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We report a first-principles, local-density-functional (LDA) calculation of the electronic structure
of crystalline, three-dimensional (3D) trans-(CH)„. For the perfect crystal, we find a broken-
symmetry ground state having P2&/a space-group symmetry, corresponding to in-phase dimeriza-
tion on neighboring chains within the unit cell. We show that in this structure the interchain cou-

plings, although weak, lead to an asymmetry between the valence and conduction bands and, more
importantly, give 3D character to the electronic band-edge states. We investigate several additional
aspects of the electronic structure of the perfect crystal, including self-consistent optimization of the
ions in the unit cell, spin polarization and electronic charge densities, interchain electron-phonon
interactions, and the density of states. To study intrinsic defects in trans-(CH)„, we map our LDA
results onto a multi-orbital, tight-binding model; this mapping preserves very accurately all the
electronic-structure properties of the full calculation. Using a Koster-Slater Green-function tech-
nique, we are able to examine both (shallow) polaronlike and (deep) bipolaronlike lattice distortions
corresponding to localized defects. We find that the 3D character of the electronic band-edge states
strongly suppresses the formation of the self-trapped, localized defects characteristic of the 1D
models, destabilizing polarons and possibly bipolarons as well in perfectly ordered 3D trans-(CH)„.
To establish a connection with earlier work, we demonstrate that by artificially decreasing inter-
chain effects and/or increasing the intrachain electron-phonon coupling we can cause polarons and
bipolarons to form. We examine the agreement of our results for the idealized perfectly crystalline
material with experimental results on real samples of trans-(CH)„and conclude with suggestions for
future work, both theoretical and experimental.

I. INTRODUCTION

Our goal in this article is to calculate, and to develop a
qualitative understanding of, the electronic structure and
the intrinsic defects of three-dimensional, crystalline
trans-polyacetylene [trans-(CH)„]. To motivate our
study, and to clarify its context as well, we begin by recal-
ling several aspects of the long-standing debate on the mi-
croscopic modeling of conducting polymers and the cor-
responding finite oligomers.

Most of this continuing debate has focused on the rela-
tive importance of electron-electron (e-e) versus
electron-phonon (e-p ) interactions (for reviews, see Refs.
1 —6). The two major current schools of thought on this
issue can usefully (although not entirely accurately) be
characterized as the "chemical" and "physical" schools.
To chemists, trans (CH)„is sim-ply the "infinite" polyene.
The extensive chemical literature on ftnite polyenes,
which dates back at least as far as Hiickel (see also
Salem ), initially dealt primarily with the question of
bond alternation and thus concentrated on the coupling
between the m electrons and the nuclear coordinates (or,
in modern parlance, on the e-p interactions). More re-
cently, the irrefutable evidence that single-particle
theories —be they pure e-p or Hartree-Fock, incorporat-
ing e-e interactions in the mean-field approximation—
cannot capture the observed ordering of excited states '
in finite polyenes has led the "chemical school" to focus

chiefiy on models for (CH)„in which the e einteract-ions
play the dominant role. These models have achieved con-
siderable success; for example, exact diagonalizations of
the Pariser-Parr-Pople" model for finite oligomers in-
volving up to 12 (CH) units' ' (dodecahexaene) have
produced results consistent both with experiments on
finite polyene excited states and with ENDOR measure-
ments' ' of spin densities in polyacetylene.

To physicists, on the other hand, the successes of
single-electron approaches in metals or semiconductors
strongly suggest that in the conducting polymers "solid-
state effects" conspire to reduce the importance of the
atomic or molecular Coulomb forces that exist in the iso-
lated, finite oligomers. Thus, although there have been
attempts within the physics literature to explain the opti-
cal gap in trans-(CH)„using (the Mott-Hubbard model
of) e einteractions-, ' conventional wisdom in physics has
favored a single-electron approach emphasizing e-p in-
teractions. The celebrated Su-Schrieff'er-Heeger (SSH)
model, ' for example, explains both the bond alterna-
tion' ' and the optical gap observed in trans-(CH) en-
tirely in terms of e-p interactions and the resulting Peierls
instability in one-dimensional systems. Further, the SSH
model predicts a variety of localized, nonlinear
excitations —kink solitons, polarons, and [in cis-(CH)
and similar polymers] bipolarons —with theoretically
we11-characterized effects on magnetic and optical prop-
erties. These theoretical predictions have stimulated, and
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been generally consistent with, a large body of experi-
mental work. '

One obvious way to reconcile the distinct perspectives
of the "chemical" and "physical" schools is to treat one-
dimensional models in which both (e-e) and (e-p) in-
teractions are incorporated; considerable effort has re-
cently been devoted to this approach (for reviews, see
Refs. 1, 3, and 5). A second way to reconcile the two per-
spectives is to take seriously the idea that "solid-state
effects" —e.g. , screening due to adjacent chains, effects
due to crystalline order —may make the conducting poly-
mers quite different from the isolated finite polyenes.
Clearly, to study these solid-state effects realistically, one
must have an accurate model of the actual three-
dimensional solid material; this requirement immediately
provides one motivation for our calculation.

Surprisingly, in contrast to the very extensive effort de-
voted to the studies of strictly one-dimensional (1D) mod-
els, substantially less attention has been paid to the effects
that arise because the real samples of trans (CH)„,-al-
though microscopically highly anisotropic, are in fact in-
herently three-dimensional (for reviews see Refs. 20 and
21). In addition to the possibility that the interchain cou-
plings that arise in the solid material may lead to substan-
tial differences between the current forms of trans-(CH)„
and the finite polyenes in gas phase or solution and thus
may rationalize the differences in expectations based on
the chemists' and physicists' approaches, theoretical stud-
ies ' have suggested that the interchain couplings can
affect strongly the nature and properties of the novel non-
linear excitations predicted on the basis of the strictly 1D
theories. This greatly increases the interest both in an ac-
curate calculation of the three-dimensional (3D) structure
of trans-(CH)„and in the development of a qualitative
understanding of this structure and thus provides an ad-
ditional motivation for our study.

Before describing our approach in detail, it is impor-
tant to place our work in the context of earlier investiga-
tions of the effects of dimensionality in conducting poly-
mers. Among the pioneering works that calculated the
3D structure of polyacetylene in both the cis- and trans-
(CH)„ isomers were studies employing chemical ap-
proaches based on packing and bonding arguments
and investigations using physical approaches based on
band theory and variants of local-density-functional
theory. These studies confirmed the expected an-
isotropy of the material and, in some cases, provided de-
tailed insight into the 3D band structure. However, they
did not address the issue of theoretical expectation for
the ground state of crystalline trans-(CH)„. To phrase
the issue in terms of a specific question (using terminolo-

gy that will be defined precisely in later sections), is the
ground state of trans-(CH)„predicted to have P2, /n
symmetry (as deduced from early experiments on poly-
crystalline films of the Shirakawa material' ) or P2, /a
symmetry [as deduced from more recent experiments
on highly-oriented films of "Durham" trans-(CH)„]'?
Perhaps more importantly, although numerous stud-
ies ' based on simplified models have suggested that
3D interchain coupling can have dramatic effects on the
nonlinear excitations predicted by the 1D theories, previ-

ous ab initio calculations * ' of the 3D structure of
both trans —and cis-(CH), have left for further investiga-
tions the critical question of whether the interchain cou-
plings are sufficiently strong to destabilize the carrier
self-trapping associated with intrinsic defects in 1D sys-
tems. In addition, the more general issue of the relation
of the 3D predictions to the more familiar 1D results
seems insufficiently explored. These issues provide still
further motivation for our investigations.

Accordingly, in the present article we continue an ex-
tensive new first-principles study —initiated in two previ-
ous short communications ' —of the 3D structure of
trans-(CH)„. Our approach is based on Hohenberg-
Kohn-Sham density-functional theory treated in both the
local-density approximation (LDA) and the local-spin-
density approximation (LSDA). We attempt to develop a
unified picture of trans-(CH)„by relating our results to
those of previous studies in both one and three dimen-
sions.

At the outset, we should underscore the difficulties that
the materials aspects of real samples of trans-(CH)„pose
for any attempts to extract "intrinsic" properties of the
pure, "crystalline" material. If prepared by the
Shirakawa method, using a Ziegler-Natta chemical cata-
lyst, trans-(CH)„ films have less than full density ( =0.4
g/cm ) and on a microscopic scale (200—1000 A) consist
of tangled fibrils which, by stretching, can be partially
aligned. Changes in the catalysis conditions can lead to
substantial differences in the mesoscale morphology (for a
discussion and additional references see Ref. 48). The de-

gree of microscopic crystallinity in the standard
Shirakawa material is thought to be as high as 75 —90%
but the disordered regions are not well understood. '

Further, Shirakawa trans-(CH)„contains = 10' /cm
"free spins", often interpreted as neutral solitons or as
dangling bonds and/or radicals, as well as charged "im-
purity" states, thought to be related to inadvertent dop-
ing by the Ziegler-Natta catalyst, at the level of
=10' /cm . If prepared by the so-called "Durham"
route, using a processible prepolymer and thermal elim-
ination, trans-(CH)„can be made into fully dense ( =1.2
g/cm ) films that are mesoscopically fairly uniform. The
films can be made in either an "oriented" form —made

by stretching the prepolymer —or a "nonoriented" form.
The former is observed to be more crystalline and ap-
pears to have average conjugation lengths on the order of
n =30-40, whereas the latter seem to be amorphous and
has an average conjugation length of n =11—14. ' The
levels of intrinsic defects and impurity contamination are
not yet fully characterized. Various attempts to produce
isolated chains in the solid state using either matrices or
copolymer techniques add still greater variety (more ac-
curately, confusion) to the picture. In our LDA calcula-
tion, we shall focus almost entirely on pristine, crystalline
trans-(CH)„. If, as one might expect, the interchain in-

teractions are substantially modified by a lack of crystal-
line order, some of our conclusions may not a priori apply
to the currently available materials.

