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ABSTRACT

Using recently developed dynamical models of pion condensation, we reconsider the analysis
of Bahcall and Wolf, who showed that the existence of free pions in neutron star interiors could
stimulate neutron fB-decay and thus increase dramatically the rate at which these stars cool.
Although the actual pion condensate is quite different from the free pions assumed by Bahcall
and Wolf and although the stimulated S-decay process is also different, our final results for the
luminosity arising from this mechanism are very similar to their earlier predictions. We indicate
the manner in which the pion condensate enters into the complete scenario of neutron star cooling
and discuss several questions which must be resolved before the full cooling process can be known

quantitatively.

Subject headings: dense matter — nuclear reactions — stars: neutron

I. INTRODUCTION

In 1965 Bahcall and Wolf demonstrated that the
existence of free pions in neutron star interiors could
dramatically increase the neutron star cooling rate via
neutrino emission over the rate predicted in the
absence of pions (Bahcall and Wolf 19654, b, ¢).
Among other reactions, hey considered ordinary

B-decay,
n—>p+e +7, ()
the “modified Urca process,”
n+n—sn+p+e +7,, 2
and the pion-induced B-decay,
n+#"—>n+e +v,, 3)

where the interactions of the pions in the medium
were essentially ignored and the pions were assumed
to have zero momentum. For neutron stars with
temperatures in the range T ~ 10°-10'° K, Bahcall
and Wolf showed that reaction (1) cannot proceed
essentially because of Fermi-Dirac statistical factors
and that reaction (3) offers a substantially more
efficient cooling mechanism than does (2). Specifically,
for a neutron star of roughly 1 M, and having con-

* Work performed in part under the auspices of the U.S.
Energy Research and Development Administration contracts
E(11-1)-3001 and E(11-1)-2220.
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stant density equal to nuclear matter density, they
found the luminosity due to (3) to be

L™ ~ (10*5 ergs s 1) (;—Ii’) (%)TQG . 4
b

Mo

Here n, and n, are the pion and baryon number
densities in the neutron star interior and 7T, = 7/10° K.
This result includes a factor of 2 to account for the
reaction inverse to (3),

©)

n+e —-n+a" +v,,

and another factor of 2 to account for reactions
involving muons instead of electrons.

The luminosity shown in (4) is 107/Ty? times larger
than that arising from the modified Urca process (2);
thus neutron stars containing free pions would cool
much more rapidly than those without pions. Indeed,
Bahcall and Wolf showed that the effective surface
temperature, T,, of a | My neutron star with (n,/n,) = 1
drops below 10° K in a matter of days as compared
to 3 x 10° years for a star with n, = 0.

At the time of their calculation, Bahcall and Wolf
emphasized that there was no proof that pions would
exist in neutron stars and further that the calculation
based on assuming ‘quasi-free”” pions should be
regarded as indicative rather than definitive.

In light of recent work demonstrating the probable
existence of condensates in neutron matter at neutron
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star densities,! it is of considerable interest to recon-
sider Bahcall and Wolf’s results on neutron star
cooling. In the remaining sections of this article, we
study in some detail the effects of realistic pion
condensates on neutron star cooling. In § IT we review
briefly the salient features of ordinary and pion-
condensed neutron star matter. Section ITI shows how
the chiral symmetry approach, as used by Campbell,
Dashen, and Manassah (19754, b) and Baym et al.
(1975) (hereafter referred to collectively as BCDM),
provides a simple solution to the problem of B-decay
in the presence of a pion condensate. Our results
demonstrate that, although several aspects of Bahcall
and Wolf’s calculations are changed, their prediction
for the luminosity is remarkably unaltered. In §IV
we discuss the full problem of neutron star cooling
and indicate several questions which must be resolved
before the cooling process can be described completely.
Although the article is generally self-contained, for
comparative purposes it is deliberately patternied after
the pioneering work of Bahcall and Wolf.

II. PION CONDENSATES IN NEUTRON STAR MATTER

In this section we review those features of ordinary
and pion condensed neutron star matter which are
essential to understanding possible neutrino cooling
mechanisms.

