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We present a theoretical calculation, within a continuum electron-phonon-coupled model,
of the optical absorption due to polarons in polyacetylene [{CH),]. Our results can be ap-

plied to both trans- and cis-(CH)„, as well as potentially to other polymers (polypyroles, po-

lyparaphenylenes) in which polarons are present. We establish that the essential signature

of polaron absorption is the existence of three separate absorption peaks in the gap with

qualitatively different features. For trans-(CH)„, we compare and contrast this structure
with that from the kink solitons, which are expected to dominate the optical absorption at
all but the lowest doping levels. For cis-(CH) and related polymers, we discuss polaron
(and multipolaron) absorption and the relation of polarons to possible excitons in these ma-

terials. Finally, we evaluate briefly the existing experimental situation regarding optical ab-

sorption in polyacetylene and indicate possible future experiments that could confirm the

existence of polarons in (CH)„and similar polymers.

I. INTRODUCTION

The proposal' that kink solitons play a central
role in determining the electronic properties of
trans-(CH)„(polyacetylene) has provoked consider-
able theoretical and experimental study of the sys-
tem. One of the most persuasive confirmations of
the basic theoretical picture' ' has come from mea-
surements of optical absorption ' as a function of n-
or p-type —doping concentration. It has been ar-
gued' ' that doping preferentially induces charged
kinks which (in the simplest model, exhibiting
charge-conjugation symmetry} are associated with
localized electronic states at the middle of the semi-
conductor energy-band gap of pristine (CH)„. Over-
laps between these levels produce a narrow impurity
band at midgap. Thus a midgap peak is expected in
the optical absorption with intensity proportional to
the dopant concentration (at low concentration) and
the same for n- or p-type doping. Furthermore, it is
predicted that weight is removed essentially uni-
formly in frequency from the interband absorption.
These basic features have indeed been observed.

More recently a second variety of soliton, a pola-
ron, ' ' has been recognized in the same models
predicting the kink soliton. The polaron is more
familiar than the kink but no less important for
several reasons. Most significantly, this polaron (or
its close descendant) is far more generic than the
kink since, as we explain in Sec. III, it does not re-
quire degenerate conformations as in trans-(CH)„.
Thus, with some modifications in individual cases,
the basic polarons we describe here should be

relevant to many conjugated polymers (e.g., po-
lyparaphenylenes, polypyrole, and derivatives). In
particular, doping will be predicted' to occur via
polaron creation. In principle, the cis isomer of
(CH}„, lacking the degeneracy of the trans isomer,
also falls into this category. However, in practice it
seems probable that here doping results in inhomo-
geneous cis-trans isomerization in the dopant neigh-
borhood. (But see Ref. 15 and Sec. V.) The essen-
tial topological difference between trans-(CH) and
cis-(CH)„(and most other conjugated polymers}
should still be apparent in other experiments, e.g.,
photogeneration of carriers. ' ' Even in trans-
(CH)„single electrons or holes will create a polaron
rather than a separated kink-antikink pair. Polarons
will eventually recombine to form kink-antikink
pairs, but at low doping levels both kinks and pola-
rons can be anticipated. ' Recent optical-absorption
data' ' on electrochemically doped samples may
support this position (see Sec. V).

Whereas the kink soliton is associated with a
midgap localized state in the model adopted in this
paper, the polaron is associated with two localized
levels symmetrically distributed about midgap. We
will find that this leads to at most three (depending
on the level occupations) optical-absorption peaks
below the interband threshold. The structures of,
and weights in, these peaks show a number of strik-
ing and hitherto unexpected features which we
describe in detail and trace to the underlying
"charge-conjugation symmetry" (see Appendix) of
our model. The absorption weights are quite dif-
ferent from naive expectations and should be specif-
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H = —g [to+a(u„—u„+,)]
n, s

X[C C„+i,+H.c.]

+ —,E'g (u„—u„+, )2 . (2.1)

Here C creates an (n) electron of spin s at site n,
and u„ is the displacement of the (CH) unit at the
nth site from its undistorted position. In trans-
(CH)„ the hopping matrix element to is =2.5 eV, the
electron-phonon coupling constant is a=4. 1 eV/ A,
and the spring constant (from cr bonds) is @=21
eV/A2. Appropriate to (CH)„[and lightly doped
(CH)„] we consider one conduction electron per
(CH) unit, i.e., a half-filled band, in which case the

ic experimental labels.
The remainder of this paper is organized as fol-

lows. In Sec. II we briefly review the discrete
electron-phonon-coupled model' of trttns-(CH)„and
its continuum limit, with which we work exclusive-

ly; no significant quantitative effects of lattice
discreteness are expected. Analytic results for kink
and polaron defects are given. Finally, a generaliza-
tion of the Hamiltonian' is introduced which
models the unique ground-state situation relevant to,
e.g. , cis-(CH), . Possible polaron excitations are
again given analytically. In Secs. III and IV we
derive optical-absorption coefficients in the presence
of all allowed kinks and polarons and show that a
sum rule (which has been proven in complete gen-
erality elsewhere' ' } is satisfied in these cases. Im-
portant differences between the structures of the re-
sults for the two types of excitations are em-
phasized. A kink interpolates between two different
ground states, and this topology has required very
careful attention to boundary conditions in past
literature. The polaron is always asymptotic to a
single ground state and boundary conditions are not
a difficulty; nevertheless, we find that the polaron
calculations further illuminate the role of boundary
conditions in the kink case. Section V contains a
brief summary and a discussion of the experimental
scenario and more general theory of polarons into
which our calculations fit. A number of our calcu-
lations are algebraically complicated, but this detail
is necessary to understand the relationship to earlier
kink results. ' ' Since we do not wish to dilute the
interesting structure of the results, extensive calcula-
tional details are relegated to the Appendix.

II. MODEL HAMILTONIANS, KINKS,
AND POLARONS

The simplest microscopic model of trans-(CH)„ is
the discrete Su-Schrieffer-Heeger (SSH) Hamiltoni-
an'

Hamiltonian (2.1) is unstable to a strongly com-
mensurate (Peierls} dimerization. Near this limit,
intrinsic defects in the dimerized chain appear as
kinks or polarons, both of which have been observed

in numerical studies of (2.1}.' " We wish to use

these in detail and for this purpose it is most reveal-

ing to work with a continuum limit of (2.1) intro-

duced by several authors '

QH=g f "," ~, a'(y)
I 2

+f,(y}[ iUFa—3 +~(y}ai]P.(y}
B

By

(2.2)

Here, co~/2g =E/4a, and uz ——2lto, where l is the
(undistorted) lattice constant. The (staggered) lattice
displaceinent is described by b,(y) and the electron
field by the two component spinor

U,

&, U (y) = —iUF U (y)+&(y) V (y),B
n ns

B
ns

e„V (y)=+iv~ V (y)+&(y)U (y),B

By

and the self-consistent gap equation

2

&(y)= +[V'(y)U (y)+U'(y)V (y)].
~g n, s

(2.3)

(2.4)

The summation in (2.4) is over all occupied electron
states.

The continuum electron-phonon-coupled equa-
tions (2.3) have essentially the form of single-
particle Dirac equations in the presence of a poten-

The electron spectrum is linearized around the Fer-
mi energy. Henceforth we will suppress the spin in-

dex s unless we need to use it explicitly. The contin-
uum limit (2.2) will be useful if kinks or polarons
are extended over many lattice spacings. Fortunate-
ly, this is the case in (CH)„.' We have omitted the
lattice dynamics from (2.1} and (2.2}. In the usual
adiabatic theory this adds a lattice kinetic energy
proportional to 4 (y). In fact, dynamics for the non-

linear excitations below is poorly understood, cer-
tainly analytically, and we will concentrate here

purely on static solutions.
Variation of H in (2.2) leads to the mean-field

single-particle electron wave-function equations '
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tial h(y). The partial soliton ("reflectionless poten-
tial") properties of these equations have been ein-
phasized in our earlier publications' ' and have
been appreciated to varying degrees in several dif-
ferent physical contexts where the same equations
have arisen. ' Important facts are briefly re-
viewed in the Appendix and are responsible for our
ability to find analytic, closed-form expressions for
several nontrivial solutions. We now recall a few of
these solutions for use in Sec. III.

First, the infinite, even chain has a double-
degenerate ground state described by

WEÃÃXEEEEE/i

v.b.