In Sec. IIA we discuss the methodology of our LDA
and LSDA calculations, comparing and contrasting them
with earlier structure calculations based on both chemi-
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cal methods and on LDA approaches in both 1D
variants ' and 3D variants. 8 O' ' ' In Sec. II B
we review the nomenclature and methodology for charac-
terizing the 3D structure of trans-(CH), . In particular,
we recall that whereas the initial x-ray studies' on
Shirakawa trans-(CH)„suggested a P2, /n structure,
more recent investigations of Durham (CH)„,using both
electron microscopy and x-ray diffraction, suggest a
P2, la structure. However, the two sets of structural
data agree within errors on the lattice parameters.

Section II C contains the results of our study of crystal-
line trans-(CH}„Ta.king the experimentally observed lat-
tice constants a, b, and c and the monoclinic angle P as
given, we show that the LDA results favor the P2&/a
structure over the P2, /n, by an amount which (given the
similarities of the two structures) is calculationally
significant; we then suggest a qualitative physical inter-
pretation of this result. Nonetheless, in view of the
remaining uncertainties, and for comparison to previous
results, both here and in later sections we study the
P2, /n structure in some detail. We next present a series
of studies of specific aspects of the structural and elec-
tronic properties of the fully 3D material, including the
optimized position of the ions in the unit cell, the spin
polarization and electronic charge densities, the band
structure, the interchain electron-phonon interaction,
and the density of states.

In Sec. III we turn to the issue of intrinsic defects in
trans-(CH)„. To make the calculations tractable, we de-

velop a 3D, multi-orbital tight-binding model which
reproduces very accurately the LDA structural and elec-
tronic properties found in Sec. II C. Within this model,
we use the Koster-Slater Green-function approach" to
examine localized defects in the otherwise perfect crystal.
We study intrinsic defects including kink solitons, pola-
rons, and bipolarons, in which both lattice deformations
and electronic structure play a role. As expected, the in-
terchain interactions preclude the formation of free, un-
bound kink solitons; instead, only bound kink-antikink
pairs —in essence, polarons or bipolarons —can be
formed. Significantly, a calculation of the electronic
structure corresponding to a localized (shallow) polaron-
like defect shows that for reasonable ranges of the lattice
distortion there are no states in the gap and hence no lo-
calized electronic states. To establish consistency with
earlier work, we demonstrate that, by artificially decreas-
ing interchain effects and/or increasing the electron-
phonon coupling, we can cause the polaron to form. For
deep bipolaron distortions, we also find that the intragap
levels arise only for fairly large values of the lattice dis-
tortion, again because of 3D effects. Thus, our results
suggest that interchain coupling effects are likely to des-
tabilize the 1D polaron and possibly also the bipolaron in
crystalline trans-(CH)„.

In Sec. V we present a discussion of our findings and
our conclusions. We examine the limitations of our re-
sults, mentioning in particular the di%culties that
"strongly correlated" systems pose for the LDA ap-
proach. We also examine the consistency of our findings
for ideal, pristine trans-(CH) with experimental results,
including optical absorption, on real samples. We con-

elude with suggestions for future work, both theoretical
and experimental.

II. STRUCTURAL AND ELECTRONIC
PROPERTIES OF CRYSTALLINE trans-(CH)

tot, el kin+Eel-core+ el-el (2.2}

where E„;„is the kinetic energy of the electrons, E„„„„
is the Coulomb interaction between the ion cores, E,~ „„

is the electron-core interaction, and E,&,&
is the electron-

electron interaction. The electron-ion interaction E,&, „

is determined using the Coulomb potential for hydrogen

A. Description of the local-density approach to trans-(CH)

To calculate the ground-state properties of crystalline
trans (CH-)„, we have employed local-density-functional
theory both in spin-polarized and spin-unpolarized
forms, using the ab initio pseudopotential plane-wave
method. ' Local-density-functional theory has been
shown to reproduce accurately the structural properties
of a broad range of atoms, ' molecules, and solid-
state systems, ' including semiconductors, insulators,
and even van der Waals crystals from first principles.
In most cases, quantities involving the total energy, such
as lattice constants, bulk moduli, phonon frequencies,
charge densities, and structural stabilities, have been
found to agree within a few percent of experimental
values.

The method has two major weaknesses which are
relevant for polyacetylene. First, local-density-functional
theory, being rigorously applicable only to the ground
state, is notorious for underestimating the energy gap in
semiconducting phases. The essential source of the
discrepancy is not the local-density approximation (LDA)
but the neglect of a discontinuity in the exact exchange-
correlation potential across the gap. Fortunately, cal-
culations of the electron self-energies for a range of ma-
terials have revealed that the "true" quasiparticle bands
differ from the LDA bands predominantly by a rigid up-
ward shift, X„„,of the conduction bands that is weakly
dependent on the electron momentum. Second, the
local-density approach accounts only semiquantitatively
for phase transitions which are driven by strong electron
correlations, even when the spin-polarized version of lo-
cal density theory (LSDA) is employed. Thus, the theory
correctly predicts the antiferromagnetic ground state of
MnO and of the half-filled Hubbard model, for example,
but it underestimates the correlation gap and fails alto-
gether when f, the fractional band filling, does not equal
O.S. ' On the other hand, structural phase transforma-
tions which are driven by strong electron-phonon interac-
tions, such as ferroelectric transitions, or pressure-
induced phase transitions in solid hydrogen halides, ' are
accurately accounted for by the LDA.

In the present work, the total energy of trans-(CH)„ is
calculated within local-density-functional theory using
the formalism of Ihm etal. in the plane-wave represen-
tation. In this approach, the total energy is expressed as
a sum of terms,

Etot tot, el +Ecore-core (2.1)
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and norm-conserving ab initio carbon pseudopotentials
generated in Ref. 72. %'e note that carbon, with its small
core consisting only of the 1s state, is a good candidate
for the ab initio pseudopotential approach, because the
core wave functions do not overlap significantly with the
valence functions, and the core eigenvalues are well
separated from the valence eigenvalues.

The electron-electron interaction consists of the Har-
tree energy and the exchange-correlation energy, which is
evaluated with the accurate local-density functional given
by Painter for the spin-unpolarized and the spin-
polarized cases. This functional is based on Monte Car-
lo calculations of the correlation energy in the electron
g s74

The electronic energy, Eq. (2.2), is determined by solv-
ing self-consistently the Kohn-Sham equations, which in
their spin-polarized form ' read

V' + V;,„(r)+VH(r)+p„, (r) 1(, (r)
2&l~
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FIG. 1. Convergence of the calculated total crystal energy
per unit cell as a function of the number of plane waves includ-
ed in the Hamiltonian matrix, and as a function of the number
of special k vectors (Ref. 77) included in the integrals of the
charge density and the electronic potential over the irreducible
wedge of the Brillouin zone.

=s; 1(, (r) . (2.3)

Here, V;,
„

is the sum of the hydrogen and carbon ion
core potentials, VH is the Hartree potential due to the
valence charge density p(r), and p„, (r) is the exchange-
correlation potential for electrons of spin cr. The valence
charge density is given by

OCC

p(r) =eg fl(, (r) f =p&(r)+p&(r) . (2.4)

In this equation, the sum extends over all occupied
states and both spin directions. Etptc] can be obtained
from

OCCE„,„=gs, ——f VH(r)p(r)dr
2

+g f [e„,(r) —
p,„,(r)]p (r)dr, (2.5)

whe~e e„,(r)p (r) is the exchange-correlation energy
density for spin a. Equation (2.5) accounts for over-
counting of the Coulomb interaction between the elec-
trons in the sum of eigenvalues. Because of the long-
range nature of the Coulomb potential, the potentials
VH(r), V„„(r),and the energy E„„„„containinfinite
contributions which cancel with one another and can be
excluded explicitly in a plane-wave basis.

Equation (2.1) gives the total energy of the solid for a
given ionic configuration, i.e., fixed positions of the ions
in the unit cell. It implicitly invokes the adiabatic ap-
proximation. In order to optimize the structures, we
have also computed the tota1 Coulombic force exerted on
the ions, employing the momentum-space expression for
the Hellman-Feynman theorem, as derived by Ihm
et al. ' The positions of the ions in the unit cell have
been determined by an iterative procedure consisting of
the following steps: (1) perform a self-consistent calcula-
tion of the total energy of the system with fixed ionic po-
sitions; (2} calculate the force exerted by the electrons on
the ions, and shift the ions by a small amount in the

direction of this force; (3) go back to step (1) until the
ions are in equilibrium with the electrons.

For the P2, /a and P2iln structures of trans (CH)„-
which are specified in Sec. II B, we have solved Eq. (2.3}
with 1800 plane waves as basis states (corresponding to a
maximum kinetic energy of 35 Ry). We used up to 16
special k points in an irreducible part of the Brillouin
zone for the k integrations and 1024 special r points in an
irreducible part of the unit cell for the real-space integra-
tions. Approximately 10-20 iterations were needed to
obtain total energies converged to within 1 meV. The
convergence in the total energy is illustrated in Fig. 1 for
trans-(CH)„ in the P2, /a structure.

B. Characterization of the three-dimensional
structure of trans (CH}, -

Recent experimental structural data indicate that
trans-(CH)„has a monoclinic unit cell with P2, /e sym-
metry. ' The unit cell contains two transplanar C2H2
chain units, with one shorter and one longer carbon-
carbon bond in each chain corresponding to a dimerized
structure. The precise relationship between the two po-
lyacetylene chains in the unit cell is still controversial.
Two possible configurations, consistent with the space
group P2ile, have been proposed: (1) an inphase
(P2i/a) and (2) an antiphase arrangement' (P2&/n) of
the dimerized backbone. In Figs. 2 and 3 we depict the
unit cell of trans-(CH)„ in the P2, /a and P2, /n struc-
tures, respectively.

The two structures, P2, /a and P2, /n, are difBcult to
distinguish from the intensity of x-ray reflections. For
structures with bond alternations in phase, all the (001)
in-chain x-ray reflections are allowed, while only even I
reflections are allowed for P2&/ll structures with bond al-
ternations out of phase. The (001} and (003) refiections
were clearly observed in highly oriented nonfibrous
Durham-Graz trans-(CH)„material, indicating the
P2, /a structure, whereas these refiections were either not
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TABLE I. Cartesian coordinates of atoms in trans-(CH)„. The y and z directions are chosen along the b and c axes, respectively.
The x direction is then approximately along the a axis. We tabulate only the positions of the four atoms on one chain in the unit cell
and, additionally, of one carbon atom on the second chain, since this differs in the P21/a and P2&/n structure. The other atomic
coordinates then follow from symmetry. The numerical values of the structural parameters are given in Table II.