The normal ground state (T" = 0) of neutron star
matter is presumed to be an electrically neutral
mixture of neutrons, protons, and electrons® in
equilibrium under the normal B-decay process (1).
Since the average baryon density in neutron star
matter is on the order of nuclear density (py,, = 0.17
nucleons fm~3), both the nucleons and the electrons
are highly degenerate. From the condition of j-
equilibrium we see that the chemical potentials of the
degenerate species satisfy®

u(n) = u(p) + pe). Q]
Further, charge neutrality implies
n(e) = n(p), (N

and hence the Fermi momenta of the electrons and
protons are equal,

kx(e) = kz(p) . ®)

Estimating the values of the Fermi momenta in the

! For example, Migdal 1973; Sawyer and Scalapino 1972;
Kogut and Manassah 1972; Hartle, Sawyer, and Scalapino
1975; Migdal, Markin, and Mishustin 1974; Au and Baym
ig;g, Campbell, Dashen, and Manassah 1975a, b; Baym et al.

2 If the chemical potential for negative charge is sufficiently
large (u > m, =~ 100 MeV), then muons will also be present.
Although for simplicity of presentation we ignore muons in
tlflfis discussion, we shall later indicate how to include their
effects.

3 This result assumes that the antineutrinos are non-
degenerate.
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noninteracting gas model yields (Bahcall and Wolf
1965a, b, c)

kg(e) = ke(p) = 0.25kg(n) ~ 100 MeV/c  (9)

for densities in the range (1-3)p,u.. Thus the electrons
are ultrarelativistic and the nucleons nonrelativistic.

The existence of neutron Fermi energies on the
order of hadronic mass differences suggests that the
actual ground state of neutron star matter might
contain hadrons other than neutrons and protons. In
particular, the large difference

ke(n)*  ke(p)®
2m 2m

X 100 MeV = 3m, (10

at p = pp,. indicates that at slightly higher densities
negatively charged pions might appear in the ground
state via, for example, the reaction

wn) — p(p) =

n—>p+ 7. (11)

If they did appear, such pions would condense (at
T = 0) in the lowest available energy state.

Precisely these considerations led Bahcall and Wolf
to consider the effects of a condensate of free pions on
neutron star cooling. However, as Bahcall and Wolf
were careful to emphasize, a realistic study of the
effects of pion condensation requires a detailed analysis
of the strong interactions of the putative condensed
pions with the neutron star matter. Recently, a number
of authors, using a wide range of approaches, have
studied this problem.* Their results support the
qualitative conclusion that at densities in the range of
those found in neutron stars, neutron matter undergoes
a phase transition to a ground state containing a pion
condensate. Assuming the pions to condense in a
single mode with energy-momentum given by
(E = u, k), where p is the 7~ chemical potential (Baym
1973), the quantitative results of these various authors
are roughly consistent with®

(P)cric X (1-5_3)Pnuc ~ 2Pnuc s (123)
Wers & (1-3)m,; ~ 2m, ~ 250 MeV, (12b)

and
(k)crit X (2—4)mn ~ 3m,, ~ 400 MCV/C s
(12¢)

where the subscript “crit” refers to the value at the
threshold of the phase transition and the values in the
last column are the values we use.®

4 See n. 1.

5 Differences of a factor of 2 here will not alter our qualita-
tive conclusions.

5 We take here a rough average of the values found in the
references listed in n. 1. Hence these results differ slightly
from those in the ¢ model discussed later. These differences
are a reasonable indication of the theoretical uncertainties in
the parameters.
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To describe the pion condensed state more explicitly,
we must adopt a specific formalism for treating the
strong interactions in the neutron star matter. We
shall follow an approach based on the observed
approximate chiral SU(2) x SU(2) symmetry of
low-energy =N interactions (BCDM), because, as we
shall see, this formalism is particularly suited for
calculating B-decay in the presence of a pion conden-
sate. Although many features of this chiral symmetry
approach can be formulated in a model-independent
way (Campbell, Dashen, and Manassah 1975a, b), for
simplicity we shall discuss the problem in terms of the
linear model, which in addition to the nucleon
N = (p, n) and pion, contains a ¢ meson. It is impor-
tant to note that the most significant phenomenological
omissions of this simple model—(1) the exclusion of
the N*(1238) and (2) the neglect of short-range
repulsive nuclear correlations—produce effects which
essentially cancel each other over the relevant range
of parameters.” Thus the model containing only #, p,
a, and o is quite adequate for our purpose.