(a)

H H H H

h(y)=+5p ——+ Wexp(A, '), (2.5} I I I I
H H H H

where A, '=~Fcog/2g and W is the undimerized
tight-binding bandwidth W =4tp =2vF /l. These
ground states describe two dimerized configurations,
out of phase by one lattice spacing. The correspond-
ing one-electron energy spectrum (e„) is

H H H H
I I

I
H H H H

e(k)=+ek ——+(k vF+5p)'

with plane waves as associated wave functions:

f+—:U"+iV"

=—ND(k)e' (I+i)y (k)=f'+,
f" —= U" iV"—

ND(k)e'+( —I i }y(k}=—f'—

{2.6a)

(2.6b}

]/
Elk

(b)

where

ikVF
y(k) =1-

&k —~0
'

1
Nv =

1/2
~k ~0

In (2.6b) we have introduced the functions f+ which

have some technical and interpretive conveni-
ence ' (see Appendix). The notation c,v refers to
conduction- [e(k)&hp] and valence- [e(k) & —hp]
band states. The charge-conjugation (particle-hole}
symmetry' ' ' of the Hamiltonian (2.2) leads to
the relationships between f' and f" indicated in
(2.6b), as is shown in the Appendix. The gap in the
energy spectrum (2.6a) is 260 with the Fermi energy
at e=0 [see Fig. 1(a)]. In chemical terms one can
visualize the Peierls-dimerized ground states as al-
ternating single and double bonds [see Fig. 1(b)]. If
we evaluate the total energy per unit length, E, for a
uniform dimerization b,(y) =6, we find
8 = b, {—,+ln

~
hp/6

~
) (in the—weak coupling lim-

it), which emphasizes the degenerate configura-
tions 6=+60 and the instability at 6=0, i.e., uni-
form bond lengths [see Fig. 1(b)].

The twofold ground-state degeneracy in trans-

FIG. 1. (a) Energy spectrum of dimerized (CH), . The
valence band (v.b.) is filled, the conduction band (c.b.) is
empty, the Fermi level (eF) is at the middle of the gap. (b)
The two schematic bond structures corresponding to the
two degenerate ground states of trans-(CH) and a
schematic plot of the energy per unit length vs band-gap
parameter 6 for spatially uniform h. Note the degenera-
cy between 6= +50 and the local maximum (indicating
instability) at 5=0.

(CH)„means that stable "kink-soliton" (E) defects
are possible; these correspond to static, finite-energy
lattice-displacement configurations which interpo-
late between the degenerate ground states [see Fig.
2(a)]:

6x(y) =kptailh(y/gp),

(p= vF/~p
(2.7a)

There is clearly also an antikink (K) soliton with
4x(y)= —bx(y). Depending on boundary condi-

tions and the number of carbon atoms, "' the
ground state itself may or may not contain a kink
(antikink), but additional excitations will occur in
KK pairs on long chains for obvious energetic
reasons. The associated one-electron energy spec-
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fx (k) =—&&x{k)&' &a/&o= fx—
~o

Nx. {k}=
L

(2.7b}

Again charge-conjugation symmetry relates the
valence- and conduction-band states, as indicated.
The phase shift in (2.7b) with respect to (2.6b) is the
only effect on the extended states of the potential
well presented by the pattern hx(y} (see Appendix),
but it has important consequences. In particular,
the density of states is reduced (equally from the c
and U bands because of charge-conjugation symme-
try). These effects are discussed further in the Ap-
pendix, but in fact for an isolated kink (or antikink)
exactly one-half state per spin, per band is lost and
appears as a localized state at midgap, i.e., at the
Fermi energy e'=Ep=0 [see Fig. 2(a)], with associat-
ed wave function

f+
——gp 'sech(y/gp),

=0.
(2.8)

The midgap state can be occupied by 0, 1, or 2 elec-
trons giving kinks with the unusual spin-charge as-
signments29 shown in Fig. 2(a). Explicit kink lattice
(i.e., many KK pairs} solutions are also known
analytically ' (because of the same partial soliton

trum [see Fig. 2(a)] consists of extended conduction-
(c) and valence- (v) band states with the plane-wave
dispersion as in the absence of a kink [i.e., (2.6a)],
but with an additional "phase shift" determined
from

f/+ (k) =Nx (k}e'@[tanh(y/gp) —ikgp]

=fop«»
where

tanh{ 2Koyo ) =Kogo (2.9b)

Evidently hp describes a localized deviation about a
single ground state (+b,p}, which will be important
for cis-(CH)„below. Again the conduction- and
valence-band dispersions are unchanged from the
defect-free case (2.6a), but the wave functions are
asymptotically phase shifted. Explicitly,

fp+ {k}= Np(k)e'"r(—1+i)y'(k}

k +i tanh[Kp(y —yp)]
p

and

fp (k)= Np(k)e'""{ 1 ——i)y(k)

X +i tanh[Kp(y+yp)]
k

Ep

{2.10a}

(2.10b}

character of the field equations} yielding a band of
states centered around the Fermi energy with one
state per kink removed from the extended states.
We will work in a low defect density regime and do
not need to consider the general kink lattice further
here.

The most interesting solution to Eqs. (2.3) and
(2.4) for our present purpose is the polaron, which
we have described in detail elsewhere. Although a
highly nonperturbative strong coupling polaron, this
solution has a most transparent analytic form: The
polaron gap parameter is

bz (y) = +ho+ KpvF I tanh[Kp(y +yp )]
—tanh[Ko(y —yp)] ], (2.9a)

with

Ihp-

0

-hp —,
-2

s st

(a)

Qe+e Q=O Q=-e
S= 0 S=I/2 S=O

NX/i NX/i
tt)p

s I

Q=-e
S = I/2

Q =+e
S= I/2I I

0 2

y/fp

FIG. 2. Intrinsic defect states in trans-(CH)„and asso-

ciated electronic levels: (a) kink, (b) polaron. Dashed
lines indicate electron densities for localized states.

go ——vF/ho, Q is the charge, S is the spin.

where

Np(k) = 1

2 L

' 1/2
&k —~p

k

' 1/2
p

k 2+%

cop =(5p —EpUF )
2 2 2 1/2 (2.11)

The symmetry about the Fermi energy is again a
consequence of the charge-conjugation symmetry of
(2.2). The corresponding wave functions are, for
6=6+——+&Op,

Again ff + =fp+ and ff = fp . The pha—se
shifts in (2.10) with respect to (2.6b) again imply a
density-of-states reduction (see Appendix), now of
one state per spin, per band, consistent with tue lo-
calized one-electron eigenstates with energies in the
gap at e+ ——+cop where
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f+ N——p(1+i )sech[ED(y —yo )],
(2.12)

f+ =Np(1 —i)sech[ED(y+yo)],
p 1

where Np ———, Ep and, for E'=E' = —Np,

f+ f+——and f = f+ .—We emphasize that
hp(y) and the associated electron wave functions
satisfy the electron part (2.3) of the continuum equa-
tions for any KovF in (0,60). ' However, the gap
equation (2.4) is satisfied with a unique value for a
given pair of localized level occupations
(n+, n =0,1,2). The condition determining c00 is
equivalent to minimizing the energy of the interact-
ing electron-phonon system. Specifically, for trans-
(CH)„,

O=KovF —sin (Kgo) —(n+ n+2—)
4
7r

(2.13)

Kogo= I/V2 . (2.14)

All other localized state occupations lead [see Eqs.
(2.9b) and (2.13}] to infinitely separated KK pairs
(ego=0 Kpgo= I, yo

——ao), or the purely dimerized
ground state (coo=ko, Ko(0=0, yo ——go/2), or linear
combinations. Note that these are equilibrium con-
figurations and do not rule out pinning of meta-
stable configurations or tell us about relaxation time
scales. The spin-charge assignments for polarons
are entirely conventional [see Fig. 2(b)].

We emphasize the appealing simplicity of the po-
laron displacement pattern and electron wave func-
tions. Comparing (2.7a) and (2.8) with (2.9a) and
(2.12), it is natural to view the polaron as a KK
bound state with separation -2yp and kink shape
(through Ko) coupled to yo [Eq. (2.9b)], i.e., a
single-parameter family of configurations. It is then
natural to expect bonding and antibonding localized

gap states, but the simple sum and difference of iso-
lated kink wave functions (P—= Ue'@+i Ve '

)

which one finds is more surprising. This simple
structure is analytically very convenient and part of
the beauty of the (partial) soliton properties of (2.3)
and (2.4). It is also a little misleading, since the rela-
tive phase of the apparently free K and E is deter-
mined. This is also important in comparing with
the polaron on a discrete lattice, since the phase of a
kink determines whether it is centered on an even or
odd atom (or somewhere between). "

Reasonable numbers for trans-(CH)„ imply that
both the localized kinks and polarons extend over

We see easily from (2.13) that only single-electron or
single-hole polarons are nontrivial [n+ ——1, n =2
or n+ ——0, n =1, respectively; see Fig. 2(b)]. In
these cases

many lattice spacings (15—20). Thus continuum
theory should be good, and indeed several numerical
simulations'0'" of the discrete Hamiltonian (2.1)
have found kink and polaron excitations in excellent
agreement with (2.7a) and (2.9a).