Atom x coordinate y coordinate z coordinate

C(1)

H(1)

C(2)

H(2)

singe

+(lc Hu -H
)' sin((H

—+sing C

+(lc H
—u'„)'" sin((H

cosfc

++(I' —u' )' ' cosP„

—+cosP C

++ ( l ' —u )
' cosP„

uc
4 2

c uc
uH4 2

3c uc
4 2

3c uc—+ +uH

P2, /a:C(3)

P2&/n:C(3)

a+singe+ —sinp
2 '

2

—-singe+ —sinp
a

2 ' 2

—+cosPc+-b
2 '

2

cosfc+ b

2
'

2

c uc a+—cosp
2 2 2
c uc a—+ +—cosp
2 2 2

seen or were observed to decrease following various elec-
trochemical treatments in trans-polyacetylene. ' ' The
rocking curves in the highly oriented Durham-Graz ma-
terial " indicate a much better alignment of the polymer
chains (5' in Ref. 34 compared to approximately 10' in
Ref. 78) and show an intensity ratio of the (001) to (002)
reflections which is in accord with the theoretically ex-
pected value. In sum, we expect that Durham-Graz ex-
periments reflect intrinsic properties of crystalline trans-
(CH)„more faithfully, since samples with significantly
better aligned chains were used and the x-ray reflections
characteristic for the P2, /a structure could be quantita-
tively identified.

In order to characterize completely either of these two
structures, the following structural constants need to be
known: the lattice constants a, b, and c, the monoclinic
angle P between a and c, two setting angles (()c and PH be-
tween the plane containing the carbon and hydrogen
chain, respectively, and the b axis, the projection p of the
C-C distance within a chain onto the a bplane, the di-s-

tance lcH between the carbon and hydrogen atoms
within a chain, the dimerization amplitude Qc =+2@0 of
the C—C bonds in the c direction, and the displacement
uH of the hydrogen atoms relative to their adjacent car-
bon atom. ' In Table I the positions of the atoms in
the unit cell are specified in terms of these parameters for
both P2, /a and P2, /n structures of trans-polyacetylene
The experimental values are summarized in Table II.

C. Results of the three-dimensional local-density approach

1. Total energy and relative stability of P2&/n and P2I/a

In this section we will present our theoretical results
for the structural total energies and optimized lattice pa-
rameters. Initially, we have used the experimentally es-
tablished lattice parameters shown in Table II and
performed spin-unpolarized, self-consistent LDA
electronic-structure calculations in the two competing
structures. As indicated in Table III, using these experi-

TABLE II. Experimental and predicted structure parameters
for crystalline trans-polyacetylene. The parameters are defined
in the text and Table I.

Structure
parameters

a (A)
b (A)
c (A)

P (deg)
4'c («g)
P„(deg)
p (A)
uc (A)
~c-H (A)
u „(A)

Expt.

4.18
7.34
2.455

90.5
57
57
0.68
0.052
1.09
0.025

Present calc.

55.1

57.0
0.64
0.01
1.12
0.04

mental parameters, our calculations show that the P2~/a
structure is lower in total energy by an amount of
0.01+0.003 eV per (C2H2)2 unit. This difference is con-
sistent with the similarity of the two structures, and is of
the order of optic 1 phonon energies in solids. As we
shall later demonstrate, the greater stability of the P2, /a
phase relative to the P2, /n phase has a clear physical ori-
gin: namely, a (weak) chemical bonding caused by over-
laps between carbon and hydrogen orbitals on adjacent
chains in the unit cell. These overlaps are more pro-
nounced in the P2, /a phase.

Since the self-consistent value of the dimerization uc
will be an important issue in our later discussion, it is im-
portant to stress that, irrespective of the precise value of
uc, our results show that the dimerized P2, /a structure
is lower in total energy than the dimerized P2&/n struc-
ture. This is illustrated in Table III. For the calculated
force-free value (uc =0.01 A) it is 0.007 eV, whereas for
zero bond alternation it is 0.030 eV. The increased stabil-
ity of the P2~/a structure relative to the P2, /n structure
as the dimerization goes to zero has the same physical
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TABLE III. Relative stability of the two monoclinic struc-
tures of trans-polyacetylene. The difFerence in the calculated to-
tal energy per cell in the P2, /a structure and the P2, /n struc-
ture is listed. The corresponding structural lattice parameters
are given in Table II; the undimerized structural data imply
uc=0 and u„=0and P=90'.

y, P'
n1 1

g

Structure data

Experimental
Optimized
Undimerized

Et $(P2]/a I +I t(P2}/n)
—0.010
—0.007
—0.030

iJl(t,a

origin as the overall energy difference, since for uc~O
one can see that the overlapping carbon and hydrogen or-
bitals are brought into closer alignment.

Several qualitative arguments have been advanced in
favor of one or the other structure for crystalline trans-
CH„.On the basis of the tight-binding SSH model, ' in-
cluding (constant) interchain hopping matrix elements, it
was found that an alternating dimerization on neighbor-
ing chains as in the P2, /n structure is energetically
favorable, provided there is particle-hole symmetry.
Alternatively, if one allows the interchain hopping in-
tegrals to alternate in sign, then one can argue that the
P2, /a structure is favored. In Sec. IIC4 we shall
present detailed arguments establishing that there is
significant interchain (chemical) bonding interaction be-
tween carbon and hydrogen atoms which violates
particle-hole symmetry and causes the P2, /a structure to
be favored. Each H atom on one chain approximately
points towards a carbon p orbital on one of the neighbor-
ing chains. These adjacent atoms are shown in Figs. 2
and 3 by dashed lines. The distance between the H atom
on one chain and its nearest carbon neighbor on another
chain is 2.9 A in the P2, /a structure and 3.1 A in the
P2, /n structure. This diff'erence provides a crucial addi-
tional bonding energy that favors the P2, /a structure. In

FIG. 2. Conventional unit cell of trans-(CH) in the P2l la
structure. The dashed lines are drawn to emphasize a charac-
teristic feature of this structure: the hydrogen atoms of one
chain point approximately towards the carbon atoms of the
neighboring chains.

ea i~ f/''
~Nit ~

FIG. 3. Conventional unit cell of trans-(CH)„ in the P2&/n
structure. As in Fig. 2, the dashed lines emphasize the approxi-
mate alignment of the carbon and hydrogen atoms on adjacent
chains. However„ these atoms are further apart in the P2&/n
structure than in the P2&/a structure.

addition, the distance between the adjacent carbon and
hydrogen atoms decreases slightly with decreasing dimer-
ization, which causes the trends in Table III.

2. Optimized ion positions in the unit cell

In this subsection we present results from the computa-
tion of the Hellmann-Feynman forces and the corre-
sponding iterative optimization of the ion positions
within the unit cell.

In Fig. 4 we depict some typical results for the forces
and corresponding changes in two of the lattice parame-
ters, u c and u„.In the middle of the figure we show the
total energy, which is lowered by each iteration. Each
iteration represents a self-consistent electronic-structure
calculation. Corresponding to the lowering of the total
energy, the forces exerted on the ions decrease. The re-
sulting lattice parameters are summarized in Table II and
compared to the experimental values. We note that we
have used the experimental values for the lattice con-
stants a, b, c, and P, since these data are accurately estab-
lished experimentally and their theoretical determination
would require calculation of the full stress tensor. We
find our predicted setting angles, the zig-zag amplitude of
the C chains, and the C-H distance to be very close to the
experimental values. We find a buckling of the carbon-
hydrogen plane, which is apparently small in the case of
trans-(CH)„. To our knowledge, such a buckling has not
been discussed so far in the literature on polyacetylene.

A considerable discrepancy between theory and experi-
ment, however, is the small dimerization uc predicted by
the present theory. This finding is consistent with recent
first-principles calculations of uc both far single
chains ' and for 3D structures. ' ' ' Although
it is conceivable that the dimerization in perfect crystal-
line all trans-(CH), is somewhat smaller than in the ma-

jority of the available samples, in view of the large
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difference between the theoretical prediction and the ac-
cepted experimental value, a discrepancy between theory
and experiment is likely to remain. In this regard, how-
ever, it is first important to emphasize that our results do
predict unambiguously that uc is nonzero. The evalua-
tion of the Hellmann-Feynman forces proved crucial for
our calculation of uc, since they are an order of magni-
tude more sensitive to uc than the total energy itself; be-
cause of this effect, other total energy studies were either
unable to obtain unambiguous results for uc (Ref. 42) or
concluded that it was zero (Ref. 80}.

The most plausible origin of such discrepancy is in the

{a}

LDA itself, i.e., in a correlation effect which is not fully
captured by the method in either the 1D or the 3D calcu-
lations. Recently, it was suggested that this theoretical
underestimate of dimerization could be linked to the
inadequate treatment of correlation effects in LDA, since
more exact methods have established that for one-
dimensional models the proper inclusion of correlation
effects enhances dimerization for weak e-p coupling. '

In view of the importance of this uncertainty in the
value of uc, we have checked all major results of this pa-
per both with the force-free set of structural
parameters —as shown in Table II—and with the experi-
mental set of parameters. Fortunately, none of the major
physical conclusions in our analysis depends sensitively
on the value of uc.

0.06 1.0 3. Spin polarization in the ground state
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We have already mentioned that the spin-unpolarized
local-density-functional approach inevitably loses some of
the true correlation effects that occur in spin-unsaturated
many-electron systems such as trans (CH)„-As d.emon-
strated by many examples (see Sec. IIA), a substantial
portion of these correlations can be captured by the
local-spin-density method (LSDA).