Let us briefly summarize the results of the model
which are needed for the present calculation. The
simplicity of the chiral symmetry approach hinges on
the relation of the macroscopic pion condensate field,
for which we take the Ansatz®

{oy = f,cos 8,
{m*) = (my & img) = frexp (+ik-x)sin b,
{mop = (mgy = 0 13)
to the normal vacuum state in the ¢ model, in which®
oy =fz, mp=0  (=123. (14

Here f, = 94.5 MeV is the pion decay constant. From
the standard SU (2) x SU (2) transformation laws
for o and =%, it is easy to see that the fields in (13) are
simply chiral rotations of the fields in (14). Specifically,
rotating the fields in (14) with

U= exp (—ik-f xd3xV3°) exp (+i0,50) (15)

yields (13) (BCDM). It follows that to study matrix
elements of any operator, 0@, involving strongly
interacting particles in the presence of the macroscopic
pion condensed field (13), one can transform the

7 More specifically, we note that including nuclear correla-
tions of the Lorentz-Lorenz type with strength y effectively
reduces g4 to g, = (1 — ¥)'?g,, whereas including the
N*(1238) effectively increases g, to g4” = (1 + ¢)g4. The net
effectis gy —g4* = (1 — y)*2(1 + £)g4, and y and € are such
that g4 =~ g,* (Brown and Weise 1975, 1976; Baym et al. 1975).

8 We indicate only the spatial variation of the condensed
pion field. The correct time dependence, (7*> = e*!*¢ follows
automatically from our use of the effective Hamiltonian den-
sity, Heee = H + ppo, Where pg is the charge density operator.

% The amplitude of the pion condensed field is chosen so
that the chiral invariant {6? + =~ *#~) is the same in the
condensed and normal phases. This is clearly necessary for the
two field configurations to be simply related by a chiral
rotation (BCDM).
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operator to ¢ = U~10U and study matrix elements
of the transformed operator ¢’ in the simpler macro-
scopic field (14). We shall find this transformation
particularly useful for simplifying the calculation of
B-decay in the presence of the pion condensate.

In the o model the pion condensed state of neutron
star matter consists of the macroscopic ¢ and = fields
in (13) and a filled Fermi sea of quasiparticles which
are mixtures of nonrelativistic neutron and proton
states. The quasiparticles are eigenstates of the
effective strong interaction Hamiltonian, Hyy =
H + ppg, where p, is the charge density operator;
specifically, with the condensate momentum chosen
such that k = |k|Z, the filled quasiparticle states are'®

u(p,s = £) = Fisingp(p, +) + cos ¢n(p, £) (16)
where + (—) refers to spin up (down),

gak sin 0
pcos 0 + [uZcos? 0 + g.2k?sin? ]2’

tan ¢ =

a7
and g, = 1.36 measures the #N coupling strength.?
In this model the pion-condensed phase first appears
at p = pere = 2f°m)(g4(g4*> — 1)) X 1.5pnyc, and the
parameters u, k, and 6 increase smoothly as p is in-

creased above p.; (BCDM). For later use we note
that 6(p) can be determined from

1 + (g4*2 — 1)sin% 6
P/Pc = (zOS 0)1/2 :

(18)

The excitation spectrum of the pion condensed
matter for 7 # 0 (Campbell, Dashen, and Manassah
1975a, b; Baym and Dashen 1976), an understanding
of which is essential to any discussion of neutron star
cooling, can be described succinctly by noting that
there exist no low-lying (AE =~ k;T = 1 MeV) boson
excitations and that, at least for 7 > 1 MeV, the
fermion excitations begin just above the quasiparticle
Fermi surface.!? Hence the obvious candidate for
(anti)neutrino emission is essentially the process
suggested by Bahcall and Wolf: namely, quasiparticle
B-decay,

u(p) ~u(p’) + e + v, (19a)
in the presence of the condensed pion field, as indi-
cated in Figure 1. The related process,

e” + u(p) —u(p’) + v, (19b)

10 The approximations involved in constructing this simple
model are discussed in BCDM. The most important of these
for our present discussion is the restriction to pure neutron
matter: that is, in the limit 8§ — 0, ¥ — n only, with no ad-
mixture of p. Since the admixture of protons is, by the results
of § I, roughly 1-2%,, this approximation would not be ex-

pected to cause significant errors in general and does not in
our calculation.