To conclude this section we turn to the case of
cis-(CH)„, which allows us to display the possible
excitations in a case that lacks ground-state degen-
eracy. We make use of a model suggested in this
particular context by Brazovskii and Kirova, '

whose consequences we have described in detail else-
where. ' ' The model has some extremely con-
venient analytic properties (which allow us to carry
over the trans analysis directly), but more impor-
tantly it includes fundamental physical ingredients
common to several conjugated polymers lacking de-

generate ground states. In the case of cis-(CH)
there are two chemical structures corresponding to
local energy minima but they do not have the same
energy as in the trans isomer. The situation is de-

picted in Fig. 3. An obvious consequence of the
lack of degeneracy is that cis-(CH)„(and similar po-
lymers} cannot support stable kink excitations, since
creating a EE pair separated by a distance d would
cost energy -d(5E/I}, where 5E/l is the energy
difference per bond between the stable and meta-
stable phases. Clearly this linear "confinement" en-

ergy will prohibit E and E from becoming free. Of
course, a confined KE pair is topologically reminis-
cent of a polaron [cf. Fig. 2(b)] so polarons can be

C ~ ~ ~

SE/C

FIG. 3. Two schematic bond structures corresponding
to the actual cis-(CH)„ground state (the cis-transoid con-
figuration) and the metastable state (the trans-cisoid con-
figuration) and a plot of the energy per unit length vs
band-gap parameter 6 for spatially uniform L. Note that
cis-(CH)„will have four (rather than two) one-electron
bands, but we concentrate on the important band gap
around the Fermi level.



27 OPTICAL ABSORPTION FROM POLARONS IN A MODEL OF (CH)„

anticipated in cis (C-H)„
To make these expectations explicit we adopt the

ansatz through which the gap parameters can be
written as'

tion and application we have plotted in Fig. 4 the
dependence of a)p/Zp on 7' for all values of
(n+ n—) [from Eqs. (2.11) and (2.17)]. A more
complete description of the various types of pola-
rons is given in Ref. 34. Of particular interest here
are the "bipolaron" solutions with n+ ——n =0,1,2
(doubly negative, neutral, or doubly positive charge),
which are unstable toward infinitely separated KK
pairs (cop~0) in the trans case (y~O). This separa-
tion is prevented for y&0 by a term in the total
electron-phonon energy which is proportional to y
and the KK separation, precisely the confinement
mechanism we anticipated above. Bipolarons are
energetically preferred over isolated polarons, but
with a larger size (2yp) than each singly occupied
polaron.

One of the main experimental interests in pola-
rons or kinks [in trans-(CH)„] is their preferred
status as doping states. This status is based on
equilibrium energy arguments. We will return to
this and other experimental considerations in Sec. V,
but we now have all the necessary information to
calculate optical-absorption coefficients for the trans
and cis models (2.2) and (2.16}.

~(y) =4;(y)+5, , (2.15)

where 5;(y) is sensitive to electron-phonon coupling
(as for the trans isomer above) but 6, is a constant
extrinsic component. One can motivate 5, in terms
of u-bond orbitals but ab initio calculations are dif-
ficult. With this simple ansatz, we easily find that
the continuum adiabatic Hamiltonian (2.2) is modi-
fied as' '

2

H„,=f y, 6,'(y)C18

+p+(y) iud—03 ++(y)o] $(y}
By

(2.16)

III. OPTICAL-ABSORPTION
COEFFICIENTS: FORMAL RESULTS

In this section we present our results obtained for
optical absorption in the presence of the types of po-
larons introduced in Sec. II. Technical details are
given in the Appendix. Since comparison with re-
sults obtained elsewhere for kinks ' ' will be help-
ful, we present some of these here also. In addition,
the kink topology has been recognized to play an
essential role in correct evaluations of, among other

1.0

n, -n

Of course, all the parameters in (2.16}will generally
take different values from the corresponding ones
for trans-(CH)„ in (2.2) (see Sec. V}. It follows from
(2.16} that the mean-field electron equations for the
isomer cis are precisely the same as for the trans iso-
mer, i.e., (2.3}, with h(y) replaced by h(y) (and ap-
propriate parameter-value changes). Thus, with
these replacements, the electron spectra and eigen-
functions are precisely the same Differ.ences from
the trans one arise purely from the mean-field gap
equation which, from (2.16), has entirely the struc-
ture of (2.4), the trans result, but with h(y) replaced
by 6;(y) [not h(y)]. This leads to different con-
straints on allowed solutions and on the location of
bound-state eigenvalues +cop. Specifically, (i) the
ground state has the unique form Z(y)=ip b,,

——
+h„with b,p ——W exp( —I /}I,) and 5, /hp
=A, ln (Zp/hp}; (ii) kink solutions do not satisfy the
gap equation (as anticipated above); and (iii) the po-
laron profile (2.9a) [with h(y}~h(y)] does satisfy
the gap equation if Kp (or cop) satisfies

O=Kp Vp (n+ —n +2) —&Kpvp/Q)p
4

O

0.5
3

—sin (KpvF /Ap) (2.17)

Here y=L, /A, hp. For y=O, (2.17) coincides with
(2.13) as it should. However, for y&0, (2.17) sup-
ports nontrivial confined solutions for all occupa-
tions, n+ and n, of the two electronic gap states.
Reasonable estimates for cis-(CH)„probably place y'

in the range 0.5—1.0, but for more general orienta-

'o

FIG. 4. Position of the polaron state co0 in the gap as a
function of "confinement" parameter y (see Sec. II) and
occupation of the localized levels n+, n . y=0 corre-
sponds to trans-(CH)„.
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quantities, the interband optical absorption: Diago-
nal transitions are specifically excluded by the rela-
tive density-of-states changes in the conduction and
valence bands due to the boundary conditions in the
presence of a kink. ' A polaron, or any configura-
tion with the topology of equal numbers of kinks
and antikinks, presents different boundary condi-
tions, and we will see how these modify the struc-
ture of the optical-absorption results.

As for previous kink calculations, we calculate the
optical-absorption coefficient a(co) in a conventional
linear-response dipole approximation:

aD

(a)

gIB

(b)

ap
gIB

P
(3)

ap

(c)

Co ~o
iz(pi)=ir — ~ g ni, $ IM1, 2 I

~(pi ~] ~p),L co (1 2

(3.1)

where the summation is over all allowed transitions
from eigenstate

I
1) to eigenstate I2) (with energies

ei, eq), and the inatrix element M i z is

(3.2)

In (3.1)

8~e'X IM„ I

'
A:—

m Cnhp

(where e and m are the electron charge and mass, c
the velocity of light, n the index of refraction, and
M„ the momentum matrix element for the carbon
n, orbital), and we have assumed normalization to
unity on a line of length L, where L will be taken to
infinity. The factor n& 2

——0,1,2 counts the number
of possible transitions allowed by occupancy of the
two states. The prefactor in (3.1) is written to iso-
late the characteristic scale gp/L. This is convenient
since we will be dealing with the effects of a single
defect (kink or polaron), and therefore must account
for all terms of order go/L. As explained in the Ap-
pendix these will come both from wave-function
normalization and from density-of-states changes
arising from phase shifts of the conduction- or
valence-band states. With the prefactors in (3.1) the
exact sum rule' ' for optical absorption takes the
form

FIG. 5. Nomenclature for all possible different transi-
tions: (a) dimerized chain; (b) single kink; (c) single pola-
ron.

Xsech (cp —6 )'
260

(3.4)

so that

a~' co dco=1.41—A . (3.5)

From the matrix element symmetry (Appendix) we
see that, independent of the midgap occupation, the
total absorption from transitions between extended
and localized states is twice that in (3.4) and (3.5).
The interband absorption (IB) coefficient in the
presence of a kink cannot be given analytically, ' but
for high frequency (co) 2.560) weight is removed
uniformly in co with respect to the pure dimerized
(D) case. Thus one has

notation. As explained in the Appendix, charge-
conjugation symmetry reduces the number of in-
dependent transitions to two for a kink and four for
a polaron.