We have therefore minimized the total energy of trans-
(CH)„ in the P2, /a phase in the LSDA. In the calcula-
tion, we start with an initial spin polarization by
artificially spin polarizing the ion potentials in the unit
cell. The effective one-particle equation (2.3) is then
solved iteratively until the potential and resulting valence
charge and spin density are self-consistent. After a few
iterations, the spin polarization is concentrated on the C
m orbitals. Finally, however, it tends to zero, and a spin-
unpolarized ground-state results. Consequently, the
spin-density-functional theory predicts that 3D crystal-
line trans-(CH)„has no (antiferromagnetic) Mott ground
state at T =0.

0.05 2.0
4. Electronic charge density
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FIG. 4. Convergence of calculated structural parameters.
Each iteration corresponds to a complete self-consistent total
electronic energy calculation for a given configuration of the
ions in the unit cell. Shown are the Hellmann-Feynman forces
on the carbon [panel (a)] and the hydrogen atoms [panel (c)] and
the corresponding value of dimerization which minimizes the
total electronic energy. The total crystal energy decreases with
each iteration [panel (b)], as the ions and electrons are being
brought into better equilibrium with respect to one another.

The chemical bonding within the (CH)„chains and be-
tween the chains may be examined by computing the
electron charge density. In this section we discuss the
calculated valence electron charge density in trans (CH)„-
in the P2, /a structure. The geometry of the three planes
in the unit cell in which we shall depict the charge densi-
ty is shown in Fig. 5. The structural parameters we have
used are listed in the second column of Table II. Figures
6 and 7 depict the total valence charge density. The pro-
nounced maxima between the carbon atoms in Fig. 6
reflect the strong cr bonding of the carbons along the c
axis.

The perhaps most striking results are contained in
Figs. 8 and 9. They show the electron charge density dis-
tribution in the two uppermost valence bands (Fig. 8) and
the two lowest conduction bands (Fig. 9), respectively.
According to the standard SSH model, ' these figures
should be identical, apart from a small bonding charge
between the carbon atoms: that is, in the SSH model,
these bands are simply bonding and antibonding com-
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FIG. 5. The computed electronic charge density surfaces in
the following figures refer to one of the plane sections of the
unit cell shown here: (a) the plane of the carbon-hydrogen o
bonds. (b) The plane perpendicular to that shown in (a) and
parallel to the carbon-hydrogen bond in one chain. This plane
section displays the carbon m bonds and also illustrates the
charge distribution between the chains. (c) The plane perpen-
dicular to that shown in (a) and parallel to the carbon-carbon
bond.

binations of the molecular m orbitals and hence obey
particle-hole symmetry.

The first-principles calculations show that these states
are indeed primarily molecular m bands consisting mainly
of carbon p orbitals. This is particularly evident from
Fig. 10, which shows the characteristic lobes of a p-wave
function. Importantly, however, in contrast to a one-
dimensional picture such as the SSH model, the top
valence band states in crystalline trans-(CH)„(Figs. 8 and
10) consist of a mixture of hydrogen and carbon states,
whereas the bottom conduction states are essentially pure
carbon states (Fig. 9). This asymmetry in the valence and
conduction states is a consequence of an additional bond-
ing mediated by the interaction of carbon states and hy-
drogen states across the chains (see Fig. 2). We have re-
peated our calculations with larger lateral lattice con-
stants a and b and find that this asymmetry and the hy-
drogen contribution in the top valence bands disappear
when a and b are increased by more than 30%.

Quite recently, it has been argued' that the "bond-

electrons/cell

200

loo

0
0.5

-O.Z

FIG. 7. Calculated total electronic valence charge density in
the plane shown in Fig. 5(b). The large and small black circles
show the projected positions of the carbon atoms and hydrogen
atoms onto the a-b plane, respectively.

charge" repulsion between electrons in the m orbitals be-
tween the carbon atoms could be physically significant
and could alter the manner in which the e-e interactions
should be modeled in polyacetylene and other conducting
polymers. In a naive tight-binding picture, one might
expect at least a weak "buildup" of charge between the
two carbon atoms linked by a double bond. In Fig. 11 we
show that the actual charge density does not indicate any
such buildup between these carbons atoms; indeed, the
charge density is pealed primarily around the atomic sites
and is rather insensitive to the extent of the dimerization.

5. Band structure

In Figs. 12, 13, and 14 we show, respectively, the elec-
tronic band structure for the dimerized P2, /a and P2, /n
phases and (for completeness, the unphysical) undimer-
ized P2, /a phase of crystalline trans (CH)„ that fo-llows

from the self-consistent LDA calculations using the
structural parameters listed in the second column of
Table II. These figures show that in both structures the
interchain interactions alter crucially the symmetry and
dimensionality of the band states close to the minimum
gap. Significantly, in view of the underestimate of the di-
merization in the force-free parameters, comparison of
Figs. 12 and 14 shows that these band-edge splittings

electronsicell

30 )
20
lo
0

0.5

FIG. 6. Calculated total electronic valence charge density in
the plane shown in Fig. 5(a). The large and small black circles
show the projected positions of the carbon atoms and hydrogen
atoms onto the plane depicted in Fig. 5(a), respectively.

FIG. 8. Calculated electronic valence charge density associ-
ated with the two uppermost valence bands (conventionally
called "m" bands). The plotted charge surface lies in the plane
shown in Fig. 5(a).
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FIG. 9. Calculated electronic valence charge density associ-
ated with the two lowest conduction bands (conventionally
called "~*"bands). The plotted charge surface lies in the plane
shown in Fig. 5(a). The difference between Figs. 8 and 9 origi-
nates in the coupling of carbon and hydrogen atoms across
neighboring chains; it demonstrates the broken particle-hole
symmetry.

FIG. 11. Calculated valence charge density associated with
the two uppermost valence bands (conventionally called "~"
bands). The plotted charge surface lies in the plane shown in

Fig. 5{c). This figure shows the weak bonding of the carbon ~
states. The large and small black circles show the projected po-
sitions of the carbon atoms and hydrogen atoms onto the plane
depicted in Fig. 5(c), respectively.

near the minimum gap (around it point kz) are insensitive
to the value of the dimerization. Since these band-edge
states play an essential role both for low-lying excitations
and in the formation of intrinsic defects (see Sec. III
below), these observations are most significant.

As discussed in Sec. IIA, the one-particle spectrum
difFers from the LDA band structure to a very good level
of approximation by a wave-vector-independent self-

energy correction X,~, which raises the energy of the con-
duction bands. We have estimated this self-energy by
comparing the calculated combined density of states of
trans (CH)„in the-P2&/a structure with the experimental
optical-absorption spectrum (see Sec. IIC7) and find

X„=0.74 eV. This self-energy is included in the Figs. 12,
13, 15, and 16 to facilitate a comparison between theory
and experiment.

Let us first discuss the band structure in the P2, la
phase, shown in Fig. 12. The pair of the two highest

valence and lowest conduction bands are mainly carbon-
s orbital derived states and show, overall, approximate
particle-hole symmetry. If there were no interchain in-

teraction, all energy bands would be twofold degenerate
throughout the Brillouin zone, rejecting the two C2H2
chain segments in the unit cell. This is illustrated in Fig.
15(b). In the same limit, the minimum gap would be pro-
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FIG. 10. Calculated valence charge density associated with
the two uppermost valence bands (conventionally called "n"
bands). The plotted charge surface lies in the plane shown in

Fig. 5(b). This figure exhibits the characteristic ~ lobes associat-
ed with the nonbonding carbon m. states.

FIG. 12. Predicted electronic band structure of trans-(CH)„
in the P2, /a structure. The zero of energy has been chosen to
lie within the energy gap. The dimerization has been set to the

0
experimental value of uc =0.05 A; the other structural parame-
ters have been optimized self-consistently (see Table II). The
conduction bands include a k-independent self-energy correc-
tion of X,1=0.74 eV (see discussion in Sec. II C5). The insert
shows the three-dimensional Brillouin zone; the chain axis is

marked by an arrow.
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FIG. 13. Predicted electronic band structure of trans-(CH)„

in the P2, /n structure. The zero of energy has been chosen to
lie within the energy gap. The dimerization has been set to the

0
experimental value of uc =0.05 A; the other structural parame-
ters have been optimized self-consistently (see Table II). The
conduction bands include a k-independent self-energy correc-
tion of X,&=0.74 eV (see the discussion in Sec. II C 5). The in-

sert shows the three-dimensional Brillouin zone; the chain axis
is marked by an arrow.

portional to the dimerization and would consequently
vanish for zero dimerization at any of the k points kD,
ka, k„,and kz at the boundary of the Brillouin zone.
Our first-principles calculations show, on the contrary,
that the bands in three-dimensional trans-(CH)„behave
differently close to the Fermi level. As indicated in Fig.
15, the pairs of the two lowest conduction and highest
valence bands near the k point B=(0,0, —,

'
) are split by

0.53 eV and 0.46 eV, respectively. With decreasing di-
merization, uc~0, these splittings decrease, but the gap
between conduction and valence band remains finite near
kz, as can be seen in Fig. 14 for the undimerized struc-
ture.

The minimum band gap in the P2&/a phase is found to
be slightly indirect, as shown in Fig. 15. The valence-
band maximum lies at k=(0, —,', —,

' ), whereas the minimum

conduction band edge occurs at k=( —,', 0, —,
' ).

In a tight-binding framework, one can very crudely es-
timate the strength of the interchain coupling from its
effect of the band structure. Equating the width of the
splitting in the band-edge states near the k point k~ to
4t~, we obtain an effective interchain hopping matrix ele-
ment t~ =0.12 eV, compared to

t~~
=2.5 eV for the intra-

chain coupling matrix element. These values are roughly
consistent with experimental anisotropy factors of the or-
der of 100 in the conductivity, since the ratio of trans-
verse to longitudinal conductivity is proportional to
(t~/tl ) . A tight-binding analysis of optical experiments
in trans (CH), under p-ressure has led to estimates for

FIG. 14. Calculated electronic band structure of trans-(CH)„
in a hypothetical P2, /a structure with zero dimerization. The
zero of energy has been chosen to lie within the energy gap.
since the dimerization has been set to zero, this does not corre-
spond to the experimental situation.

