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I provide a brief overview of the current status of the field of deterministic "chaos ~, 
stressing its interrelations and applications to other  fields and suggesting a number of 
impor tant  open problems for future study. 

1. INTRODUCTION 

I should s tar t  by explaining the significance of my title and my motivations for choosing 

it. The  question, "Chto Delat?",  which is Russian for "What  is to be Done?", is the 

title of a t rac t  wri t ten by V.I. Lenin in 1902, outlining a course of action for his fellow 

revolutionaries. In a sense, the current practioners of deterministic chaos - who have on 

occasion been called a "chaos cabal "1 - are also revolutionaries, for they have overthrown 

the "clockwork" universe of Laplace and are now plotting to bring order into the chaos they 

themselves discovered. One obvious issue, both  for the conference and in particular for this 

overview, is "What  are the future directions of the revolution tha t  is deterministic chaos?": 

hence my pr imary motivation to choose as my title, "Chaos: Chto Dela t? ' .  

At a second level, my motivat ion for this particular title is to pay tr ibute to the contribu- 

tions of our Soviet colleagues, who were unfortunately absent from the meeting. From the 

Kolmogorov-Arnol 'd-Moser theorem and Arnol 'd diffusion through the Melnikov method 

and the Chirikov overlap criterion to Sinai billiards and Lyapunov exponents,  their many 

contributions have left a permanent  impact on this subject and, more generally, on "nonlin- 

ear science". Indeed the question "Chto Delat?" was used as the title of a similar conference 

overview given by V. E. Zakharov at a meeting on "solitons ~ - in a sense, the nonlinear "flip 

side" of chaos, in tha t  they reflect an astounding order and regularity in complex nonlinear 

systems - held in the late 1970's. 

Consistent with my title, I will not  a t t empt  a detailed recapitulation of the meeting: the 

individual articles in the foregoing impressive proceedings speak eloquently for themselves 

and render such a summary unnecessary. Rather,  I will seek to provide an impressionistic 

synthesis of the common themes tha t  ran through the conference presentations and to focus 

on the open issues - the unanswered questions, bo th  near- and long-term - tha t  arose. 

To provide a clear point of departure for the discussion let me s tar t  with a working 

definition of deterministic chaos: namely, the (apparently) random, "unpredictable" motion 

in time of deterministic dynamical systems having no external stochastic forces, so that  

the randomness derives from "sensitive dependence on initial conditions". More precisely, 
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and for clarity in the later discussion, I will apply the term "chaos" to deterministic but  

unpredictable motions that  occur, at least asymptotically, in low dimensional phase space. 

Thus, for dissipative systems, we can anticipate that  there will be a (low) finite (fractal) 

dimensional strange at t ractor  with at least one positive Lyapunov exponent and a broadband 

power spectrum. The following sections analyze how "chaos" currently interacts with a range 

of more traditional topics and offer some thoughts about  the future interactions. 

II. CHAOS AND DYNAMICAL SYSTEMS 

We have come a long way in the past twenty-five years both  in our understanding 

of deterministic chaos in low-dimensional dynamical systems and in the awareness and 

acceptance of this phenomenon among our scientific colleagues 1. But as the presentations 

in this volume indicate, there are still many elegant, exciting, and subtle questions that  

remain to be resolved in this particular area. 

The "strange attractors" - or more generally, the "strange sets" - that  arise in deter- 

ministically chaotic dynamical systems are generally not simply "fractals" but are in fact 

"multi-fractals ' ,  having a range of scalings. The introduction of the "f(a)" approach 2 and 

its subsequent thermodynamic interpretation 3 have greatly clarified the s tructure of the 

strange sets occurring in several universal routes to chaos, including the period-doubling 

and quasi-periodic cases 4. But  the full details of the dynamics 3,4 of the generation of the 

sets - in what  order are the points generated? - remain to be explained 3. Further,  the 

hierarchical s t ructure and scalings of the Henon at t ractor  and of the two-dimensional area 

preserving maps lie beyond - but  probably just beyond 5 - our current methods. A broader 

open challenge in both  real and numerical experiments is to predict invariant properties of 

the strange sets on the basis of a (small (!)) limited amount of data; here the analysis of 

unstable periodic orbits tha t  lie in the chaotic region may play a critical role 6. On a grander 

scale, one can speak of the general "inverse problem" : to what extent can one, given f(a) and 

related quantities, reconstruct the actual fractal set, including the dynamics? Is the long- 

range goal art iculated by Sreenivasan 7 of characterizing by a fractal description the geomtric 

features in physical space of unconfined, fully-developed turbulence really achievable? 