First, we summarize results for a single
kink 7' ' Fo. r a single transition [i.e., n& i ——1 in
(3.1)] from valence band to midgap or from midgap
to conduction band [see Fig. 5(b)) the form of a
which follows from (2.7b) and (2.8) in (3.2) is (see
Appendix)

2
0

ax '(co) = A—(co —i),o)4 L

J dcoa(co)=A . (3.3)
ax. (pi)=~n(pi)(1 —2gp/L),

where, by using (2.1) in (3.2),

(3.6a)

In view of our description in Sec. II of the num-
ber and location of localized states in the gap for
kinks and polarons, we can expect three classes of
transitions for a kink and six for a polaron. These
are denoted in Fig. 5, to which figure we refer for

+D(67)=A (2A y~)2(~2 4g2) —1/2 (3.6b)

is the interband absorption for the pure dimerized
case. Numerically, the sum rule (3.3) is indeed
found to be satisfied, ' i.e.,
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f ax (co}dcp=A(1 —2.82gp/L) . (3.7)

The evaluation of (3.7) is interesting because of the
absence of diagonal transitions, a result of the kink
topology. This effect must be handled extremely
carefully to avoid divergences. Below and in the
Appendix we show how this differs from the pola-
ron case and thereby gives a new perspective on ex-
isting kink calculations. '

Turning to results for the polaron, we consider
first transitions involving the localized gap states
[see Fig. 5(c) for notation]:

(i) (Single) transition between localized levels Us-.

ing (2.12) in (3.2) we find

'2

ap (cp) =ir&—2 — 5(cp —2cpp),
ko ~o yo i)o

L hp gp cp

2
ko 2~o yoa, (~g~=~~-
L ~o ko

(3.8)

(ii) Transitions between the valence band and the
(singly occupied) (—cop) level [or (+cop} level to con-
duction band]. As explained in the Appendix, to
find effects of order go/L in this case we do not
have to include normalization or density-of-states
corrections. Using (2.10}and (2.12) in (3.2) we find
(Appendix)

go &2 1 1 co(co+cop —Qp)
a',"(~)=~—

3 2 2 2
ech

L 4 Kpgp X 5p ICpgp+X 2 +ogo

&& sin X—+X[(1+X')' —1] 'cos X—Po

0 0
(3.9)

with
' 2 1/2

CO+ 600 —1

(iii) Transitions between the valence band and the (singly occupied) (+cop) level [or ( —cop) level to conduction
band]. Using (2.10) and (2.12) in (3.2) leads to (Appendix)

go n 1 1 co(co+coo—~o) 1 i ir X
aP'(cp) =A—

3 2 2 2
sech

L 4 Kpgp X gp Itpgp+X 2 Epgp

2

X sin X—+X[(1+X )'~ —1] 'cos X—
0

(3.10)

with
'2

CO —C00 —1
60

1/2

(iv) Interband transitions. In this case we do need to include both density-of-states and normalization correc-
tions to order gp/L, as explained in the Appendix. As we describe in detail in the Appendix it is convenient to
split the matrix element Mkk (k and k bein wave vectors of states in the valence and conduction bands,
respectively) into two terms; we call these Mkk's and Mfz. 's. Contributions to the optical-absorption coeffi-
cient from diagonal transitions are found analytically. To order gp/L

ap (cp)(diag) =aD(cp) 1 —— [8Epyp( 1+Z ) —2Epgp]
IB 4o 1 2

It &g&+Z&
(3.11)

with Z =[(cv/2h) —I]'~ and ao(cp) the absorption coefficient in the pure dimerized case [Eq. (3.6b)]. The
integrated intensity from (3.11) is given by (including the factor of 2 from the two spin states)

ap (co)(diag)dao = 1——2 ~ in . Cp

2~ L
8yp 2b, o hp, cop 2ICpgp

tan +
ko coo coo &o~(4'o (cop/~p)'

(3.12)

As for the kink case (3.6), contributions from off diagonal transitions c-an only be evaluated numerically. The
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results of the necessary numerical double integration (over k, k') have been found [when taken together with
(3.8}—(3.10) and (3.12)] to satisfy the sum rule (3.3) for all values of top in (O, hp) and all localized level occupa-
tions. However, the structure of MI,I, is worthy of closer analysis and comparison with the corresponding kink
quantity. More details are given in the Appendix but we remark here on the following basic structure:

(3.13}

representing the decomposition into the diagonal and off-diagonal components referred to above.
M(k}-I+O(1/L) leading to (3.12). The most interesting fact is that 3P(k, k') is discontinuous as k~k'.
This discontinuity follows directly from the integral

+2yo, hk =0
t.~~ ~ L/2 — ' 2i T,i ag (m/2)(bk/Ep)L, -+ ~) leap

, 6k~0
b k sinh[(n. /2)(hk /Ep )]

(3.14)

with hk =k' —k and t+ ——tanh[Kp(y+yp)]. The
relevance of this integral should be evident from the
polaron forms for f+ in (2.10) which are inserted in
(3.2). We see that (3.14} diverges as 6k~0, imply-
ing an infinite discontinuity at Ak =0. In fact, for
the polaron there are additional hk factors in
3P(k, k') which control the divergence and render
the discontinuity in 3F (k, k }finite; the explicit form
is given in the Appendix. Since the discontinuity is
finite, the necessary double integration on k and k'
to evaluate a(to) is insensitive to the discontinuity to
the order gp/L in which we are working here.

It is instructive to contrast (3.13) and the discon-
tinuity in A(k, k ) with the situations in the pure
dimerized and single-kink cases. In the former limit
only diagonal transitions are allowed, i.e., W(k)&0,
3f(k,k')=0. This result follows easily from (2.6)
and (3.2) (see also the Appendix). By contrast, for a
single kink (or antikink) only off-diagonal interband
transitions survive's: Using (2.10) in (3.2) we find
easily that W(k}=0 and A(k, k')~0; 3P(k, k') in-
volves the same integral (3.14) but with yo ——0. In
the kink case there N'e no factors moderating the
divergence as 6k~0. Consequently, A(k, k') has
an infinite discontinuity as 5k~0, which can affect
integration over (k,k') to 0 (gp/L}. In this case it is
necessary to recognize explicitly the quantization
imposed on k and k' in a box of length L by the
boundary conditions of a single kink. ' Specifically,

kL =2nir+tan '(kg&)

for the conduction band, but

kL =(2n + 1)n +tan '(kgp)

for the valence band (n is an integer). It follows that
hk =0 is not allowed and the incipient divergence in
A(k, k') is avoided. The summation on hk must be
done carefully, but then the final summation (on, for
example, k) can be safely taken in the continuum in-

I

tegral limit (including phase-shift effects on the den-
sity of states} as for the polaron calculation (Appen-
dix}. Physically, these differences between the kink
and polaron calculations reflect the fact that for a
single kink (or any configuration with the same to-
pology} infinite portions (as L~ ap ) of the chain lie
in each of the two ground states, whereas this is not
so for the polaron (or other configurations of the
same topology). Note that we always suppose
L »2yp. Technically, the differences arise from the
way phase shifts produce different relative wave-
vector discretizations for the conduction and valence
bands in the two cases: For the KK topology the al-
lowed values of k in the conduction band satisfy
kL =(2n+2)m+ phase shift. The 2n misregister
between conduction and valence only affects transi-
tions to O(1/L} and therefore appears as a higher-
order correction than we are keeping. However, the
m. misregister for a kink affects all transitions and
must therefore be included. The same arguments
lead us to conclude that any finite concentration of
defects will create O(1) corrections which must be
included. These usually appear as explicit ex-
clusions of states (one per kink, two per polaron} at
the top of the valence band and at the bottom of the
conduction band.

IV. OPTICAL-ABSORPTION COEFFICIENTS:
ANALYSIS OF RESULTS AND LIMITS

Having summarized our results in (i)—(iv) of Sec.
III we now focus on limiting behaviors, which are
convenient and instructive checks, and on graphical
presentations which may be of greatest convenience
for understanding experimental implications. From
the polaron form (2.9) [see also Fig. 2(b)] we can ex-
pect that our results should reduce to the pure
dimerized limit (with appropriate level occupations
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at the top and bottom of bands) as rpp~kp and to an
infinitely separated KK pair (i.e., twice the kink re-
sults) as top~0. Explicit evaluations of the results
described above confirm that these limits are indeed
satisfied. We can show the following:

(a) As p&p~hp, the integrated intensities behave as

f ap'"(~)d~ 0,

f aP'dcp~ f ap"(rp)drp~ ,'Arrg—p/L,

f aP(off-diag )(cp)drp~O,

f aP(diag)(rp)drp~ —,A (1 rrgo/—L) .