4t~=0. 3 eV, which is also consistent with our first-
principles results. The interchain effects are very sensi-
tive to crystalline order; by increasing the distance be-
tween the two chains by 5%, the splittings in the band-
edge states decrease by 31%, in accord with the previous-
ly discussed charge-density results. The band splittings
are also weaker in the P2, /n structure (see Fig. 13), since
the distance between the neighboring C and H atoms is
larger in this case.

Turning next to our results for the P2, /n band struc-
ture which are shown in Fig. 13, we find that they are in
general agreement with prior first-principles calculations

p
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Ql p

I
Cg -1

-2

k vector k vector

FIG. 15. (a) Predicted electronic band structure of trans-
(CH)„in the P2, /a structure near the fundamental energy gap.
The arrows indicate the position of the top of the valence band
and the bottom of the conduction band, respectively. (b) Same
within an idealized 1D tight-binding band model [SSH model
(Ref. 17)].
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tion of a dimerized ground state and favors a metallic
ground state with no bond alternation. It was therefore
argued in Ref. 42 that the interchain interaction could, in
fact, be partly responsible for the small bond alternation
predicted by the LDA. The recent calculations of
Mintmire and White ' indicate, however, that the local-
density-functional method predicts the same small dimer-
ization uc even in one-dimensional (CH)„chains. In this
regard we note that our calculations, which optimize the
atomic positions in both P2~/a and P2&/n trans-(CH)„,
predict the same value for uc in both structures, even
though the interchain coupling is substantially weaker in
P2, /n polyacetylene.

2.0
6. Interchain electron-phonon interaction
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of Grant and Batra and of Ashkenazi and co-
workers. ' ' ' There are some differences in the con-
duction bands which are likely to originate in differences
in the method, numerical details, and atomic positions.
The present results are more accurate than those of Refs.
28—30 in the sense of (apparent) numerical convergence.
Grant and Batra included 500 plane waves, whereas we
included more than 1800 and employed a more accurate
soft-core norm-conserving pseudopotential. Ashkenazi
et al. ' used the linear muffin-tin orbitals method in the
atomic-sphere approximation (LMTO-ASA) which ap-
proximates the crystal potential by muffin tins and
neglects the intermediate regimes. This is quite adequate
for close-packed structures but represents a fairly drastic
approximation in an open, highly anisotropic structure
such as trans-(CH)„. The present calculations contain no
approximations to the shape of the crystal potential.

We note that Grant and Batra did not include the
wave vectors close to the k point k„=(——,',0, —,

'
) (see Fig.

13) in their published band structure; since the interchain
interaction shows up significantly only for this k vector,
they concluded prematurely that the band splitting in-
duced by three-dimensional effects is smaller than 0.1 eV
close to the Fermi energy; at the wave vector k~, we ob-
tain a splitting of 0.23 eV for the topmost valence bands
in the P2, /n structure.

A significant modification of the band states close to
the Fermi energy by interchain interactions was also
found by Ashkenazi et al. A sufficiently large inter-
chain coupling reduces the energy gained by the forma-

Energy (eV)

FIG. 16. Predicted electronic density of states of trans-(CH)„
(a) in the P2&/a structure and (b) in the P2&/n structure. The
zero of energy lies in the middle of the energy gap.
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FIG. 17. Predicted electronic deformation potentials (band-
0

edge energies) for (a) an in-phase dimerization of uc =0.01 A in
the P2, /a structure on every chain and (b) an out-of-phase di-

0
merization of uc=0.01 A on neighboring chains. Shown are
the two uppermost valence and two lowest conduction bands for
electronic wave vectors perpendicular to the chain direction (cf.
Fig. 12). This figure illustrates the marked influence of the in-

terchain interaction on the electronic states near the energy gap.

To explore further the coupling of electronic and ionic
motions —in particular the interchain electron-phonon
interaction —we start from the undimerized P2, /a struc-
ture with all carbon bond lengths being equal (Fig. 14).
When every other carbon atom (and its accompanying
hydrogen atom) is displaced along the chain axis by a
small amount +uo, an energy gap opens between valence
and conduction bands. In the ground state of the P2, /a
structure, the dimerizations on neighboring chains are in
phase. We can, instead, consider a sma11 out-of-phase
bond alternation on neighboring chains which can be
thought of as a long-wavelength phonon with its q vector
perpendicular to the chain direction. In the limit of no
interchain interaction, the changes in the energy bands
induced by the in-phase and out-of-phase atomic dis-
placements on neighboring chains should be identical.

The calculations show that in the actual crystalline
trans-(CH)„ the electron-phonon interaction mediated by
the interchain bonding causes the in- and out-of-phase
displacements to differ significantly. Figure 17 depicts
self-consistent energy bands for a small in-phase dimeri-
zation [Fig. 17(a)] and a small out-of-phase dimerization
[Fig. 17(b)] and clearly shows the strong influence of in-
terchain effects.
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The pronounced k dependence of these interchain
effects strongly indicates that the dominant interaction
across the chains is not of the Van der Waals type but is
rather a chemical bonding (i.e., electron-ion interaction).

7. Density of states in three dim-ensional trans (CH-),

Since the density of states is related to a number of ex-
perimental observables, it is obviously an important
quantity to calculate in any theoretical study. In Fig.
16(a) we show the density of states predicted by our LD
calculations for trans-(CH)„ in the P2, /a structure. For
purposes of comparison with both other theoretical re-
sults and with experiments, we also plot in Fig. 16(b) the
density of states predicted for trans-(CH)„ in the P2&/n
structure. Recall that in an idealized one-dimensional
system, the density of states is singular at the band edges
and varies as (E—Es, )

'~ for energies E close to the
band edge. In a three-dimensional system, the density of
states remains regular for all energies and varies as
(E—Es,z)'~ near the band edge. The band structure
displayed in Figs. 12 and 13 is reflected in the density of
states in Fig. 16. In particular, the interchain coupling
which leads to the (approximately symmetric) splitting of
the topmost valence and lowest conduction bands in Figs.
12 and 13 produces in Fig. 16 a broadening of the 1D
singularity in the density of states. The resulting band-
edge density of states shows an onset which is charac-
teristic of 3D systems. Further, despite some asym-
metries near the band edge, the overall densities of states
in the m and m.* bands are fairly similar, reflecting the ap-
proximate particle-hole symmetry that was also apparent
in the band structures of Figs. 12 and 13.

Possible experimental probes of these density of state
predictions include x-ray photoemission spectroscopy
(XPS), ultraviolet photoemission spectroscopy (UPS), and
electron-energy-loss spectroscopy (EELS} measurement.
A recent EELS study of trans-(CH)„confirms the rough
particle-hole symmetry but does not have sufficient reso-
lution to permit a detailed comparison with our results
near the minimum gap. Optical absorption data on ~-m*
transitions can provide information on the joint density of
states, although in the present case there are two
difficulties in making any precise comparisons between
theory and experiment. First, at a general level, optical
absorption involves not only the joint density of states
but also a matrix element. However, near the band edge,
we expect that this matrix-element effect is relatively
slowly varying and that the transition rate for optical ab-
sorption is proportional to the joint density of states.
Second, as discussed above, a direct comparison between
the LDA calculations and the experimental data is not
meaningful, since the local-density method does not give
the correct optical gap. Since, however, previous calcula-
tions in semiconductors have shown that the major
difference between the LDA band structure and the opti-
cally excited quasiparticle states is a rigid shift X,&

of the
conduction bands, by performing this shift we can com-
pare the calculated structure of the joint density of states
with the experimental data and study the 3D effects on
the optical absorption. With these two caveats, we can

proceed to a comparison of the joint density of states
with the optical-absorption data.

Experimentally, the optical band-gap absorption in
trans-polyacetylene has been investigated in a number of
papers. ' ' Detailed measurements in Shirakawa
material were carried out by Fincher et al. and clearly
exhibited the quasi-one-dimensional character of (CH}„.
However, the 1D singularity in the gap absorption was
substantially broadened and an extended tail at the onset
of absorption was observed. The steep portion in the ab-
sorption spectrum led to a direct "one-dimensional" gap
E', of 1.4 eV, while the absorption tail was attributed to
a three-dimensional interchain coupling. Fincher et al.
concluded that trans-polyacetylene has an indirect
"three-dimensional" gap Eg p

of about 1.1 eV. A later
analysis of optical data in trans-(CH)„under pressure by
Moses et al. yielded somewhat higher values, namely
Egzp 1 7 1 8 eV and the minimum 3D gap
E, =1.45+0.05 eV. These values are in good agree-
ment with other optical data, ' including recent mea-
surements in highly oriented, non6brous Durham-Graz
material, which indicate an intrinsic band gap of crystal-
line trans-(CH)„around 1.5 eV. ' Still, a precise exper-
imental determination of the actual intrinsic principal

gap in crystalline trans-(CH)„ is hampered by the inad-

vertent defects and broken chains in the material which
make it difficult to assign the observed broadening and
the band-edge tail in the absorption spectrum unambigu-
ously to interchain coupling or to defects.

In Fig. 18 we have compared the joint density of states
from our LDA calculation of trans-(CH)„ in the P2, /a
structure with the recent experimental absorption data in
Durhatn-Graz trans-(CH)„. ' In view of the uncertain-
ty caused by X,~

we have positioned the two curves so
that their peaks coincide. This requires taking a self-
energy of X,~

=0.74 eV, which is consistent with that
chosen in Figs. 12 and 16. This procedure therefore al-
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FIG. 18. A comparison of the experimental optical absorp-
tion (Ref. 93) of Durham-Graz trans-(CH) (thin line) with the
joint density of states predicted by the LDA calculation of
trans-(CH)„ in the P2, /a structure (thick line). The "one-
dimensional" peaks have been chosen to coincide.



41 FIRST-PRINCIPLES CALCULATIONS OF THE THREE-. . . 12 809

lows a determination of the intrinsic minimum energy
gap of crystalline 3D trans-polyacetylene; from Fig. 18
we deduce a value of 1.1 eV. The experimental band-
edge data show a tail which is somewhat more extended
than the LDA results; this is due in part to the effects of
defects and imperfections not included in the theory.

Recent results using LDA —band-structure calculations
based on linear muffin-tin orbitals ' have suggested a
substantial difference in the optical absorptions expected
for the P2&lr2 and P2, ln structures in trans (CH)-„. Our
data on the joint densities of states in the two structures
do not support this expectation; we are currently working
on a full calculation of the optical absorption using our
results and hope to return to this point in a future publi-
cation.