1 Explicitly, g4 = f.g/m, where m is the nucleon mass and
g24m = 14.4.

12 As we shall discuss in § IV, it appears likely that pairing
forces between the quasiparticles may produce a gap in the
fermion excitation spectrum for 7'< 1 MeV. This gap would
clearly reduce our estimated cooling rates for 7'< 1 MeV.
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- element after the squared momentum conserving
. P S-function and plane wave normalization factors
p —- (Q~*) have been factored out. The factor A4 is given by

! e
o - A= f d0,dQ,d0,dQ5(p + k — p' — p. — P)) -

(k) 1 Py
[ (25)

=

FiG. 1.—Quasiparticle p-decay. The quasiparticle of Evaluation of these factors for process (19) leads to

momentum p can be considered to scatter on the classical =~ -
field of energy-momentum (u, k), then decaying into a quasi-
particle of moment p’, electron, and antineutrino.

is an expected source of neutrinos. In the next section,
we shall examine these processes in detail.

III. B-DECAY IN THE PRESENCE OF
THE PION CONDENSATE

The total neutrino luminosity due to process (19) is
obtained in the usual way from Fermi’s golden rule:
Q‘l
in o —
L™ = (2w) DR

x> J d°pd®p'dp,d°p,SS(E, — E)E;

x [K(p's &, V)| Hu| )|, (20)

where Q is the volume of the neutron star, S is the
appropriate product of Fermi-Dirac distribution
factors, and H, is the weak-interaction Hamiltonian
that describes the decay of quasiparticles. For sim-
plicity we shall use natural units, # = 1 = ¢. Making
use of the fact that the massive fermions are all near
their Fermi energies, this expression for L,™ can be
factored into a phase-space factor P and a factor Q
containing the squared matrix element:

Q4
Lvnn = (217) (_27—7—)E PQ (21)
The factors P and Q are given by
P = [y o 2dp.p o SHE, ~ E)Es (22)

0= f d0,d0,dQ,dQ, S [’y e )| Hol D7 . (23)

spins

Performing the integral that occurs in the squared
matrix element over coordinate space introduces a
squared momentum conserving d-function into Q. As
we discuss later, the spin sum of the remaining part of
the squared matrix element is then approximately
angle-independent so that the factor Q can be further
factored as follows:

0 - (G) amp. 24

where |M|? is the spin sum of the squared matrix

an expression for L,” which is similar to that obtained
by Bahcall and Wolf for process (3); however, these
two processes differ in two important ways. First,
since the pions are not ““ quasi-free,” but are interacting
strongly with the baryons, there are two dynamical
effects producing differences between (19) and (3):
(1) the decaying particles are not neutrons, but rather
the quasiparticle eigenstates of Heg; and (2) that part
of the weak Hamiltonian involving strongly interacting
particles is modified by the macroscopic pion field.

We shall term these “matrix element effects.”
Second, since the pions have nonzero momentum k,
and energy p # m, there are also ‘‘kinematical
effects” in the phase-space factors which can produce
additional differences between the rates of (19) and (3).