2.0 I I 1

(I) Q) (~)
4P+4P +34

1.5

1.0

0 I I

0 0.2 0.4 0.6 0.8 1.0

(b)

0.7—

0.6

0.5

0.4
a

0.2

0.1

0 I

0 0.2 0.4 0.6 0.8 1.0

a'p '(rp) —map" (ro)~—,A ir —(rp —6o) '/

Xsech' (
'—4')' '

2hp

[i.e., twice the single kink result (3.4)], and

2hpf ap {diag)(rp)drp-A —lnIB ko

COp

[aP(rp)] (diag+ off-diag) will be discussed below.
One very striking feature of our results is the

difference between ap (N) and ap (CP) (see FiII. 7)
near their respective thresholds; from (3.9), aP has
a square-root singularity

a, (~)(2) 4o H 1 o1—
n&~ao mp L 2 (—Kogp) b,p

1

[(~+~o)'—~o]'" (4.1)

of the same form as for the kink case (3.4};however,
from (3.10), aP' tends to zero at threshold according
to

Thus the sum rule (3.3) is satisfied. Notice that al-
though the distribution of weights among transitions
depends on the occupation of localized levels, the to-
tal weight involving localized levels is independent
of this consideration (the wave functions are in-
dependent of occupation numbers within our
model). This is ncessarily so, in general, in view of
the sum rule (3.3), and is demonstrated in Fig. 6
where we show the total integrated weight taken out
of interband transitions by the presence of a polaron;
the result depends only on cop and not on localized
level occupation. The same is trivially true of a kink
or any combination of kinks and polarons.

(b) As top~0, the absorption coefficient com-
ponents behave as

f (i) Co too rpo
ap {rp}dcp~mA — ln ~0,

L hp

FIG. 6. (a) Total integrated weight (in units of rrgp/L}

of transitions involving localized levels as a function of
cop. Note that this weight is independent of level occupa-
tion. (b) Integrated weights (in units of re p/L} of single

transitions involving localized levels as a function of cop.

For notation see Fig. 5(c). Note the order-of-magnitude

difference between a'p ' and a'p ' for cop & 0.2h.

'2
(3) ko H 2yo 1 {~o+~p)

ap co--~+-. L g 4 (Kog.)'

X [(rp —rpp) —ho]+ ' (4.2)

These differences appear surprising if we view the
localized levels at +cop too naively as bonding and
antibonding levels due to overlap of two midgap
kink states. In fact, the charge-conjugation sym-
metry in our model implies (see Appendix)
f+ '=+f'++', which in turn means that the matrix
elements for transitions from, for example, the
valence band to the ( —rpp} and (+cop) localized lev-
els differ as a suin or difference of the same f prod-
ucts in (3.2).s5 This means that we change from the
real part to the imaginary part of a complex quanti-
ty for the two types of transition and leads to the
different threshold behaviors (4.1) and (4.2). We can
notice also the very different intensities implicit in
(4.1) and (4.2} for ap'(rp) and ap'(cp}; for most
values of rpp the intensity in valence band to (+cop)
or ( —ep) to conduction-band transitions is signifi-
cantly weaker than the other transitions involving
localized levels. We have shown a11 the integrated
intensities as a function of cop in Fig. 6(b). It will be
seen, for example, that for cop/6p I/O 2 [appropri-
ate to trans-(CH)„; see Sec. III, the overwhelmingly
predominant transitions are ap ' and ap '. Further-
more, the intensity in transitions between the local-
ized levels ap" is roughly half the total; since we can
also expect this absorption to be a very narrow
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FIG. 7. Optical-absorption spectrum below the gap co =260, without broadening: (a) single kink; (b) single electron po-
laron (n+ ——l, n =2) with tpp=0. )kp (c) single electron polaron with tpp=b pl&2 [trans-(CH), ]; (d) single electron pola-
ron with coo——0.960', (e) single bipolaron (n+ ——n =0 or 2) with coo=0.6560.

feature in frequency (see also Fig. 7), it may be a
useful experimental label (see also Sec. V). As we

noted above, fat '(rp)dto grows to faP'(ra)dra, as

ct)p~O (i.e., yp~ Oo,
' see Fig. 6), but the singularity

structures (4.1) and (4.2) are maintained for all cop.

In Fig. 7(a) we illustrate absorption spectra
predicted from a kink and in Figs. 7(b)—7(d) from
an electron (or hole) polaron with three representa-

tive choices of tao. Figure 7(e) shows the same infor-
mation for a choice of electron (or hole) bipolaron.
Figure 8 shows three examples from Fig. 7 in which

a Gaussian function has been convoluted with the
theoretical results to represent reasonable broaden-

ing.
Finally, in Fig. 9 we show results of numerical in-

tegration for the interband optical absorption in the
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A striking feature of P(cp) for kinks, Eq. (3.6a), is
that it is essentially independent of frequency above
the threshold co=240. Interestingly, for polarons
there is also a uniform asymptotic structure to P(cu)
[see Fig. 9(a)] which tends to zero for cpp~hp. In
addition, there is a growing absorption localized to
ct) & 26p as coo~ko, which approaches a 5 function
at coo——50. Recall that the integrated intensity

aD(cp)P(cp)dcp also decreases with increasing cop

[Fig. 6(a)]. In the opposite limit cop~0, P(cp) is
shown in Fig. 9(b): We can see the development of a
sharp peak at co=250 together with a minimum
right after this peak. This is due to the fact that in
this limit the polaron profile tends to a widely
separated pair of kink and antikink whose width be-

comes smaller and smaller. Thus the chain is main-

ly purely dimerized giving rise to the peak at
co=250. Only for very large frequencies co »205p
does P(cp) reach its asymptotic value of 4, which is
twice the single kink result. This crossover from po-
laron (bound kink-antikink pair) to widely separated
kink-antikink behavior appears when the distance
between the kinks (2yo) becomes greater than the
width (2/Kp) of the individual kink: 2yp=4/Kp,
which gives coo(crossover) =0.26ho. This is in com-
plete agreement with our results [see Figs. 9(a) and
9(b)]. Figure 9(c) shows a result for aP(cp) without
broadening and Fig. 9(d) includes the same Gaussian
broadening used in Fig. 8.

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0
la)/60

I

1.5 2.0 2.5

FIG. 8. Optical-absorption spectrum (in arbitrary
units) below the gap co=2hp with a Gaussian broadening
of o=0.14dtp. (a) single kink; (b) single electron polaron
with cop

——i)p/~2 [trans-(CH), ]; (c) single bipolaron with
cop ——0.65hp.

presence of polarons; recall that this depends only
on coo and the number of polarons. We have as-
sumed a low concentration c of polarons (c =0.02),
such that our one-polaron results can be taken to be
additive, and plotted

aP(cp)—:an(co) [ I —cP(cp)] . (4.3)

V. DISCUSSION

In the previous sections we have described in de-
tail kink, polaron, and bipolaron excitations as they
appear in certain continuum electron-phonon
models of trans- and cis-polyacetylene (Sec. II).
These models have the great advantage of admitting
analytic solutions because of partial soliton
(reflectionless-potential) properties. In Sec. III we
took advantage of these attractive features to evalu-
ate the optical-absorption coefficients from isolated
kinks and polarons. The kink result duplicates ex-
isting calculations, ' ' but the polaron results are
new and contain some surprises (Sec. IV). As ex-
plained in Sec. II, the presence of a single kink (or
antikink) induces a single localized electronic state
at the middle (e=O; the Fermi energy) of a semicon-
ductor gap ( —6p +Ap} with density of states taken
from the conduction and valence bands. A polaron
induces two localized gap states, symmetrically
disposed about midgap at a=+coo. The dimerized
lattice distortion corresponding to the polaron (Sec.
II) has the form of a bound kink-antikink pair de-
fined by just one parameter (Eo or yo in Sec. II); EE
separation and shape are specifically related. This
parameter is itself related to coo. For trans-(CH)„
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on]y one @aine of tao (I/O 2) associated with two lo-
ca1ized state occupations (corresponding to a singly
occupied electron or hole polaron) is stable against
decay to either the ground state (coo ——ho} or widely
separated EK (F0~0}. In cis-(CH)„, however, free

inks are not allowed because of the absence of de-
generate ground states. Further, polarons are stable
whether singly occupied or doubly occupied
(electron-electron, hole-hole, or electron-hole bipola-
rons). The relevant value of uo is determined (from
Fig. 4) by a combination of the relative level
(e=+co0) occupations and a "confinement" parame-
ter measuring the extent of degeneracy break' 1ngs

&g. }. In turn the optical-absorption spectra from
a polaron is determined only by the values of coo and
t e relative level occupation: Our model is remark-

able in that the absorption coefficients have the
same functional form for all coo. As for a kink, the
optical absorption from a polaron explicitly satisfies
a sum rule, Eq. (3.3), which is known to hold in
some generality. ' *' The distribution of absorption
in frequency has more structure, however, because
of the additional localized electronic levels. For a
kink there is one absorption peak belo~ the inter-
band threshold with a square-root divergence at
midgap (~=60). For a singly occupied polaron
there are three peaks below the interband threshold
due to transitions between the localized levels deves an

tween these and the extended conduction- or
valence-band states. The bipolaron precludes transi-
tions between the localized levels, so that there are
only two peaks below interband threshold [How-.
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ever, as for a kink, the integrated intensity from
structures in the gap is independent of localized
state occupation; Fig. 6(a).] The number of indepen-
dent transitions is reduced by the "charge-
conjugation" (particle-hole) symmetry (see Appen-
dix) of our system. This same symmetry is respon-
sible (see Appendix) for a striking asymmetry in the
absorptions from transitions between localized and
extended states: Namely (see Fig. 7), the lower-
frequency structure has a square-root divergence at
its threshold (co=60—boa}, whereas the higher-
frequency structure tends to zero at its threshold
(co=ka+ND). The integrated intensities in these two
components are also very asymmetric, except for
widely separated EE (yp~aa, cop~0), where the
free kink result is recovered.