Finally, two broad challenges - one for experimentalists, one for theorists - were posed in 

several contributions and late-night discussions. For the experimentalists, the discovery of 

new physical systems exhibiting low-dimensional chaos remains an on-going challenge. And 

for theorists, there is the intriguing prospect of using the underlying deterministic nature 

for (short-term) prediction or forecasting of the behavior of these chaotic systems 8. 

III. CHAOS AND EXPERIMENTAL TECHNIQUES 

One of the most important  developments that  led to the widespread acceptance of de- 

terministic chaos was the emergence of high precision experiments on real systems that  
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gave quantitative confirmation of theoretical predictions; perhaps the most celebrated ex- 

ample is the confirmation by Libchaber and Maurer 9 of the "universality" predictions of 

Feigenbaum 1° for the period doubling transition to chaos. 

These high precision experiments continue to be a central aspect of studies of chaotic 

systems. Perhaps it is just my naivete as a theorist, but I continue to be truly amazed 

by the ingenious ways in which our experimental colleagues extend the limits of the mea- 

surable by, in essence, "cheating" nature. At this meeting alone, the techniques discussed 

ranged from elegantly subtle through fiendishly clever to just plain cute. They involved 

such tricks as changing the Rayleigh number (Ra) by seven orders of magnitude by con- 

trolling the density in a (cryogenic) helium gas cell u ,  altering the geometry of fluid cells 

in mid-experiment by movable boundaries 1~, building "non-wall" walls to control thermal 

effects at the boundaries is, constructing a ring cavity laser configuration to produce the 

"third equation" crucial to the existence of chaos 14, and using the measuring device itself 

to nucleate spatially localized instabilities 1~. In fairness, I should note that the theorists 

themselves have on occasion le used similar clever tricks; for example, by looking at binary 

fluid mixtures, theorists have found a tractable case in which to study co-dimension two 

instabilities 17. All this bodes well for the future studies of chaotic systems. 

Even given an ingenious experimental set-up - -  or, for that matter, a well-conceived 

numerical experiment - -  chaotic systems pose the difficulty that, at present, enormous 

amounts of data are necessary to interpret the motions: one is not looking at a simple fixed 

point or limit cycle. Fortunately, a number of developments reported at this meeting suggest 

promising ways for approaching this problem in the future. First, for at least some classes of 

systems, one can hope that a better understanding of the various "universal" mechanisms 

generating chaotic behavior will reduce the need for masses of data; for example, unsta- 

ble periodic orbits may provide essential insight into chaotic motions e. Second, substantial 

improvements in analysis of time-series data from both experiment and numerical simula- 

tions can be obtained using "singular value decomposition" techniquesls; the application of 

this approach to meterological data has yielded impressive results is. Third, in the spatial 

domain, the use of "Fourier transform truncations" is offers, at least in some geometries, a 

systematic method for spatial image enhancement. 

For Hamiltonian dynamics, where the absence of attractors makes long-time studies very 

subtle, control over numerical methods becomes even more important; in these proceedings 

this issue is elegantly examined in the context of the stability of the solar system 19. The 

result, incidentally, should any anxious reader be holding his breath, is that the solar system 

will most likely be stable at least for "billions and billions" of years. The subtlety of the 

numerics needed to obtain these results is definitely worth noting 19. 

When a clever experimental technique is combined with sophisticated data analysis, 

the consequences can be truly impressive. A good example treated in these proceedings is 

the measurement in a semi-conductor device of the f(a) curve for the quasi-periodic tran- 

sition to chaos2°: the agreement between the theoretical prediction and the high precision 

experimental results is indeed remarkable. 
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Finally, as in all a t tempts  to compare theory and experiment,  it is essential to ask the 

right question. In his contribution, Bob May stressed that  the non-homoegeneous nature - 

the "patchiness" - in field biological systems can mask the true mechanisms of chaos. 

IV. CHAOS AND TURBULENCE 

From the first beginnings of the chaos revolution, one clear goal of many, if not most, 

of the participants, was a deeper understanding of turbulence. Although we have made 

remarkable progress towards this deeper understanding, there is still much to be done. 

Indeed, if one had to choose just  one "most important"  area for future studies of chaos, it 

would have to be the relationship of chaos to turbulence. 

In Section I I have already given a working definition of "chaos", in which a crucial 

aspect was the low effective phase space dimension of the "unpredictable" deterministic 

system. In distinction, by "turbulence" I shall mean what is often called "fully developed" 

- or, more colorfully, "macho "22 - turbulence in which, in addition to temporal  disorder, 

there is "disordered" spatial s tructure on (at least apparently) all scales. Thus the spatial 

power spectrum is, like the temporal  spectrum, broadband, and the phase space dimension 

of any a t t rac tor  appears (at least a priori) very high. In turbulence, different spatial re- 

gions of the system appear  independent,  and spatial correlation functions are short-ranged. 