III. INTRINSIC DEFECTS: SOLITONS,
POLARONS, AND BIPOLARONS

Charge carriers in strictly one-dimensional deformable
systems will always self-trap (in the adiabatic approxima-
tion) due to the electron-phonon interaction. The self-
trapped charge and the accompanying atomic displace-
ment pattern form a polaron. In three dimensions, on the
other hand, the electron-phonon interaction is able to lo-
calize charge carriers only in the limit of strong coupling,
which is not thought to be relevant for polyacetylene.
Thus in general, carriers in intrinsically 3D materials
remain delocalized. Emin has given an excellent discus-
sion of this general behavior, as well as of exceptions, in a
wide range of materials. Intuitively, the situation is
analogous to a particle in an attractive well. In one di-
mension, there is a bound state for any well depth,
whereas in three dimensions, a localized state occurs only
when the potential strength exceeds a certain threshold
value.

Given our conclusion that the states near the band
edge in crystalline trans (CH), ex-hibit splittings due to
interchain couplings, it is natural to ask whether this in-
terchain interaction is sufficiently strong to render the
material intrinsically three-dimensional and hence unlike-
ly to support polarons (as has recently been claimed by
Emin ) or whether charge carriers self-trap, as predicted
by most of the (primarily 1D) theoretical models studied
thus far.

To study the influence of the interchain interaction on
intrinsic defects in 3D crystalline trans-(CH), we consid-
er frozen-in displacement patterns of the ions corre-
sponding to "polaronlike" and "bipolaronlike"
configurations. We then investigate the electronic struc-
ture corresponding to these configurations to see whether
there are any intragap electronic "bound" states. If there
are no such states and all electronic states are delocalized,
then we can conclude that there are no localized, self-
trapped intrinsic defects and that the 3D couplings have
destabilized the nonlinear excitations characteristic of 1D
systems.

To avoid possible confusion about the interpretation of
our results, we should define these configurations more
precisely. In the 1D continuum version of the SSH mod-
el, the displacement b,(x) associated with a polaron is

A(x)
lL

I.O

(a}

-I.O

(b)

shown schematically in Fig. 19(a). This figure also shows
schematically the "single-site" polaronlike configuration
which we shall later introduce. In Fig. 20, the bipolaron-
like displacement pattern is shown, ' in terms of the con-
tinuum model, this displacement corresponds to a very
weakly bound kink-antikink pair, the "separation" of
which is called dBP in the figure.

In the 1D model, the two distortions extend over ap-
proxirnately 15 C—H units; this is more than we can ac-
curately take into account in our full 3D electronic-

a(x)
Al

I.O .

= X

-I.O

FIG. 20. Schematic atomic displacement pattern correspond-
ing to the "bipolaronlike" defect discussed in the text: (a} a
sketch of the "continuum limit" order parameter for the bipola-
ron, showing the effective separation dip of the kink and an-
tikink; (b) the atomic positions (with the dimerization amplitude
greatly exaggerated for clarity) corresponding to a bipolaron,
i.e., a pair of confined kink-antikink solitons.

APL JL Jl Jfir ir
ii Ii

FIG. 19. Schematic atomic displacement patterns corre-
sponding to the "polaronlike" defect discussed in the text: (a)
sketches of the "continuum limit" order parameter for the case
of the (strongly distorted) single-site polaron (solid curve, la-
beled I) and extended polaron (dashed curve, labeled II); (b) the
atomic positions (with the dimerization amplitude greatly exag-
gerated for clarity) corresponding to (I) a localized, "single-site"
polaron and (II) an extended polaron.
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structure calculations. In our actual calculations, there-
fore, we consider primarily the two limiting cases shown
in Figs. 19 and 20: (1) the polaronlike distortion, in ei-
ther its single-site variant [Figs. 19(a) and 19(b), curve I)
or with an extended region of partial bond-order reversal
[Figs. 19(a) and 19(b), curve II], and (2) a bipolaronlike
distortion corresponding to a complete bond-order rever-
sal extending over a range between 1 and 6 C—H units
(Fig. 20). Since both these distortions are nontopological,
the major difference between a "polaron" and a "bipola-
ron" in our study is the complete bond-order reversal be-
tween kink and antikink in the bipolaron in contrast to a
partial bond-order reversal for the polaron. We then
vary the degree of bond alternation in all of these defects
and study the induced bound states in the gap.

In the limit of infinite displacement 5(0)= oo, the ap-
proximate particle-hole symmetry guarantees that even
the single-site "polaronlike" defect (Fig. 19, curve I) must
eventually develop two bound states close to midgap,
since such a displacement simply corresponds to breaking
the bonds. Similarly, a bipolaronic displacement with
complete bond-order reversal —such as depicted in Fig.
20—will also lead to near-midgap levels in the limit of
infinite separation of the kink and antikink, since this sit-
uation represents two separated solitons. These limiting
cases are not relevant to real defects, of course.

A. The Koster-Slater approach to defect calculadons

To examine a spatially localized defect in an otherwise
perfect crystal with translational invariance it is most
convenient to use the scattering-theoretic Green-function
technique. In this method, the spectrum of the per-
turbed Hamiltonian H =HO+ v is calculated by solving
the perturbed Schrodinger equation in the form

(3.1)

Here, Ho is the unperturbed Hamiltonian and Go(E) is
the Green function of the perfect crystal. The bound

states ET in the gap are then obtained from the zeros of
the determinantal equation

det[1 Go—(ET)V]=0 . (3.2)

The size of this matrix equation is determined by the
range of the defect potential V.

The perfect crys-tal Hamiltoniatt

A fully self-consistent density-functional calculation of
an extended defect in a crystal with only monoclinic sym-
metry is at present not feasible, even with modern super-
computers. Therefore, we have mapped the first-
principles calculations for the perfect trans (CH)-„crystal
onto an accurate, multi-orbital, three-dimensional tight-
binding model. Although empirical, this approach is, we
believe, quite accurate; indeed, it has recently been
demonstrated that the electronic structure of a wide
variety of solids can be successfully predicted with
semiempirical tight-binding models containing only
universal Hamiltonian matrix elements. ' Following
these ideas, we have determined the matrix elements by
initializing the fitting procedure with the universal tight-
binding parameters of Ref. 97. Subsequently, these pa-
rameters have been fine tuned to obtain quantitative
agreement with our first-principles local-density calcula-
tions. It turns out that a nearest-neighbor tight-binding
model with a single s state and three p states per site, plus
the interactions between the H and the adjacent C atoms
on neighboring chains (as indicated by the dashed lines in
Figs. 2 and 3), can account quantitatively for all of the
following electronic structure properties, as calculated by
the LDA: (i) the electronic band structure in the gap re-
gion; (ii) the atomic character of the bands as obtained
from integrated charge densities in each valence band;
and (iii) the deformation potentials, i.e., the changes of
the band-edge states upon dimerization, throughout the
Brillouin zone. We find it essential, however, to include
all two-center interaction matrix elements allowed by
symmetry. The basis states can be labeled by the site I
and the angular momentum quantum numbers l and m.
The z component of the angular momentum m is defined

TABLE IV. Tight-binding parameters for three-dimensional trans-(CH)„. The first column (on-site)
gives the on-site Hamiltonian matrix elements, the other columns give the intersite parameters g and
do, defined in Eq. (3.3), for nearest-neighbor pairs of atoms, both on the same chain and on adjacent
chains in the unit cell.

On site
C-C

intrachain
C-H

intrachain
C-H

interchain

c,, H (eV)
c,, c (eV)

~~ „(eV)
c, c (eV)
do (A)

9$$cr

I$p tr

Ipp tr

IppÃ

—13.61
—16.0

0.0
—11.79

0.8583
—1.81

1.30
1.76

—0.55

0.6945
—1.81

1.22
1.44

—0.72

1.8198
—0.65

1.32
1.34

—0.39
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with respect to the axis connecting the atomic sites. The
intersite Hamiltonian matrix elements are fitted to the
following functional form:

tp c p c matrix elements are taken into account exp licit-
ly in the energy bands. With the parameters given in
Table IV and Eq. (3.3), one finds

II' ( "0) "0
III'I'm p 911'm

medp
(3.3) +p, C;p, C;m, intrachain 'p —auC eV (3.4)

where m, is the electron mass and d is the distance be-
tween the atoms. The constants do and gII. and the di-
agonal Hamiltonian matrix elements clI are given in
Table IV. For do=d, the matrix elements follow
Harrison's d scaling rule; the parameter dp has been
introduced to provide an accurate fit to the deformation
potentials.

Since the tight-binding parameters reproduce the
local-density-functional calculations accurately, they also
underestimate the principal energy gap. The calculated
minimum energy gap is 0.40 eV in the P2, /a structure;
note that this implies a "1D"LDA gap of approximately
0.76 eV (see the discussion in Sec. II C 7). Since we wish
to calculate impurity binding energies, this would seem to
introduce an appreciable uncertainty in the level energies
in the gap. Actually, however, the local-density formal-
ism has been shown to predict impurity level energies in
excellent agreement with experiment, provided the level
energies are calculated with respect to the band edge they
are primarily derived from. In the present case, the sit-
uation is particularly favorable in this respect since we
are predominantly interested in the threshold defect po-
tential which leads to the formation of a bound state.
This threshold is controlled by the density of states at the
band edge and not by the gap.

In Fig. 21(a) we show the calculated tight-binding band
structure for the P2, la structure of trans polyacety-lene
The lower energy bands differ somewhat from the LDA
bands, shown in Fig. 21(b) for comparison, but all major
features of the bands near the Fermi energy which are
relevant for the defect calculations discussed below are
accurately reproduced.