It is important to emphasize that the basic
features above are a result of a general symmetry
property rather than more specific details of the
models (2.2) and (2.16). Other models inay lack the
same elegant analytic accessibility but can retain the
essential absorption structure.

A brief discussion of experimental consequences
of, and observation of, polarons in conjugated poly-
mers is in order. On energy grounds we expect (Sec.
II) that single-electron or hole doping in trans-(CH)„
will initially induce polarons which, when more than
one polaron exists on a single chain, will combine to
form "free" kinks and antikinks. ' This view is sup-
ported by the quantified hysteresis observed in re-
cent electrochemical doping and compensation mea-
surements'" ("voltage spectroscopy"}. On the other
hand, at light doping levels, and especially in view
of finite chain segments and uncertain interaction
dynamics for the polarons, we can anticipate that
singly occupied polarons will occur (in addition to
kinks and antikinks) in trans-(CH)„. All three types
of transitions in Fig. 7 would contribute in this case,
but the weights indicated in Fig. 6 imply (with
cop—6p/~2) rico significant (approximately equal
weight) absorption peaks (in addition to the kink
midgap absorption) around co=hp —cop and 2cop with
the latter being narrower. It is believed' that this
narrow peak has indeed been observed in optical-
absorption experiments on electrochemically doped
trans-(CH} films. Further evidence for a polaron
interpretation would be the observation of low-
frequency structure (co=A,D

—boa) correlated with the
high-frequency one. Unfortunately, the relevant
low-frequency regime is in the infrared (ir) where
many structures are expected and even more ob-
served. A promising complement to this search for
polarons in trans-(CH)„ is optical-absorption evi-
dence' for hole bipolarons in as-formed and doped
cis-(CH)„. A possible interpretation here is that, as
in trans-(CH)„, a small concentration of positively

charged defects (-200 ppm} is formed during the

synthesis of cis-(CH)„. As explained in Sec. II, these

must appear as polarons in the cis isomer, and on

energy grounds bipolarons are preferred; again the
actual formation kinetics requires a deeper under-

standing of polaron collision and hopping rnecha-

nisms. In this case the narrow absorption structure
from transitions between localized levels would be

prohibited, and predominant absorption would be in

a broad peak at co=cop —hp. Absorption data has

been shown to be consistent with a bipolaron inter-

pretation with, in the model (2.16), y=0.67 (imply-

ing ~p/kp-0. 67 from Fig. 4) and 6, =b,; =1 eV. '

Under doping, there is evidence that cis-trans iso-

merization occurs inhomogeneously in the dopant
regions (distinct from the as-forined defect regions);
then kinks and antikinks should be preferentially in-

duced in these trans regions, with the polarons in the
cis regions substantially unaffected. Optical-
absorption data under doping and compensation of
cis-(CH)„(Refs. 7, 8, and 14) are again consistent

with this interpretation, although once more defini-

tive evidence (e.g., charge and spin assignments) will

be required. Clearly, conjugated polymers more op-
timal for polarons and bipolarons need to be studied

systematically. Several potential materials exist
where kink bearing -environments (i.e., degenerate

phases) do not exist and are not induced by doping.
Polyparaphenylenes seem especially worthy of de-

tailed study in view of their high conductivity under

light doping and existing numerical modeling" of
polarons (and bipolarons).

Although we have concentrated on optical absorp-
tion, it should be clear that polaron excitations will

need to be folded into the interpretation of a range
of (existing and forthcoming} experimental data in

conjugated polymers: ESR, ir, photoconductivity
and photoluminescence, transport, doping, etc. It is
worthwhile emphasizing that kink-lattice "melting"
theories of the insulator-metal transition observed

in (CH)„generalize very obviously to polaron (or bi-

polaron) lattice theories appropriate to a wider range
of polymers.

Having stressed the optical absorption from pola-
rons within the model described in Sec. II, we need

to appreciate potentially important corrections to
that model. We have not included any description
of dynamics, which is an uncertain area both for
kinks and polarons in the SSH model (2.1). Internal
(shape) vibrations coupled to translations can be ex-

pected and the extended, ' strongly nonlinear,
quasisoliton character of the excitations could well

lead to nontrivial interactions between excitations;
these interactions are of considerable importance in

understanding, for example, time scales for decay
channels dictated by equilibrium energy considera-
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tions [e.g., polaron+ polaron~XE in trans-(CH)„or
EE recombination after photoabsorption in cis-
(CH)„]. Likewise, polaron transport in the SSH
model (diffusion along chains and hopping between
chains) is a quite open area, as is the description of a
polaron band or shakeoff phonon structure. With
the use of a conventional adiabatic technique one
can estimate the kink mass Mz in the SSH model. '

The same adiabatic estimate (neglecting all internal
modes} for the polarons yields a mass Mp given (in
the continuum limit) by

Mp(coo) =2Mx (Kogo) 3

X 1 —3
(~o/~o}' yo

&ohio &o
, (5.1)

which we have plotted in Fig. 10. Realistic parame-
ters for trans-(CH)„suggest Mp/M, & 1, and for the
bipolaron in cis-(CH)„, Mp/M, =3, where M, is an
electron mass. These light masses highlight the like-
ly importance of quantum corrections. Nakahara
and Maki have suggested that quantum renormali-
zation of the adiabatic limit (as used in Secs. II—IV)
can be pronounced even for the kink (Mx ) 3M, )

but is not sufficient to destabilize the polaron. In
fact, we feel that quantum fluctuations will be
strongly suppressed even by weak interchain cou-
pling. Nevertheless, relatiue effects on E&, Ep, and

need to be considered. Effects of electron-
electron interactions are also very rich. It has been
argued' that these effects are weak in (CH)„, at
least for excitations about an effective ground state.
The re1atiue differences among varieties of kinks and
polarons are interesting. More importantly, qualita-
tively new phenomena can be introduced by e-e in-
teractions, if not in (CH)„, certainly in other conju-
gated polymers: for example, excitons [or more gen-
erally exciton-polarons; c.f. the electron-hole bipola-

I.O

hC

X
0.5CU

I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
(u /6

FIG. 10. Mass of a polaron in units of twice the kink
mass as a function of coo. (Calculated in an adiabatic
approximation —see Ref. 34.)

ron (n + —n = 1)], recombination barriers, and
"negative U" states [sometimes called bipolarons
but referring tp confinement in the presence of e-e
interactions rather than the energy nondegeneracy of
model (2.16)]. The strong exciton observed ' in the
band gap of certain polydiacetylenes may serve as an
example. The roles of impurities, crosslinks, chain
defects, etc., as pinning or scattering centers are also
unassessed here. A variety of (inhomogeneous)
line-broadening effects can be expected; we have in-

cluded an example of phenomenological broadening
in the absorption spectra shown in Fig. 8, which is
representative of experimentally observed spectra.
The smearing of the interband optical-absorption
edge, for example, is outside the range of our present
calculations. This could be introduced by including,
for example, a finite concentration of inhomogene-
ously distributed (kink or polaron) defects, inter-
chain coupling, or e-e interactions. Finally, we have

neglected any relaxation channels for excited elec-
tronic states achieved through optical transitions. A
key point here is the validity of our adiabatic as-
sumptions which determine relaxation time scales
and the nature of sideband frequency structures.

Some of the effects described above, especially if
they destroy the important symmetries of the basic
Hamiltonian (2.1), can remove the relationships
(weights, locations) among the three absorption
components in the gap described in Secs. III and IV.
Nevertheless, the results outlined are sufficiently
rich and novel to be a suggestive first approximation
to the optical absorption in (CH)„.