Further,  there is no mean spatial s tructure in time: any overall spatial pat tern  observed at 

t ime t is uncorrelated to that  observed at time t + T, for large enough T. This result can 

be elegantly visualized using the shadowgraph technique described by Berge 12. To summa- 

rize, "turbulence" involves strong disorder and unpredictability in both space and time and 

consequently high phase space dimension, whereas "chaos" refers to the unpredictablility in 

time of low effective phase space dimensional systems. 

From these remarks it is clear that  in principle there need not be a sharp boundary 

between chaos and turbulence, but  rather  a continuum in which the effective phase space 

dimension goes from small to large. In practice, this continuum is in fact generally ob- 

served: this is indicated in Fig. 1 in the context of an idealized Rayleigh-Benard convection 

experiment. As we shall see, the different regimes shown schematically in the figure are ob- 

served in a wide variety of actual experiments. In the figure the primary control parameter  

dictating the regime of a given experiment is the Rayleigh number (Ra), which represents 

the strength of the driving force. As Ra is increased, the system becomes increasingly more 

"turbulent".  

Given the obvious complexity of turbulent motions, it is useful to begin with a very 

simple question: is real fluid turbulence, for example, "chaotic", in our technical sense? 

More precisely, do "turbulent" solutions to the Navier-Stokes equations exhibit sensitive 

dependence on initial conditions, positive Lyapunov exponents, and so forth? Although this 
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FIGURE 1 

A schematic depiction of the different regimes of flow patterns observed in Rayleigh-Benard 

convection cells as the driving force (related to the Rayleigh number) increases from left to 

right. (After A. Libchaber, private communication). 

question may seem naive and the answer obvious, it is important as a test for whether 

any of the techniques developed for chaos can actually be applied to turbulent flows: can 

we, for example, measure reliably the value of the Lyapunov exponents (~) or the fractal 

dimension (d/) of the strange attractor? One recent theoretical study 2s has addressed this 

question explicitly by studying numerically solutions to the three-dimensional Navier-Stokes 

equations in a (weakly) turbulent regime with Reynolds number about 13. The results show 

that the motion is indeed chaotic, exhibiting sensitive dependence on initial conditions with 

... 2.7 and an attractor dimension d/--~ 10. Apart from providing explicit evidence that 

turbulence is indeed chaotic, this simulation also indicates that both the Lyapunov exponent 

and the fractal dimension increase fairly smoothly with Reynolds 'number. A second study 2~, 

addressing the question in the context of real Couette-Taylor flow, found that for Reynolds 

numbers up to about 30 dimension of the strange attractor remained < 5. Thus we can 

indeed say that real fluid turbulence is chaotic and that, as Figure I suggests, the techniques 

familiar from the chaotic dynamics of low dimensional dynamical systems can be used to 

analyze this chaos, at least near the transition. 

But what of more general flows at Reynolds numbers of 2000, let alone 10e? Here another 

very recent theoretical investigation 25 provides insight into the difficulties of a direct "chaotic 

dynamics" approach to fully-developed turbulence. This study pushed the techniques of 

chaos far into the turbulent regime by simulating turbulent Poiseuille flow at a Reynolds 

number of 280025. Based on calculations of the Lyapunov exponent spectrum, the results 

offer strong evidence that the "turbulent" solutions to the Navier-Stokes equations for this 

flow do indeed lie on a "stange attractor" and further that the dimension of the attractor is 

d / ~  400 (!). Obviously, although it is perhaps comforting to know that this flow is indeed 

"chaotic" in the technical sense, it is disconcerting to contemplate trying to analyze similar 

flows experimentally or to model them theoretically in terms of a dimension 400 dynamical 
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system. So how ean we confront the truly complex structure expected of turbulence in these 

high-phase-space-dimension regimes? To attack this daunting problem, it is best to t ry  to 

break it up into less daunting pieces. This "divide and conquer" philosophy has proven very 

successful in studies of the transition to irregular motion, where the many different routes to 

chaos - period doubling, quasi-periodic, and intermittent  - were understood quantitatively 

only when they were t reated separately. In the case of turbulence, we expect that  focusing 

on special, simplifying features of particular flows will again be the key to quantitative 

understanding. Let me describe how I believe this can be done, both at present and in the 

near future,  first in experimental and then in theoretical studies. 