Let us treat the matrix elements effects first. The
weak interaction Hamiltonian describing B-decay of
nonstrange hadrons is

Hy = S5 (F + 1V + st + id)n(1 £ e

+ Hermitian conjugate , (26)
where V; and A4; are the vector and axial vector
hadronic isospin currents, respectively. To include the
effects of the pion condensate on these hadronic
currents, instead of working explicitly with the space-
dependent macroscopic fields in (13) we can apply the
chiral rotation U of (15) to H,. Under this rotation
the current

S = ViF + iV + At + P4 27)

transforms to

~

Jp= ULPU?

exp (ik-x){V* + A" + i[cos O(Vy* + Ag¥)

+ sin 0(Vg* + As))]} . (28)

In terms of this rotated current, the square of the
quasiparticle p-decay matrix element, summed over
spins, becomes

{3 800 )3t 90 )10 ) OO L

= H*L,,, (29)
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where the final equality defines the hadronic tensor,
H** and where L,, is the standard leptonic tensor*?

L = Hp'ps™ + pepy* — (pe'p3) g
— 1" pe)(D3)s} - (30)

The repeated Lorentz indices are summed. In the
nonrelativistic limit, one can ignore the momentum
dependence of the hadronic matrix elements!**5 and
approximate the vector and axial vector matrix
elements between nucleons by

(N'(P)|VEIN(p)y = 3N'|7|N>, forp=0

(3la)

and
N'(P)|A#|IN(p)) = 384N"|m04|N> ,
forp=j [1,2,3]. (31b)

Here 7; are the Pauli matrices for isospin and o, those
{'or spin. All other matrix elements are zero in this
imit.

At this point it is useful to digress briefly to clarify
physically why one must take the matrix element of
the rotated weak current between quasiparticle states,
since at first glance it might appear that this is some-
how “double-counting” and that one should take, say,
matrix elements of the unrotated weak current between
quasiparticle states. To clarify this point, it is simplest
to go to the very weak condensate limit, § — 0, and
to work to lowest order in 6. Then the rotated current is

Ttz exp (h-x)[(V* + iV + (A" + idY)
+ 0(Vs* + A))] + 0(6%); (32)

and the quasiparticle states, ignoring spin for sim-
plicity, are

ux¢lpy+ ny, (33)
where

~ 84K
¢~2ﬂe. (34)

Then to O(f), the matrix element will contain two

13 See Lifshitz and Pitaevskii 1974. Note that these authors
use a Lorentz covariant normalization, which includes factors
of (1/2E) in the phase space and yields canceling factors of
(2F) in the matrix element from the normalization of the
spinor states. For consistency with the notation of Bahcall
and Wolf, we use noncovariant normalization: eq. (52), which
fixes the normalization of | M |? for the pion-condensed case to
|M |2 for ordinary B-decay, allows us readily to translate from
one convention to the other.

14 See n. 13.

15 This is the ‘““allowed” approximation of nuclear physics
and is adequate for our purposes.
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(b)

FiG. 2.—The two contributions to quasiparticle B-decay

nonvanishing terms,
u| T |luy = 0n|Vah + Ag*|n)y

gak

+ —va_ <p|(V1 + iVy) + (4, + iA2)|n> .

(35)

Clearly, if one used the unrotated weak current, only
the second term would be present. That in fact both
terms must be included can be seen in two related
ways. First, in the context of the sigma model de-
scribed in § I1, noting that for small 8 the pion field is
~ 0(0), we see that the two terms in (35) are related!®
to the diagrams in Figures 2a and 2b, respectively.

More generally, we note that for a very small
amplitude pion condensate in originally pure neutron
matter, the B-decay process is determined completely
by the matrix element

M = {an| W n) . (36)

Using standard current algebra techniques, including
the LSZ reduction and PCAC, one can show that this
matrix element contains a ‘“pole” contribution—
roughly corresponding to Figure 2b, albeit with
pseudovector coupling at the (pm~-n) vertex—and a
“commutator” contribution, which (roughly) corre-
sponds to Figure 2a. Thus to obtain a result consistent
with chiral symmetry as reflected in the current algebra
low-energy theorem, one must both rotate the weak
current and use quasiparticle states to determine the
full effect of the pion condensate on B-decay.

16 Readers wishing to follow the full technical details under-
lying this discussion are referred to Adler and Dashen (1968)
in general, and to Adler and Dothan (1966) for a particular
calculation related to eq. (36).