In conclusion, we wish to reiterate the reason for
our preoccupation with polarons (and excitons} in
conjugated polymers. Trans-(CH)„ is unusual in
possessing degenerate ground states and therefore
"free" kinks. A unique ground state with additional
metastable conformations is the much more typical
case (e.g., polyparaphenylenes, polypyrroles, polydi-
acetylenes). Experimental observations show that
these circumstances do not necessarily preclude
large conductivity increases under light doping, but
theoretically they do exclude free kink solitons.
Thus polarons and excitons (and combinations of
these), although more familiar than kinks (with their
unusual spin-charge assignments), are more generic;
they do not even require a double-well structure at
all. In the developing effort to understand a wide
class of conducting conjugated polymers, the role of
polarons is likely to be central. Furthermore, the
theory of polarons and excitons in quasi-one-
dimensional systems (i.e., a mixed diffusive-hopping
environment) is incomplete, challenging, and, in
view of new materials interests, wholly relevant. As
we have seen, the model considered in this paper has
certain special properties relevant to the structure of
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(CH)„; some generalizations are necessary to encom-
pass the full spectrum of conducting polymers, but
the concern with polarons and excitons in anisotro-
pic environments is quite general.
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In this Appendix we collect and make explicit a
number of technical details needed in the calcula-
tions described in the text. We begin by discussing
the consequences of the "charge-conjugation" or
"electron-hole" symmetry of the continuum
electron-phonon-coupled equations (2.3). This sym-
metry is that, given a solution Un, V„with energy
en, one can find a solution U „,V „with energy
—e„simply by the replacement

U „=iV„,
V „=—iU„.

(Al)

The proof is by straightforward algebra.
In terms of the functions f~ = U+i V introduced

in the text, this symmetry is even simpler and reads
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bra)

V+ =ko —2Kovpsech [Ko(y +yo)]
Sch 2 2 2

(A5)

Considering the factor v~ associated with the y scale
of (A5), we recognize V+" as the well-known reflec-
tionless Schrodinger potentials having precisely one
bound state. Thus, in a sense, the f+ reveal in a
more familiar way the solitonlike structure underly-
ing the polaron solution in (CH)„. At a more tech-
nical level, (A5) shows directly that for the polaron
the f+ involve only functions of (y+yo), respective-
ly, and hence motivates the simple structures of the
explicit forms of the bound state and continuum f+.

From the general discussion of the optical absorp-
tion in the text we know that the relevant matrix ele-
ment for a transition between an initial state k and a
final state k' can be written

Mk'k 2 f dy[f+(k')f (k)+f' (k')f+(k)) .

(A6)

For the polaron, there are six classes of transitions
with the six matrix elements: M+p p, M, +p,
M+p „M p „, and M, +„. Here, we have used the
notation c (v) for the conduction- (valence-) band
state and +0 ( —0) for the positive- (negative-) ener-

gy band state.
With the use of the "particle-hole" symmetry

equation (A2), it is straightforward to establish rela-
tions among certain transitions. Specifically,

M,'o= , J (f'-f"+f' f")d~

, 1 ( —fif f"—f+')dV—

, I (f"—f+'+f+'f")4--
f( —n) +f(+n) (A2) po= —M p„t (A78)

Clearly, this symmetry applies to both continuum
and discrete states.

Apart from this simplification of the particle-hole
symmetry, f+ are useful because, from the Dirac
equations (2.3), they satisfy more familiar
Schrodinger equations. From (2.3) it follows direct-
ly that

2

vF f+ +—6 +vF f+ =conf~
d (n) 2 dk (n) 2 (n)

dp dp

and

M, () ———,J (f+f +f' f+')dy

, f (f+'—f"++f+'f")"&--
P~= —M+p „. (A7b}

(A3)

so that the Schrodinger potentials relevant to f+ are

Vsch (A4)
dg

In the case of the polaron, using the explicit form of
LP(x) given in (2.9a), (A4) becomes (after some alge-

Since only ~M
~

enters in a, we see that (A7a)
implies a, p

——a p „=—aP and (A7b) implies
P P (3)

(t 0=(zo „=(zp (see Fig. 5), where we have intro-(2) '
~

duced the simplified notation we use in the text.
Thus there are only four independent matrix ele-
ments to evaluate. Let us first consider the three
transitions involving the localized levels.
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P1. M+p p

From (A8) we have

M = , f—(f+f +f+ f )dy . (A8)

Using the explicit forms of f+ from Eqs. (2.12) and
(A2}, we find directly

P 16i Ko
Mp p = f dy sech[Kp(y +yp)]

iiG

G~i Imy = 0

G&i Imy = -a/Ko

Xsech[Kp(y —yp)] . (A9)

The integral in (A9) is the k ~0 limit of the Fourier
transform

FIG. 11. Contour of integration in the complex y plane
(see Appendix).

00

I]= dy e' sech Kp y +yp

Xsech[Kp(y —yp)]

dy e
(A 10)—~ cosh(2Kpy)+cosh(2Kpyp)

which can be obtained either from the tables or
directly by contour integration along the contour
shown in Fig. 11. The result is, recalling
sinh2Kpyp =KpvF /ci)p,

460(gpI, =
KpVF

which leads to the expression in the text

M+p p =2l co+p/vF
P (1)for a+p p=ap .

P2 Mc+o

From (A6) we have

(Al 1)

(A12)

M., +p = , f dy'(f p+f—+'+ff f+')--
=4iNi (k)N~ f dy e '@ y(k) i tanh[—Kp(y —yp)] sech[Kp(y+yp)]

Kp

k
+@~(k) —i tanh[Kp(y+yp}] sech[Kp(y —yp)]

Kp
(A13)

where in the second equality we have used the explicit form of the f+ from Eqs. (2.10).
Again the integrals can be evaluated using the contour shown in Fig. 11. We find

f dy e '@sech[Kp(y +yp)) = f dy e '@sech[Kp(y —yp)] =e+' ' sech
Kp 2Kp

(A14a}

and

f dy e '@tanh[Kp(y —yp)]sech[Kp(y+yp)]= — f dy e '@tanh[Kp(y+yp)]sech[Kp(y —yp)]

1 m wk o —iky0 +iky0
(A14b)

To derive these expressions we have used the results tanh2Kpyp ——Kpgp and sech2Kpyp=~p/Qp [see Eq.
(2.9b)]. Further, the correctness of the relations ainong the integrals shown in (A14) can be verified directly by
a change of variables. Using these relations we see that
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P(k) =f dy i t—anh[Kp(y —yp)] sech[Kp(y+yp)]e
k

Kp

f dy i—tanh[Kp(y+yp)] sech[Kp(y —yp)]e
Kp

and thus that

M, +p 4iN——p(k)Np[y(k)P(k}+y*(k}P (k)],
where from (A14) and (A15)

P(k) = sech [[kvp+i(kp cop)—]cos(kyp)+[iicvp (hp—+cop)]sin(kyp) J .1 m. mk

0VF 0 0

Using (A17) and the expression for y(k) from (2.6b), we obtain finally the result quoted in the text,

P p 7T 77k ~k 0 kVF
M, +p 4iNp(k——)Np sech sin(kyp)+ cos(kyp)

0 0 0 &k —~0

3. Mc, —o

From (A8) we have

M., -o= — dx P+

=4iNp(k)Np f dy e '@ —y(k) i tanh—[Kp(y —yp)] sech[Kp(y+yp)]
Kp

k+y*(k) i tanh[Kp(y+yp—)] sech[Kp(y —yp)]
Kp

(A15)

(A16}

(A17)

(A18)

(A19a}

{A19b}

From the previous discussion and definitions we see that this can be written as

M, p
——4iNp(k}Np[ —y(k)P(k)+y (k)P*(k)],

which, after some algebra, leads to the explicit result used in the text

(A20a}

r

0 0 0

kVF
sin{kyp }—cos(kyp)

&k —~0
(A20b)

We turn next to the matrix element —M, ,—which determines the interband transition in the presence of the
polaron. From (A8} we have

M, „=, f dx(f—pt.fp +fp fpi) (A2la}

I

= —4l'Np (k )Np (k '
}f dy e P y( k '

)y( k ) —ti
Kp

k +it+
0

+@+(k')y'(k) —it+
k'

0

k
K

+"-
0

(A21b)

(A22a)

with

where k'(k) is the wave vector of the state in the conduction (valence) band and we have used the abbreviations
t+ =tanh[Kp(y+yp)]. It is convenient to write this as a sum of three terms

Mc, u
=M i +Mp+M3,
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and

M) —— 4i—Np(k)Np(k') f dy e " "'
z +1 [y(k')y(k)+y~(k')y~(k)],k] k'k

0

M — 4i—N (k)N (k') f dy e ' k) . y(k')y(k)k' y—(k')y (k)k
Kp

y(k')y(k)k —y (k')y*(k)k'
Kp

M3 —— 4iN—p(k)Np(k') f dy e '" "'«(t+t —1)[yak')y(k)+y~(k')y~(k)] .