The tight-binding calculation reveals that the splittings
of the band-edge states near the k point ks, which we dis-
cussed in detail in Sec. II C, are predominantly caused by
the t~ c.~ H. interchain matrix element; the contribution
of the tp c z H z matrix element to the band edge states is
zero by symmetry. This geometrical fact that the inter-
chain coupling is mediated by a particular carbon-
hydrogen overlap has especially important consequences
for comparisons with previous theoretical attempts to
take interchain couplings into account within a tight-
binding approximation. In particular, simple "two-
chain" models ' ' cannot fit our full 3D tight-
binding band structure, since the geometrical structure
dictated by the manner in which the hydrogen and car-
bon orbitals overlap causes adjacent carbons on a given
chain to interact effectively with diferent chains in the
unit cell. Thus although one can concoct a straightfor-
ward tight-binding scheme with a single effective inter-
chain coupling, it does not reduce to a two-chain model.
We intend to return to this point in a future publication.

It is instructive to consider the limiting case of a SSH-
type model where only the nearest-neighbor intrachain

with to= —2.20 eV and a=4. 52 eVA i. In Eq (34)
the two signs correspond to the alternating bond lengths
and uc is the dimerization (see Table II). The values for
tp and a are similar to widely used Huckel parameters in
trans-polyacetylene.

Having determined the perfect crystal Hamiltonian H
with Bloch states P„zin a localized basis ~IA, ), where I
denotes the atomic site and A, the orbital symmetry of the
basis state, we can now compute the Green function 6
in this basis,

(a)

6

5'
2

cnI -2-
LLI

-6

Y CX rY DB AE DB
k vector

(b)

4

2

p--
CO

O
C
Ul

-6

Y C X I Y DB AE DB
k.vector

FIG. 21. Comparison of calculated electronic band struc-
tures within the density-functional approach (a) and the multi-
orbital tight-binding model used to compute the electronic
structure of the intrinsic defects (b). The similarity of the bands
close to the minimal energy gap gives credence to the tight-
binding calculations.
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, Du, t dE')
Gr'~, r~ (~)=f d&' (3.5)

h(0)
-3 -5 -7 -9 -11

D ~ .(E)=y(iz~y„„)(y„„~lX )S(E—E„„).
n, k

(3.6)

2. The defect matrix

The Brillouin-zone integration in Eq. (3.6) was performed
by using an improved version of the tetrahedron method
of Lehmann and Taut' and including 4851 k points in
the irreducible wedge. Since there are eight atoms per
unit cell and four basis states per atom, 6 represents a
32X32 matrix. Correspondingly, there are 32 bands to
be summed over in Eq. (3.6); it turns out that the results
for the defect states change only insignificantly if this
sum over the band index n is restricted to four bands
below and four above the Fermi energy.

E-EcB
1 0.5—E

gap

1.0

'-'VB
„

1
2 gap

0.0
0 10 20 30

polaron'"c
c-c

40 50
(9o)

The defect matrix can be expressed in terms of the or-
thogonal, localized tight-binding basis functions ~IA, ),
defined in Sec. III A 1, as

v„,,„,= (Ix~a ~l'x') —&Ix~8'~1'x' & . (3.7)

B. Polaronlike defects

In our calculation of "polaronlike" configurations, we
shall use the distortions shown schematically in Figs.
19(b). Note that in all cases, we shall assume that the dis-
tortions occur on a single chain and are embedded in an
otherwise perfect three-dimensional crystal. In single
trans (CH)„chains, the-oretical studies based on the SSH
model predict that a polaron is the lowest energy state
available to a singel added electron (or hole). '

Let us start with the single-site polaronlike distortion
[Fig. 19(b), curve I]. Recent calculations show' that the
bound states in the energy gap produced by such a
"single-site" defect are only slightly shallower than those
produced by an extended defect. Thus by increasing the
distortion in the former defect, we can simulate a spatial-
ly more extended lattice distortion. In Fig. 22, we have
plotted the bound states in the energy gap as a function
of the displacement of the single-site polaron. The

With Eq. (3.3), the intersite Hatniltonian matrix ele-
ments in Eq. (3.7) are known explicitly as a function of
the distance between the atomic sites. We assume that
the (on-site) diagonal Hamiltonian matrix elements and
the parameters ri and do do not change upon lattice dis-
tortions. This approximation accurately reproduces the
bulk deformation potentials calculated in the framework
of the density-functional method and has also been em-
ployed and tested extensively in previous work on defects
in semiconductors. ' '

For any given lattice distortion on a single C—H
chain, the defect matrix can be calculated from Eq. (3.7),
using Eq. (3.3). When we freeze in a lattice distortion on
one chain, the interchain interaction causes the defect
matrix to be nonzero on the distorted chain as well as on
the neighboring chains. With the Green function from
Eqs. (3.5) and (3.6), the eigenstates and energies of the
perturbed crystal, Eqs. (3.1) and (3.2), can be computed.

FIG. 22. The intragap electronic levels E as a function of dis-
tortion for a "single-site" polaron, as depicted in Fig. 19(b),
curve I. The solid curve is with the actual interchain coupling
predicted by our calculations; the dashed curve is the idealized
purely 1D result. The arrows indicate the position of the bound
polaron states in a continuum SSH-type 1D model. The distor-
tion is given relative to the nearest-neighbor distance dc c and
in terms of the dimensionless distortion parameter 6 at the po-
laron center, as depicted in Figs. 19(a), curve I and 19(b), curve
I. The bound states E are plotted relative to band edge they are
primarily derived from.

dashed lines are single-chain calculations, where all inter-
chain matrix elements are set equal to zero, while the full
three-dimensional calculations indicated by solid lines,
are obtained from the complete 3D calculation. The po-
sition of the polaron bound state energies in simple 1D
continuum model are also shown (indicated by arrows).
As one can deduce from this figure, a 15% distortion 5uc
leads to bound state energies close to those of the contin-
uum model, provided we turn off all interchain couplings.
Once the interchain coupling is included, however, no
bound states appear in the energy gap up to distortions
exceeding 35% of the bond length, which are physically
unattainable.

As a second model for a polaron, we consider an ex-
tended distortion of the type shown in Fig. 19(b), curve
II. Here we vary the degree of bond alternation between
the perfectly dimerized situation [5(0)=1] and n com-
pletely undimerized C—H units [b,(0)=0] with n =6.
The result is shown in Fig. 23. Only the case of no inter-
chain coupling is shown since no trap states are formed
with the realistic interchain interactions included. As in
the previous case, we thus find the interchain interaction
completely suppresses the formation of bound states in
the gap.

The numerical results in Fig. 22 were obtained with an
equilibrium value of uc=0. 05 A and the P2, la struc-
ture. We find that smaller dimerizations do not visibly
deepen the bound states, because a shallow bound state is
generated primarily from electronic states very close to
the band edge. Consequently, its formation is insensitive
to the gap itself, and therefore, to the dimerization. We
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FIG. 23. The intragap electronic levels as a function of the
distortion shown schematically in Fig. 19(b), curve II, which
models a more extended polaron. In the calculations, the defect
has been chosen to extend over 6 (CH), units [rather than 3, as
indicated in the schematic Fig. 19(b), curve 1Ij. With the actual
interchain coupling included, no bound states are formed in the
gap. The dashed lines are the idealized purely 1D result.

BP

FIG. 24. The intragap electronic levels as a function of sepa-
ration dip, for a bipolaronlike defect described in Fig. 20. The
corresponding distortion is depicted in Fig. 20(b). The solid cir-
cles are with interchain coupling; the open circles are the purely
1D result. The connecting lines are drawn only to guide the
eye. In our calculations, the distorted chain is embedded in the
3D crystal.

have also performed the Green-function calculations in
the P2, /n structure. Since the band-edge splittings and,
correspondingly, the interchain interactions are smaller
in this structure (see Fig. 13) and it is also easier to form
bound states in the energy gap. We find, however, that to
obtain a bound state still requires a (physically unlikely)
distortion of 20go.

Our calculations also show that a distortion of the hy-
drogen atom with respect to its adjacent carbon atom has
only a negligible effect on the bound states. The major
effect of the interchain interaction is contained in the per-
fect crystal's Green function and not in the interchain
part of the defect matrix.

Thus our LDA results suggest that the three-
dimensional character of the band-edge states prevents
the formation of intragap electronic states and conse-
quently of self-trapped polarons in crystalline trans-
polyacetylene. Bound states in the energy gap can be
formed in principle but to do so requires unrealistically
large lattice distortions of the C—C distance. The ener-
gies associated with these large displacements cannot be
compensated by a corresponding gain in electronic ener-
gy. As a consequence, an extra electron which is placed
into the conduction band will remain a free carrier with
an effective mass m '=m, .

C. Bipolaronlike defects and kink solitons

SSH-type calculations in single chain models of trans-
(CH)„predict that photoexcited electron-hole pairs form
bipolarons which rapidly decay into separated kink and
antikink solitons. ' ' In Fig. 20 we depict the displace-
ment pattern corresponding to separated kink and an-
tikink solitons. The distance between the two undimer-
ized C—H pairs in this figure is 2.5 lattice constants
along the c axis. We have performed three-dimensional
Green-function calculations with frozen-in "bipolaron-
like" distortions having various separations d&p on a sin-
gle chain in otherwise perfect crystalline trans-(CH)„ in
the P2&/a structure. The results for the binding energies
as a function of dzp are summarized in Fig. 24. As in

Fig. 22, the dashed lines show the results with all inter-
chain matrix elements set equal to zero, while the full
lines represent the defect levels in the three-dimensional
crystal.

As in the case of the polaron, interchain coupling
strongly impedes the formation of bound states in the en-
ergy gap of three-dimensional trans-(CH)„. Only for sep-
arations exceeding 6 lattice constants (12 carbon sites in
chain direction) between the kink and antikink soliton on
one chain does a pair of shallow bound states appear in
the energy gap. For larger separations, two bound states
remain in the gap and, in the limit of infinite kink-
antikink separation, lie close to the gap center. Due to
the mixing of carbon and hydrogen wave functions and
the consequent breaking of particle-hole symmetry, they
do not lie exactly in the center of the gap even in the limit
of infinite separation. For more realistic separations, the
bound states are quite shallow; by extrapolating our re-
sults we estimate the binding energies barely exceed room
temperature thermal energies for distances smaller than
8-10 lattice constants, for example.

