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Using recent results on a model relativistic field theory, we find explicitly a new solitonlike

solution, essentially the conventional strong polaron, in the continuum interacting electron-

phonon model of a Peierls-dimerized chain such as polyacetylene [(CH}„].This solution is in

good agreement with recent numerical simulations in a discrete model of (CH)„. %e discuss

further areas in which known field-theory results may apply to (CH)„.

Theoretical models' of solitons in polyacetylene
have ranged from discrete lattice Hamiltonians'
through continuum interacting electron-phonon
theories to phenomenologically motivated P
Landau-Ginzburg-like descriptions. 7 Apart from the
crucial questions of interpreting observed experimen-
tal phenomena in (CH)„ in terms of any of these
models, ' it is of clear importance to understand the
relations among them. In the present Communica-
tion we use the perhaps unexpected source of model
relativistic field theories to illustrate a number of
links among the various models and thus clarify both
the nature of possible soliton excitations in (CH)„
and the relative consistency of models used to
describe these excitations. In particular, we establish
the existence, within the continuum electron-phonon
model, of a localized, solitonlike excitation additional
to, and qualitatively different from, the amplitude
"kink" solitons previously discussed. ' These addi-
tional solitons, which are in essence conventional
(strong) polarons, have very recently been seen in
numerical studies of lattice models. 9

In the continuum electron-phonon models, 4 5 a se-
quence of controlled approximations leads to a set of
(adiabatic mean field) equations for the single-
particle electron wave functions, %"„,of energy e„,

e„q„(x)= iuFo3+4(x—)ai q'.„(x), (la)8

and a "self-consistent" equation for the (real) gap
parameter 4(x) —which is directly related to the stag-
gered displacement in the lattice model—

2

a(x) =
2OJg n s

Here cr; is the i th Pauh matrix, the two-component
(unit-normalized) spinor 0„ is defined by
4„—= (u„', v„"), and ru / o2dgescribes the net effective
electron-phonon coupling. The Fermi velocity, vF,
satisfies vF ——Wa/2 —units ir =1—with %the full

bandwidth [=10eV for (CH)„1 and a, the undistort-
ed lattice spacing (=1.22 A). For undoped (CH)„
the summation in (lb) is over the two spin states-
for simplicity, the spin labels have been suppressed
on 4„—for each energy level (n) in the valence
band, i.e., up to the Fermi level, chosen to be zero.
%e note that in the continuum Hamiltonian which
leads to (1) the kinetic energy of the phonons —a
term proportional to (85/Br)' —has been dropped.

Two solutions to Eq. (1) have been explicitly dis-
cussed" in connection with (CH)„. First, the
constant-band-gap solution has h(x) = Ap [=0.7 eV
for (CH)„] and leads to a single-electron energy spec-
trum e(k) = +(k2vF2+ Ap2) 'i2.4 This corresponds to
the uniformly dimerized ground state of (CH)„. For-
mally stated, this dimerization reflects the dynamical

symmetry breaking of the apparent 4
0 3 I invariance of the original Hamiltonian and

equations of motion. The relation between the band

gap hp and the full band width W is 4p = K
x exp( nvFc»g—/g ) The s.econd solution, often re-
ferred to as the soliton in (CH)„, ls 4(x)
=bptanh(x/gp), with gp= vp/Ap= Wa/(2hp),
describes an amplitude kink or domain wall which
connects the two degenerate 4 = +bp ground states.
A crucial feature of this solution is the presence of
the "midgap" single-electron state, with ~=—sop =0;
this electronic state can be unoccupied, singly occu-
pied, or doubly occupied, correpsonding to solitons of
charge +e, 0, and —e, respectively. Note that the ad-
dition of an electron —or the removal of one, to
create a hole —to the valence band modifies the sum-
mation in Eq. (lb). Equations (1) actually permit a
third solution, which has not been previously dis-
cussed explicitly. 'p Our knowledge of the existence
of this solution comes from the recognition of an ex-
act equivalence of (1) with the static, semiclassical
equations" of a recently studied relativistic field-
theory model. Although we cannot discuss here the
equivalence iri detail, we note that the relativistic
theory —the "Gross-Neveu" (GN) model" —is
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described by the Lagrangian density