(A22b)

(A22c)

(A22d)

The y integration in (A22b} simply gives a 5 function; note that 2m 5(k k}=—L5k k is the relation between the
continuum and discrete 5 functions. For the other integrals we find

+2yp, k =k'
f dy e " "'"tanh[Kp(y+yp)]= . ,+.(k,' —i ~ exp'. —&

— 3'p 3 k'~k
Kp sinh[(k' —k)n /2Kp]

(A23a)

where for k &k the integral is regulated by continuing appropriately into the complex y plane and then in-
tegrating by parts, and

sin[(k' —k)yp]f dy e "k ")«[tanh[Kp(y+yp)]tanh[Kp(y —yp)] —1 j = —2m
Kp p Kpsinh (k' —k)w/2Kp

where we have again used the contour in Fig. 11.
Using these results, we obtain for M&

k +ECp
M) —— 4iNp{k)— z 2Re[y (k)]L5k k .

0

Mg —— 4iNp(k)Np—(k')«7T 1

Kp sinh (k' —k)m/2Kp

Here we have used the 5 function to set k'= k in the prefactor. For Mq we obtain, for k'&k,

k' —k
j 2Re[y(k)y(k')] j cos[(k' —k)yp]

Kp

(A23b)

(A24a)

k' —k
j 2 Im[y(k}y(k')] I sin[(k' —k)yp], (A24b)

Ep

whereas for k'=k where M~ and Mq are independent of L. Explicitly,

Mz ——32iNp{k) yp[lmy(k}]
0

Finally, for M3, we find

M3 ——16iNp(k)Np(k')Re[y(k)y(k')]

sin[(k' —k)yp]
X

Kpgp Kpsinh[(k' —k)n /2Kp]

(A24c} M) ——i hp/ek

and for k&k', Mq is given by

KpUF

Kp sinh[(k' —k)m /2Kp]

C) [iI)psin[(k' —k)yp]

(A26a)

P 1
M, „= M, bkk+ —M,L

(A25)

Using the explicit forms for y(k) and Np(k) we see
that the full interband matrix element can be writ-
ten, after some algebra, as

——,(k' —k)upcos[(k' —k)yp] I

—Cz upsin[(k' —k)yp]
(k+k')

2

(A26b)
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where

C = 1 1
ii

(~ e )1/2 (k~ 2v2+K2 2)l/2

1
X

(k2 2+K 2 2)1/2

Ci V (ek' ~0)(ek ~0)

+(ek'+ ~0}{~k +~0}

C2=9 (ek' —~0)(ek+~0)

+V (ek'+~0)(e'k —~0) ~

and for k =k', M2 is

(KOVF }yo
M2= —4l

2 2 2 2 6k .
KpUF+k VF

(A26c)

Froin Eqs. (A25) and (A26) we can obtain directly
the forms of the squared matrix elements used in
Eq. (31).

We turn next to two technical points necessary to
obtain the terms of O(1/L) correctly in the inter-
band optical transition. From (A25}—or {3.13}—we
see that

IM, ,„ I'= IM1I'+ —(M1M2+M1M2} 6k ,k'
L

+, IM2 I'
L2 (A27)

kL +Pp(k) =2nm, . (A28)

with ((}p(k)=2tan '(Ko/k) being the phase shift
due to the polaron. Hence from (A28) the density of
states for the continuum, dn/dk, is given by

The first item in (A27)—
I Mi

I
5k k—is, as shown

by (A26a), clearly O(1), whereas the second is
O(1/L). Thus to include all terms of O(l/L)
correctly, we must notice that for finite L both the
density of states over which we integrate in k space
and the normalizations of the continuum wave func-
tions have O(l/L) corrections. Both these correc-
tions must be applied to the

I
Mi

I
terms in (A27).

To motivate the correction to the density of
state —often called the "phase-shift correction"—
we notice that for discrete k the density of states in
the presence of the polaron is determined by

discrete sum to the continuum integral in (3.1).
The correction in the normalization factors fol-

lows straightforwardly from the form of the contin-
uum fi in {2.10). Using (2.10) with the infinite
L normalization Np(k) replaced by a (to be deter-
mined} finite L factor Np(k), we see that the nor-
malization condition

1=-, f „,If+ I'+ If I'dy-
in our standard notation and implies, using2= 2t+ —1 S+)

I Np I
I./2 2(k +Ko)1= 8Iy(k)I dy

p

2 2—s+ —s

2(k +KG) 4=4INp(k)
I

Iy(k) I2
2

L-
Kp Kp

(A31)

where the last equality is valid to within exponential
corrections in L. Thus to leading order in 1/L,

INp(k)I = INp(k)I 1+
2Kp 1

K'+k' L

{A32}

Since
I
M, „ I

is proportional to
I
Np(k)

I I
Np(k') I, the full (1/L) correction due

to normalization is twice that shown in (A32).
As a last comment on theoretical absorption from

polarons, we note that all the above formulas have
been calculated as functions of Kp and cop. In view
of our discussion in Sec. II, this means that they ap-
ply immediately for polarons in cis-(CH}„;one need
only use the appropriate values of cop and Kp deter-
mined by Eq. (2.17).

Finally, for clarity and completeness, we derive in
our conventions the optical absorption for {1) the
dimerized ground state, (2) the localized state associ-
ated with a kink, and (3) the interband absorption
associated with a kink. For the dimerized case,
h(y) =60, the wave functions f'+" are given in (2.6b).
Thus the interband matrix element for the dimerized
case is, substituting (2.6b) into (A6) and using the 5
function resulting from the y integration to set
k'=k,

dn L 1 dip(k)
dk 2~ L dk

2Ep
1——

(A29)
)&2 Re 1— lkUF

&k —~p

Mg y 2 I Nn I
( 4i)

L&a,k

This explains the factor used in going from the =+{1~0/ek Nk', k i (A33)
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as one could have anticipated from (A26a). The op-
tical transition amplitude, from (3.1), is, since

e(kf ) =eh = —e(kt),

ko ~o ~o2
cz, „(co) =An~ 2

—g 2 5(co 2—eh) .
k ~a

Changing the sum to an integral using the appropri-
ate (free) density of states gives

+UF L
cd (co}=An ) 2 L CO 277

Q2
dk k' '+4'

'2
2hp

a, „(co)=A—,nt 2
(

2 4i)2)1/2
(A35}

In the case of the kink, as a consequence of the
particle-hole symmetry, the transitions involving the
localized level at cop

——0 obey a, p ——ap „=a~ (the
notation in the main text). To calculate a~ we use
the kink results for the wave functions f+,ftc+ as
given by (2.7b) and (2.8).

From (A6) this yields
' 1/2

Mp „——— e' sech —dy A36a
ko

or, using (A14a),

)& 5[co—2(k oUF +b,p}' ], (A34)
' 1/2

t 40
M =—n

2 L
srkgo

sech
2

(A36b)

which, upon integrating using the 5 functions, yields

the familiar result' ' Hence, going immediately to the continuum form,

ko ~o I. sr' ko, ~kko
CEg =A7l1 2 L co 2m. 4 L

dk —sech2
2

5(co—ek )

sr' Co
1,2 4 2 2 1/2 Sech

4 L (co —Qo) 25p
(A37)

which is the result quoted in the text.
The interband transition in the presence of the kink can be calculated in the same manner as for the polaron.

Equation (A6) together with the appropriate wave functions ft'c'+ (2.8) yields

L/2
M, „= 2, 2, ( i)J —dy e'k k '" (1+k gp)'/ tanh —+ik'gp

+ (1+k' g }' tanh ~ —ikgp
p

pm. 1 1 1

( 1 +k 2g2)1/2 ( 1+k' 2g2) &/2 sjnh[(7I/2)(k —k~)g ]
+ , k@k'

0, k =k'

(A38)

where we have used (A23a) again. We arrive at the same form for the matrix element as Kivelson et al. '

without using the special boundary conditions for the kink. As discussed in the main text it is obvious from
the k dependence of M, „(A38) for k —k'~0 that special care has to be taken in summing over a11 k. Since
this is done in detail elsewhere' we do not repeat it here. We want to stress that the kink boundary conditions
are necessary only for the k integration, not for obtaining the matrix element (A38).
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