Although bipolaron lattice configurations do produce
intragap electronic bound states, the stability of genuine
bipolarons requires more. First, one must analyze the
overall energetics of bipolaron formation. Apart from
the energy to distort the particular chain on which the bi-
polaron resides, the formation of a separated kink-
antikink pair costs interchain bonding energy, since the
dirnerization in between the kinks is out of phase with the
dimerizations on the adjacent chains. We estimate from
our total energy calculations that the maximum kink sep-
aration attainable in a perfectly ordered crystal is of the
order of 50 lattice constants in chain direction. Since the
electronic wave function in a kink-bound state is expect-
ed to extend over 5 —10 lattice constants, ' this interchain
confinement to 50 lattice constants strongly limits the
formation of a bipolaron. In the P2&/a structure, it is
probably less than that due to the stronger interchain
coupling. Second, if two electrons are localized in the bi-
polaronic intragap levels, Coulomb repulsion effects will
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further reduce the total effective binding energy and
hence tend to destabilize the bipolaron.

Although these results do not entirely preclude the
possibility of formation of bipolarons in perfect crystal-
line trans-(CH)„, they do call into question previous dis-

cussions of the energetics of these nonlinear excitations.
In particular, our results appear to make it more likely
that thermal fluctuations or direct Coulomb repulsion be-
tween the two electrons in the bipolaron can destabilize
this localized intrinsic defect even if it is formed.

IV. DISCUSSION AD CONCLUSIONS

In the discussion of our results, it is appropriate to be-
gin with several general comments concerning the local-
density-functional (LDA) approach. Although ideally
one would want to include realistic geometry, chemical
structure, and all electron correlation effects in a full
three-dimensional calculation of large molecules or crys-
talline solids, such calculations are —and will remain for
the foreseeable future —simply impossible to carry out.
Thus one is compelled to adopt approximate procedures
such as the LDA. Of course, this method does not treat
correctly all effects of electron correlations. Nonetheless,
it represents an essential first step in understanding the
full three-dimensional structure of molecules and crystal-
line solids.

Within the LDA, we believe that our results for trans-
(CH)„represent the most accurate calculations to date,
going considerably beyond previous results in accuracy,
completeness, convergence, and internal consistency.
For instance, the computation of the Hellmann-Feynman
forces on the ions proved crucial for a proper assessment
of the broken-symmetry ground state predicted by LDA.
This is in contrast to earlier calculations which —for
technical reasons —were unable to evaluate the
Hellmann-Feynman forces. Thus we feel that our results
accurately reflect the true predictions of the LDA ap-
proach for perfect crystalline trans (CH)„. -

Our three-dimensional LDA calculation is in a sense
complementary to the many recent detailed one-
dimensional studies of the effects of correlations in con-
ducting polymers. Dimersionality, like correlations, can
have a profound effect on the properties of real materials.
We believe that our LDA results, although by no means
definitive, strongly suggest that the effect of three dimen-
sionality is essential to understanding the behavior of
crystalline trans (CH) . -

Apart from the general issue of the applicability of
LDA, the small energy difference that we calculate be-
tween the P2, /a and P2, /n structures is a natural cause
for concern, since it is indeed tiny by LDA or ab initio
chemical standards. However, here one should recall
several points. First, based on our detailed convergence
studies, we are confident that our results represent the
correct solution to the LDA equations and that the ener-

gy difference we calculate (0.01 eV) is outside our numeri-
cal error (+0.003 eV). Second, while the difference of
0.01 eV per unit cell is quite small, it is important to
remember that the two structures are in fact very similar.
In this regard it should also be noted that in semiconduc-

tors, structural energy differences corresponding to pho-
nons with an energy of significantly less than 0.01 eV are
predicted with high accuracy by the LDA, even though
the total cohesive energy itself is predicted with a sub-
stantially large error. ' Third, as far as we can test the
trends of the energy difference with respect to various
perturbations, they are in accord with physical expecta-
tions based on the structures. Decreasing the dimeriza-
tion, for example, brings the overlapping hydrogen and
carbon orbitals on adjacent chains into closer alignment,
thereby increasing the energy difference between the two
structures. Thus, although the energy difference is only
0.01 eV for the experimental value of the dimerization
(0.05 A), for the force-free dimerization (0.01 A) this
difference is 0.03 eV. A second, separate correct trend is
the decrease in energy difference when the distance be-
tween the chains in the unit cell is artificially increased.
Fourth and finally, even if one accepts that due to corre-
lation effects not correctly modeled by the LDA calcula-
tion the relative placement of the P2, la and P2, In struc-
tures could be changed, one should note that in both
cases the states near the band edge contain strong three-
dimensional contributions; thus our further considera-
tions regarding the possible importance of three-
dimensional structure for intrinsic defects will remain
qualitatively unchanged, independent of which of the two
structures is the true ground state.

Regarding the separate but vital issue of whether the
LDA approach correctly captures the properties of the
real material, two pieces of indirect evidence seem to us
to make plausible the assertion that the LDA predictions
may be accurate for the ground state of the crystalline
trans-(CH)„. First, in solid Xe, the LDA predicts not
only the equilibrium lattice constant quantitatively but
also the transition (under pressure) from the insulating to
the metallic phase. Second, in finite polyenes, the pri-
mary motivation for studying correlation effects came
from the observed behavior of the excited states, both op-
tically allowed and forbidden. Independent-electron
theories seem adequate for treating the ground state
properties —e.g., energies of various ionic geometries of
these systems. These two results suggest that in trans-
(CH)„neither weak interchain coupling nor the polymer-
ic nature of the material represents an in-principle imped-
iment to an LDA calculation. In addition, although it is
always possible that the LDA results we obtain are
correct for the wrong reasons, we feel that it is important
to stress that recent refined experimental analyses strong-
ly suggest that the true structure of crystalline trans-
(CH)„ is indeed P2&/a (see Sec. IIB). ' It seems also
appropriate to point out that recent progress in studies of
the "self-interaction-corrected" ' (SIC) LDA suggests
that the near-term prospects for obtaining a deeper un-
derstanding of the limitations of LDA —and, possibly,
for a systematic method for removing these
limitations —are improving.

A third broad issue raised by our results concerns the
nature and stability of intrinsic defects in three-
dimensional crystalline trans (CH)„Without re-capitu-.

lating the full discussion of Sec. III, we recall that we ex-
pect polarons to be destabilized by three-dimensionality
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effects whereas bipolarons may remain stable, although
much less robust that the one-dimensional models would

suggest. We feel that these results must be accepted as
the best presently available calculations of defects in the
true three-dimensional perfect crystal. In particular, our
tight-binding fit accurately reproduces the results of the
full LDA calculation, including realistic geometry,
multi-orbital band structure, and electron-phonon cou-
pling constants. Further, we obtain quantitative esti-
mates for the behavior of intragap levels which, when we
artificially turn off the interchain coupling, correctly
reproduce the earlier one-dimensional results. Second,
our results on the destabilization of the "polaron" distor-
tion are not sensitive to our conclusions on the ground-
state structure in the sense that for physically plausible
lattice distortions we find no bound states in the gap in ei-
ther the P2, /n or P2, /a structures. Third, the failure of
the LDA to obtain the correct dirnerization and gap is
not expected to invalidate the estimate of the threshold
polaronic displacement required to form a bound state in
the gap, as discussed in Sec. IIIA. Fourth, previous
studies of electron-electron interaction effects in one-
dimensional models of (CH)„and related conjugated po-
lymers as well as substantial literature on Coulomb effects
in conventional semiconductors suggest that for localized
intrinsic defects —including solitons, polarons, and
bipolarons —Coulomb effects typically drive the intragap
levels associated with localized defects away from the
center of the gap toward the band edges, thereby reduc-
ing the depth of the bound states. Thus, we believe, that
the correct inclusion of Coulomb effects would further
destabilize these localized excitations.

Finally, we come to the essential issue of the applicabil-
ity of our results to presently existing conducting poly-
mers. Here we should reemphasize that our calculations
have been carried out for perfectly ordered crystalline,
three-dimensional trans-(CH)„. At present, the chain
lengths even in highly oriented, crystalline Graz-Durham
trans (CH), are sm-aller than 40 C—H units ' ' and there
is a high density of broken bonds. In the morphological-
ly complex Shirakawa material, many chains are in a
highly disordered environment near the fibril sur-
face;" "' it is thus conceivable that observables such as
optical excitations in this material exhibit properties
which are more characteristic of single chains of trans-
(CH)„than of a three-dimensionally ordered crystal.

On the other hand, one must recognize that the possi-
ble roles of the nonlinear excitations predicted by the 1D
theories in describing, for example, the transport, optical
absorption, and photoexcited states in trans-(CH)„has
remained controversial (see, e.g. , Refs. 2, 3, 99, 112, and
113 for critical reviews of confiicting data). In particular,

although much optical absorption data have been inter-
preted in terms of kink-antikink or bipolaron excitations,
even the most recent fast photoinduced absorption exper-
irnents have still failed to produce direct experimental
evidence for polarons. " Many experimental observa-
tions in trans-(CH)„may be interpretable in terms of spa-
tially fixed defects" or dynamic rearrangements of de-
fect states" which are not unique to one-dimensional
systems. From studies of deep traps and dangling bonds
in semiconductors and ionic crystals, it is well established
that disorder tends to produce states in the gap. Indeed,
given the relatively low "purity" of the current trans-
(CH)„crystals, with their large number of extrinsic de-
fects and impurities, broken bonds, and sp cross links, it
is likely that many of the observed intragap states are, in
fact, of extrinsic origin. For instance, it has been shown
theoretically that several immobile defects in trans-(CH)„
have the same spin-charge relation as kink solitons and
tend to produce mid-gap levels. ' "'" Further, the
possible nonsolitonic and extrinsic nature of the pi-
cosecond photoconductivity in trans-(CH)„has recently
been suggested. "

The ultimate explanation of the various physical phe-
nomena associated with the intragap levels observed in
real samples of trans-(CH)„will require considerable fur-
ther study and is obviously beyond the scope of any sin-
gle article. We hope, however, that our present state-of-
the-art LDA calculation represents an essential founda-
tion for these further investigations and that extensions
of the technique to determinations of optical absorp-
tion ' will help to provide further insights into these
exciting novel materials.
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