Z(x) = X%~ (x) iy„, qr' '(x)
a 1 ()X~

~ —()—gowo. (x) X e' (x)e' (x) ',——i'r(x)
a 1

(2)

tions (and their interactions) in a unified manner.
The explicit form of the polaron solution has 4(x)

given by

(KpliF)5(x) = kp —KpvF(t+ —t ) = kp — s+s
Mp

(3)

involving Nfermion fields qi' (x), a=1, 2, . . . , N
and an auxiliary boson field o (x). The exact
equivalence holds between (1) and the N =2 static,
semiclassical equations" which follow from (2). The
new solutions to (1) have a single-electron spectrum
with two states symmetrically placed in the gap at
6f = +Mp and exist only when there is a single un-
paired electron-. beyond those in the valence band-
occupying the e+ state (the iocalized "electron"
state) or, equivalently, when the e state is only sing-
ly, rather than doubly, occupied (the localized "hole"
state). Since the electron (hole) is trapped in a struc-
ture generated by its coupling to phonons, this excita-
tion is polaronlike. ' That the continuum model ad-
mits both polarons and amplitude kinks should prove
useful for studying these particlelike nonlinear excita-

up(x) Np[(1 —i )s++ (1+i )s ]

lip(x) Np[(1+i)s~+(1 —i)s ]
(4)

The negative-energy bound-state wave functions fol-
low from (4) by the transformations u~—= u],f~ flip

= vp and v~ —li], = —up. The negative-energy

valence-band continuum states are

where

KpuF = (4p —iup)' ', t+ —= tanhKp(x +xp)

sg —= sechKp(x +xp)

and xp is determined by tanhKpxp = Kplir/(Ap+ «ip).
For the e+ bound-state wave functions one has, with
Np=Kpt /4,

u (k;x) =Nk'e' [( i«+6 p
—kvF) —y(1+i) t++8(1 —i)t ] (Sa)

an.d

v (k;x) =-Nk'e' [(«)h+p+k v) F—y(1 —i)t++5(1+i)t ] (5b)

~here

~ = (k'v'+ 5') '"

1y=—
2 xpvF 1— lk QF

M —kp

and

OJ —Ap

2 2lr «i(k vr+Kplir)

' 1/2

By direct calculation, one can verify that these forms
for u and v satisfy the electron part of the continuum
equations (1) for any value of ipp in 0 & Q) p & lip.

However, only for the specific value «ip = Kpvr = /sp/J2
is the self-consistent gap equation for h(x) also satis-
fied. A detailed discussion will be given elsewhere.
The form of the polaron solution and its compar-
ison' with the amplitude kink are shown in Fig. 1.
From (3) we deduce the characteristic width of the
polaron as

2xp Wa /(d pv 2) ln(&2+ 1) 1.24(p

where fp is the kink width parameter. The value of
h(x) at the central "depression" is hm;„= d (0)
= d p( J2 —1). Finally, the energy of the polaron is

I

E = (2&25«)/m -0.90hp, so that its binding energy
is 0.10 hp [=0.07 eV for (CH) ]. All these numbers
are in good agreement with the very recent numerical
results on electron injection in the lattice model of
(CH) „.9 Since the lowest level in the dimerized con-
duction band has E;„=4p and placing an electron
into a kink-antikink (EE) pair-recall that topologi-
cal constraints require kinks to be produced in
pairs —requires E;„=2(2hp)/lr, the polaron is the
lowest-energy state available to a single electron.
Hence such states may play a role in specific types of
doping in (CH)„may provide "doorway" states to
KE pair production and annihilation (e.g., in photo-
generation experiments), and may prove crucial in in-
terpreting tunnel injection experiments. In addition,
polaron transport studies should be undertaken.