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977ApJ...216...77M

S
]

N A T 4

77 Ag:

1

82 MAXWELL ET AL.

For arbitrary ¢ we can use (31) to perform the
explicit spin sums indicated in (29). We obtain

Hy, = 1[sin? (6 + 2¢) + sin? (6 — 24)], (37a)
Hgs = (g4°/4)[sin® (0 + 24) + sin? (6 — 2¢)], (37b)
H,, = H,, = (g4%/4)[2 sin? 2¢ + 25sin? 6], (37¢)

Hos = Hyo* = (ga/4)[sin? (6 + 24) — sin® (6 — 24)],

(37d)
and

H,, = Hy* = (ig,2/4)[4 sin 0 sin 2¢] , (37e)
where 6 and ¢ are as defined in § II. For ordinary,
unpolarized neutron B-decay in this approximation,
one would have Hyo = 2, H;; = Hyy = Hgz = (2)g42,
with all other H,, = 0. Here two polarization-type
effects arise in H,, because the pion condensate
momentum provides a preferred direction, which we

have chosen to be 2 = 3. First, there exist off-diagonal
terms, Hyg and H,,. Second, the decays parallel and
perpendicular to the condensate momentum are
different. For small 6, to order 62, | M |? is independent
of spatial angle, and we shall carry out the integration
over spatial angle neglecting any such dependence.
For large 6, terms proportional to p.(p,)o and (p.)op,
appear, and these could give corrections of order
[kr(e)/k]? to terms of order 6% and higher. In fact,

ke(e)/k ~ plk ~ 0.67, (38)

where the first approximate equality follows from
thermal equilibrium and the ultrarelativistic nature of
the electrons in the matter and the second follows
from (12). These terms may not be negligible, but
their inclusion would not change our conclusions.

Given the matrix element squared as determined
by (29), (30), and (37), to calculate the total decay rate
we must perform the phase-space integrals. It is here
that the ““kinematical effects” of the pion condensate
appear. First, because of the factor exp (ik-x) in (28)
the momentum conservation equation for the quasi-
particle B-decay is

k+p=p +p.+p;. (39)

Further, since the hadronic weak current decreases
the hadronic charge by one unit, the correct energy
balance equation includes the chemical potential for
charge:

p* _p*

‘u+2m 2m

+ E. + |p5| - (40)
The physical interpretation of (39) and (40) is clear: a
quasiparticle of momentum p picks up energy-
momentum (u, k) from a condensed pion and then
decays into a second quasiparticle and the lepton pair.
Symbolically,

7 +u—>u +e +7,.

Vol. 216

The central role of the pion condensate in inducing the
quasiparticle decay is further clarified by recalling why
the ordinary S-decay reaction in (1) from excited states
of the neutron star matter at T # 0 does not cool the
star. Since by (9) kx(n) > kg(e) = kp(p) » p; = kgT,
the reaction (1) cannot conserve momentum for
particles near the Fermi surface. Hence the rate must
be strongly suppressed by Fermi-Dirac statistical
factors. By providing energy-momentum (u, k), the
condensed pion permits the reaction (19) to proceed
for quasiparticles and electrons near their respective
Fermi surfaces, provided only that kx(1) > k/2. Since
this constraint is satisfied in our calculations, the
quasiparticle decay in the presence of the pion
condensate does indeed provide a rapid cooling
mechanism for neutron stars.

We now discuss the phase space factors in more
detail beginning with the factor P. Following Bahcall
and Wolf’s calculation, we first shift variables from
momentum to energy and then remove the energy
conserving &-function by performing the integral
over the neutrino energy. If we then set all fermion
momentum magnitudes equal to their values on the
respective Fermi surfaces, we obtain in place of (22):

P = ke(n)(m,*)?E*(e) f dE,dE,dE,SE;* , (41)

where F subscripts denote Fermi surface values, m,*
is the neutron effective mass, and the value of E; is now
fixed by energy conservation. The integrals in (41) are
evaluated through another shift in variables from
energy to the dimensionless variables x; defined by
Bahcall and Wolf. The final result for P is

