) solutions for the full (screened)
Coulomb interaction. The first study used a Jastrow vari-
ational ansatz to examine quantitatively the effect of e-e
interactions on dimerization, and the second undertook a
detailed qualitative analysis of the validity of the Hub-
bard model using only the assumption that the overlap
integrals decay more rapidly with distance than does the
interelectronic potential. The results of both these
studies are consistent with ours insofar as they can be re-
lated. For all except extremely short screening lengths
and for weak (to intermediate) e-ph coupling, the varia-
tional results show that dimerization is enhanced by
Coulomb effects. Further, for this region of parameters,
the variational results on the full Coulomb probletn are
consistent with early (Gutzwiller) variational calculations
in the pure Hubbard model. Similarly, for cog))1—so
the overlap integrals fall off' more rapidly than the e-e
interactions '—our results also establish that the extend-
ed Hubbard model correctly rejects the consequences of
including all e-e interactions up to nearest neighbors. As
discussed above and elsewhere, ' if the values of the
X and 8' terms can be dialed at will, one can readily ex-
plain both (electronically driven) superconductivity and
ferromagnetism. However, as we have argued, one can-
not choose the values of these terms independent of the
values of the normal U and V; thus, barring some unusual
structure in the Wannier functions, it seems unlikely that
these terms are the driving mechanisms for superconduc-
tivity and ferromagnetism.

In summary, the familiar Hubbard and extended Hub-
bard models remain valid and useful theoretical starting
points for understanding the role of e-e interactions in a
variety of novel real materials.
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APPENDIX A: WEAK-COUPLING
PERTURBATION THEORY

where a Lagrange multiplier term has been added to con-
strain the chain length. The eigenstates of H for a uni-
form dimerization amplitude 5&

= ( —1)'5 are well known.
The zero-order ground-state wave function

l y & is just the
product over occupied one-electron band states, lk &.

Define the e-e coupling terms as the perturbing Hamil-
tonian:

H

=Up�

"It+ V 2 nIni+i+X g&i I+i(nl+n&+, )
I I

+ 1VQ&A+i ~

I

When H" and H' are scaled by H'~H'/(2to), the

U;([U;]=[U, V, X, W])

are scaled by U, ~ U, /(2to), and 5 is scaled by
5~a5/to; all quantities depend only on the dimension-
less e-ph coupling parameter A, =2a /mt0K. For the rest
of this Appendix, we work in these dimensionless vari-
ables.

From standard perturbation theory we can easily cal-
culate for fixed dimerization amplitude 5 the total energy
E ( U, V, X, W; 5) to zero, first, and second order in the e-e
couplrngs:

E(U, VX, W';5) =E +E'+E
Wlj.CZ C

E'=&ylHOIy&,

E'=&ylH'ly&,

and

I & y IH'lP& I'
(E —Ep)

The minimum-energy value 5O of the dimerization is

found from the self-consistency equation

BE
BS

Defining 5o=5OO(1+6, ), where 5o0=5( U = V =X = 8'
=0) is the self-consistent dimerization amplitude of H,
we can expand the self-consistency equation about 500:

We sketch here the derivation of the weak-coupling
perturbation-theory expansion for the dependence at half
filling of the dimerization amplitude on the e-e coupling
terms.

Define the zero-order Hamiltonian, H, to be
H(U = V=X = W=O):

g(to rt5I)(et el+i +ei+& eI0

or

BE
~ ~BE00

(aE/a5)
5~ (a'E/a5') s

+ —,'K +5,+I +5(,
I I

With E,E',E defined as above, noting E =O(1),
E'=0 ( U, ), and E =0 ( U, U ), we find
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—1 aE
soo a5'

aE' aE'
as+ as

aE & a2Eo azEo
+O(U;U. U»)

~00

=CU U;+CU U U;U/+O(U;U U») .