Elsewhere, we shall pursue these and other physi-
cal implications of polaron states in (CH)„. Here we
turn now to several other illustrations of implications
from field theories for models of polyacetylene.
First, consider the relation of the continuum
electron-phonon model to the phenomenological $4
theory, the applicability of which for (CH) has been
questioned5 because the ground-state energy's depen-
dence" on dp [E(dp) = dp2lnhp'] and strong nonlocal-
ity suggest that the Landau-Ginzburg expansion
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motivating the P4 theory must fail. Yet, the qualita-
tive successes of the $ model remain and, in fact,
can be somewhat clarified by referring to known
qualitative similarities, at the semiclassical level,
between the GN model-which is structurally similar
to the continuum (CH)„model-and the @4 field
theory, coupled to fermions, with Lagrangian density
(f constant)

~(x) =-,'(a„@)(e~y)——,
' ~(4t'-f')'

+ X+ (x) iy„g@e (x) —. (6)
N~$ gX~

Among the similarities between the GN and $4
models which are already known to have counterparts
in the (CH)„comparison are that both GN and P4

theories have (i) spontaneous symmetry breaking in
the ground state, in $~ from the explicit $ =+f &0
minima of the meson potential and in the GN model
from the dynamical effects of fermions which lead to
an effective potential containing the term V(o)—cr'incr, " in direct analogy to the full electron-
phonon result" for (CH) „;and (ii) topological soli-
tons (kinks) and, when fermions are coupled to P",
"midgap" states (&os =0) with unusual spin-charge

FIG. 1. A comparison in the continuum electron-phonon
model of the gap parameter b, (x)-solid line-for (a) the
new "polaron" excitation and (b) the previously known
"kink" excitation. The vertical scale is in eV, the horizontal
in A. The dashed lines indicate plots (in arbitrary units) of
the electron density Ip(x) ] in (a) the "bound state" (r»s ( 4s)
and (b) the "midgap" state {~p=0).

assignments. ' Further qualitative parallels, not pre-
viously noted in the context of (CH)„, are (i) that
both GN (Ref. 14) and $4 (Ref. 15) models have
"polaronlike" solutions; and (ii) in the limit that
N—the number of different fermion fields—
approaches infinity, the $ (with fermions) and GN
models become formally equivalent. ' An immediate
consequence is that the $' model in (CH)„, without
explicitly including valence-electron effects, does con-
tain the polaron we have found in the continuum
electron-phonon model. In solid-state language, the
@' potential is imitating the effects of the valence-
band electrons.

Field-theory models also suggest new and possibly
important effects in (CH) „. First, JCE scattering in

qh theory is known to have a very interesting reso-
nance structure in the intermediate-velocity region. '

The implications for transport and soliton lifetimes in
polyacetylene —and the question of its persistence in
more fundamental models of (CH)„—are being stud-
ied. Second, analytic studies of the semiclassical GN
equations" and recent numerical investigations" of
@~ have revealed time-periodic, spatially localized
"breatherlike" solutions in both theories. It is thus
natural to speculate that similar excitations may exist
in (CH)„, although these will have to be sought nu-

merically, because of the absence in the GN model of
a term comparable to (86/Bt)' in the full (CH)„
continuum Hamiltonian. Finally, we note that all the
theoretical models we have discussed have been
treated in the adiabatic mean-field approximation.
The fully quantum theory of (CH)„ is only now be-
ginning to be studied. ' Here again a comparison to
relativistic field theory models, although not con-
clusive, proves provocative. Recently, the fully
quantum GN theory has been (partially) solved. For
arbitrary N, the exact quantum S matrix's (and hence
the particle spectrum) has been found. For N =2, it
is known that only kinklike excitations exist'; nei-
ther polarons nor breathers remain in the fully quan-
tum theory with exact GN dynamics. "'p Of course,
this result cannot immediately be translated to poly-
acetylene, because the phonon kinetic energy term
(8/t. /Bt)' in the full continuum (CH) Hamiltonian
has no counterpart in the GN model. Nonetheless,
this result underscores the importance of the (diffi-
cult) task of studying the fully quantum theory of
(CH) „and of continuing the emerging dialogues'~ on
nonlinear excitations between field theory and solid-
state physics.

afore addedin proof Since the subm. ission of our
manuscript, work by S. A. Brazovskii and N. N. Kiro-
va describing similar results has appeared [Pis'ma Zh.
Eksp. Teor. Fiz. 33, 6 (1981) and (unpublished)].
These authors obtain the polaron solution for both
traris- and cis- polyacetylene. Insofar as the'results of
our two groups overlap, they are in completi'. agree-
ment.
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