P = ko2 )’ (”ﬂ)(kBT)G-I, @)

where kg is Boltzmann’s constant, I is a three-dimen-
sional analytic integral equal to 457/5040%°, and we
have used the equilibrium result that Ex(e) & u. Note
in this expression for P the occurrence of the factors
(m,*|/m,)? and (u/m;). Bahcall and Wolf set both these
factors equal to one, in accordance with their approxi-
mations that the pions are free and have k = 0 and
that m,* ~ m,. As we have indicated, dynamical
models of pion "condensation yield roughly p = 2m,; at
threshold ; we shall use this value. Further, the effective
mass problem in neutron matter has been studied
thoroughly by Backman, Killman, and Sjoberg (1973),
who obtain m,* = 0.8m, at neutron star densities.
Thus we will take (m,*/m,)? ~ 0.65.

Now consider the angular integral given by (25).
Using ordinary neutron star matter as a guide,
Bahcall and Wolf noted that since kg(n) > kp(e) >
|ps| = ksT, requiring the fermions in (3) to be near
their respective Fermi surfaces to avoid suppression by
statistical factors gives

|p| = |p'| & ke(n) > ki(e) ® |pe| » ksT = |p3] .
“3)
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With the further assumption that & = 0, Bahcall and
Wolf approximate the exact momentum conserving
8-function in (25) by

(p —p = po), (44)
which yields
- 4n)? )
¥ e @

The results for pion condensed matter reviewed in
§ Il suggest that

Pl = |P'| R ke(u) = ||

> ke(e) = |pe| > ksT = |ps| . (46)
Here kg(u) is the Fermi momentum of the quasi-
particles and k is the momentum of the pion con-
densate. Thus for pion condensed matter the vector
k cannot be dropped from the momentum conserving
8-function as in (44). If one retains & but drops p, from
the é-function, (25) becomes

A = 4n f dQ,d0,dQ,5(p + k — p' — p). (47)

This is evaluated by making use of the integral
representation of the 8-function:

p + k —p' — p.)

- (2%)3[ exp [i(pex + k+x — p'-x — p,-x)]d°x .
(48)

Inserting this into (47) and performing all of the
angular integrations then results in

_ 8(4m)?
Pp'pk

X [ % sin (px) sin (p'x) sin (kx) sin (p.x) . (49)

The final integral over x in this expression is evaluated
by replacing sin (px) sin (p'x) sin (kx) by a sum of
single sine functions and then observing that
|p + p' + k| > p,. Finally, replacing fermion mo-
mentum magnitudes by their Fermi surface values, we
obtain

(@
4= Sk

which differs from Bahcall and Wolf’s result by the
factor [since kr(t) = kp(n)] kg(e)/k = 0.67 from (38).

The expressions (29), (30), and (37), together with
the kinematic results, allow us to calculate the total
rate at any 8. However, we shall see that the effective-
ness of the pion condensate in cooling the star is so
great that estimating the rate near threshold—that is,

(50)

COOLING MECHANISM FOR NEUTRON STARS 83

for small 82—is sufficient for our purposes. For small 6,
using (34), we have

Hoy % % [1 + (%’—‘)2]02 (51a)

and
Hyy = Hyy = Hyy = (g42/2)[1 + (37*"‘)2]92. (51b)

Thus in this limit we have

2 2
3 M = [+ (4] 3 e

spin pins
(52)

where the subscript “pion-cond” refers to the quasi-
particle decay in the presence of the pion condensate
and “norm” refers to ordinary B decay.

Combining all factors, we find that the luminosity
per unit volume from reaction (19a) is

L™/Q =76 x 102 ergss~—' cm~3

() i) 5 [+ (5]
x (1 + 3gAT° . (53)

Using the values of p and k from (12) and taking
g4 = 1.36 and (m,*/m,)? = 0.65, we estimate the total
luminosity of a mass M, of pion-condensed neutron
star matter at uniform density p to be

M, (p
L ~ 1.5 x 10% ergs s—1 x 62T,6 228 (_) 54
g 9 Mo\ p (54)

In (54), we have included a factor of 2 to account
for the “inverse” reaction shown in (19b) and, since
Fermi levels suggest that muons are also present, an
additional factor of 2 to account for the reaction

u—u+ p- +y,

and its inverse. Note that in (54), 62 replaces the

factor (n,/n,) in the corresponding formula of Bahcall
and Wolf.