To find the explicit value of the C's, we need to evaluate E,E ', E . Defining

we obtain

E /N= (
—d D5—+ '5 )—,

1
2

2 +D 2

E'/N =
—,
' U+ V+ W —

( V —6W} +X
2(~g)2 nA',

E2/N =E2, 1/N +E2,2/N

where we have introduced

I ylH'lP; I'

(Er Ep )—
with lp, ) =c~,c„ I y ) and I/(/t2) =cj,c/', c» c» ly ). Choosing j' &j & kF & k' & k (defining the ordering convention}, we
find

E '=—g X . 8X gB» (n) + (V —6W) g [d —( —1}D]B»(n)E + E» „2(~/1,)2

—X(V —6W) d QB»J(n) DQB», (—n) g ( —1) B»i(m)
4

n n m

z, z
—1

N „„,,'.„IE/ I+ IE/, I+ IE,'I+ IE/, I

X [a U 2abUV+ ,'(—Sb 2bc)V—+,'(—b bc)( V ——6W—) +4cgXV+2g X ],
where

B»/(n) = ( —1)"[p»(n + 1)1I/J(n) —f»(n)1(/J(n + 1)],
a = g f»(n)g, (n)P» (n)f,'(n),

b = y q»(n)q» (n)[yJ(n +1)yJ (n +1)+yj(n —1)q/ (n —1)],

c = g f»(n)g, (n)[p» (n +1)QJ (n +1)+1(».(n —1)QJ.(n —1)],

and

g = g [t/r»(n +1)g/'(n) —
1(/»(n)QJ (n +1)][/» (n)g/(n) —g».(n +1)QJ(n +1)] .

We have used the fact that P~ E(n)=( —1)"f, z(n) and
that the P may be chosen real. We have evaluated the en-

ergy derivatives and finally the C's numerically for a
range of parameters; representative values are listed in
Table II.

In first order, one can obtain an analytic expression for
b, . From the solutions to 0 we have

d=2~(E '~) -dD=25~(~ E',
(1—5) (1—5)

where E and I( are the usual elliptic integrals with argu-
ment k =(1—5 }' . Using the identities ad /a5

5aD ia5 and D—lz =5 we obtain

g( ) —g @+V
(1—d)

where
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A= (1—d ) (BD /85)
[1—(aa yaS) ]

By manipulating this expression, one can show that A is
positive.

APPENDIX 8: NUMERICAL METHOD
FOR EXACT DIAGONALIZATION

Our "exact" diagonalizations were performed using a
Lanczos algorithm. We used basis states

ct ct ct ct ~0)
U D

for up electrons at sites i, &iz « i' and down elec-
U

trons at sites j, &j2 « jz, where the numbers NU
D

and Nz of up- and down-spin fermions are both fixed and
~0) is the vacuum state. Apart from particle-number
conservation, no other symmetries were used. A new
orthonormal basis was constructed by generating a se-

quence of states,
~
t)'t, ), ~1'), . . . , each expressed in terms

of the real-space basis. Each new state ~hatt„+, ) was gen-
erated by orthogonalizing H~l(t„) to ~tb„) and to ~g„,).
This procedure generates an orthogonal set, and the
Hamiltonian in this basis is tridiagonal. Whenever gen-
eration of these new basis vectors exceeded computer
memory, we diagonalized the Hamiltonian in the limited
basis and resumed the generation with the eigenvector
corresponding to the lowest eigenvalue as the new trial

ground-state wave function. The procedure was ter-
minated whenever expanding the basis decreased our esti-
mate of the ground-state energy by less than some small
amount —usually 10 . The adiabatic phonons were han-
dled by calculating the ground-state energy over a range
of dimerizations and choosing the minimum-energy solu-
tion.

Our initial ground-state trial wave function was a ran-
dom state, which is sure to have overlap with the true
ground state for all sets of parameters. Convergence for
a half-filled 8-site ring took minutes on a SUN Microsys-
tems work station. Thereafter, using that ground state as
the trial wave function for a new set of Hamiltonian pa-
rameters reduced the computer time needed for conver-
gence from minutes to seconds —provided, of course, that
the change in parameters did not take one across a "first-
order phase transition:" more precisely, across a discon-
tinuous derivative of the ground-state energy with respect
to Hamiltonian parameters due to the crossing of eigen-
values. Hence, phase boundaries could be mapped quick-
ly by running the diagonalization routine interactively—
twice at once, with one job running on each side of the
boundary. Each program would have to perform an ex-
pensive diagonalization starting from a random wave
function only once; thereafter, one could vary parameters
along the boundary smoothly for each program using the
last ground state as the good guess for the new point in
parameter space.
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