IV. DISCUSSION AND CONCLUSIONS

A comparison of equations (4) and (54) reveals that
the actual pion condensate increases L,™ only slightly
from its free pion value; clearly our results support
the conclusion of Bahcall and Wolf concerning the
importance of this cooling mechanism. Indeed, if we
apply (54) directly to a 1 M, neutron star at twice
nuclear density, we find, using 62 = 0.1 (Brown and
Weise 1975, 1976),'" that the time to cool from

17 In the sigma-model calculation, this value of 62 corre-
sponds to an admixture of 6%, protons and would occur at a
density p = 1.8ppyc.
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(Af) =~ (3 minutes)[Ty,~* — Tg; "] . (55)
Thus if the internal temperature 7 and the effective
surface temperature T, are related by T, ~ 1072T
(Tsuruta and Cameron 1965, 1966), the effective
surface temperature would drop below 4.7 x 10° K,
the Crab pulsar observability limit (Wolff et al. 1975)
in a few tens of minutes.

There are several possible complications that can
beset this simple estimate. First, if densities sufficiently
large for pion condensation are formed in supernova
explosions at temperatures of, say, 7, = 100 & 10
MeV, then the luminosity predicted by (54) fora 1 M,
star at twice nuclear density is

L™ ~ 10%® ergss~1!, (56)
which is very large, since the solar mass is
Myc? = 2 x 10%% ergs . (57

Indeed, Fermi statistics restrict the number of final
states which can be filled (see Bludman and Ruderman
1975) and thus must slow down these processes.

This effect should be distinguished from the high
neutrino degeneracy which may accompany the
original formation of the neutron star (Lamb and
Pethick 1976). Although this degeneracy may slow
down the neutronization process p + e~ —n + v by
blocking possible states of the final neutrino, we do
not believe that it will affect the pion condensate,
since these neutrinos should mostly be gone before the
pion condensate is formed. However, this question
probably deserves more detailed consideration.

Second, as Sawyer and Soni (1977) have recently
shown, if the neutrino (antineutrino) luminosities in
the presence of a pion condensate are as large as
predicted by (54), then the absorption of neutrinos
via the processes

v+ u(p)—>e” + u(p’) (58a)

and

7+ e + u(p) — u(p’) (58b)

will also be large. Hence the neutrino and antineutrino
mean free paths will be short—typically only a fraction
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of the neutron star radius—so that the escape of
neutrinos and antineutrinos will be substantively
delayed. This suggests that the star may take a few
hours, rather than minutes, to cool to T = 10° K.

Finally, our luminosity calculation is based on the
assumption that there exists no gap in the quasi-
particle excitation spectrum. However, a rough
estimate suggests that at T ~ 10° K, the u-quasi-
particles could go superfluid in the 3P, state as neutrons
in dense neutron matter are predicted to do (Hofberg
et al. 1970; Tamagaki 1970).

The new quasiparticles in the superfluid state will be
linear combinations of u-quasiparticles and u-quasi-
holes; i.e., the new quasiparticles will be linear
combinations of neutron and proton particle and
neutron and proton hole. Calculations within a
strong-coupled theory are now proceeding at Stony
Brook by J. Sauls and J. Serene; preliminary results
show similarity with the neutron superfluidity of
Hofberg et al. (1970) and Tamagaki (1970). The low
effective masses of Backman, Kallman, and Sjoberg
(1973) lower the transition temperature from that
found by Hofberg et al., however. At about 10° K,
therefore, it would appear that the onset of super-
fluidity of the wu-quasiparticles would change the
scenario for cooling, in that the resultant energy gaps
would severely decrease the participation of the quasi-
particles in the cooling.

In summary, we can say that a pion condensate, if
present in a neutron star, does provide an efficient
mechanism for initial cooling of the star. More
quantitative calculations, including the important
question of cooling below T = 10° K, will require
more detailed knowledge of the initial state in which
the neutron star is formed, as well as consideration of
neutrino transport and degeneracy and of possible
gaps in the quasiparticle spectrum.
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