From an experimental perspective, it is clear that  one needs to extend to stronger 

driving and more fully developed turbulence the high precision studies tha t  proved crucial 

in establishing "chaos". Clever techniques, such as those discussed in Section III above, will 

be essential to this effort, as will the choice of systems: binary fluid mixtures and cryogenic 

fluids in unusual geometries (such as annuli 12) are good examples of what will be needed. 

Good control over the driving parameters,  as well as the ability to vary them over a wide 

range, will be essential. The  crucial role played by geometric constraints such as boundaries 

requires considerable further study: whereas in Rayleigh-Benard flow "chaos" can readily 

be observed in "small boxes "9'12 with aspect ratios r ~ 2 in which geometry constrains the 

number of rolls, turbulence, with its a t tendant  spatial disorder, arises in the same flow in 

large cells (F ~ 1012). Experimental  studies are also needed for "open flow" systems, in 

which there are essentially no boundary constaints. High quality, spatially resolved data 

- obtained via by now conventional techniques such as laser Doppler interferometry or 

more exotic methods such as NMR tomography 26 or low temperature  scanning electron 

microscopy 15 - will be essential to identifying the nature of spatial structures and complexity 

in the turbulent  motion. 

Fortunately, as these proceedings testify, the experimentalists seem well equipped to 

meet these challenges. In fluids, experiments covering systematically a good fraction of the 

diagram in Fig. 1 were reported in helium 11, silicon oil 12, and binary mixtures 13'2r. In solid 

state, in both semi-conductors 15'2° and magnetic systems 28 the region beyond the transition 

to chaos has been thoroughly examined and initial steps toward studying spatial structures 

are underway is. Experiments involving lasers 14) and chemical reactions 29 are also revealing 

further details of the regions beyond the transition to chaos. 

Theoretically, studies focusing on specific aspects of turbulence in particular flows - 

again, our "divide and .conquer" philosophy - have also shown progress. Over the past 

several years, two crucial general concepts have emerged as valuable guiding principles for 

these studies: "mode reduction" and "hierarchies of equations". Let me examine in detail 

how these concepts can be applied, both now and in future studies. 

The central idea of "mode reduction" can be most easily visualized in fluid flow prob- 

lems. In any given flow, not all of the (infinitely !) many possible modes are "active" - 

think of laminar flow, with the fluid moving en bloc as the extreme example - as that  the 
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effective phase space dimension is much smaller than the full (infinite) dimension of the 

equations. The examples of Couette-Taylor flow experiments (d! .-. 5, 24) and the numerical 

simulations of low-Reynolds number (R ~ 13, d! -~ 10, 23) and intermediate-Reynolds num- 

ber (R N 2800, dy --. 400 ~5) flows provide concrete realizations of this reduced effective phase 

space. "Mode reduction" involves (somehow!) reducing the number of degrees of freedom 

being modeled explicitly to the minimum necessary to capture the essential features - spa- 

tial patterns and energy, mass, and concentration transport,  for example - of the motion. 

Intuitively,.gne hopes that  the "modes" themselves can be related to any persistent spatial 

structures observed in the flow; I will discuss this point in detail in the next section. But 

even if this is not possible, mode reduction can provide crucial insights into, and a simplified 

description of, the flow. 

Ideally, the process of mode reduction should be deductive, controlled, and constructive: 

that  is, one would hope to be able to derive the equations governing the reduced modes, to 

bound the error made in the reduction, and to "construct" the actual modes themselves. In 

general, this remains an elusive goal, although substantial recent progress in this area has 

occurred. Historically, the process has more typically been either deductive and construc- 

tive but  not controlled, or non-deductive and non-constructive (but sometimes remarkably 

accurate !). Examples of the former case include the celebrated Lorenz equations s°, which 

are a three-Fourier-mode truncation of the (Oberbeck-Boussinesq) equations applicable to a 

particular two- dimensional flow. In deriving the Lorenz equations, coupling terms generate 

Fourier modes not included in the truncation and these are simply ignored: hence the _a 

priori uncontrolled nature of the reduction. Indeed, as further studies of related problems 

have established sl, as more Fourier modes are included, the detailed description - for ex- 

ample, the bifurcation sequence observed as a function of the driving parameters - depends 

crucially on the number of modes, so that  here the uncontrolled nature of the approximation 

is a potentially serious drawback. An example of the latter case is the quantitative descrip- 

tion of actual period doubling observed in experimental fluid flow 9 by a one-dimensional 

map 1°. Although (as yet) non-deductive, this link is made powerful by the universality of 

the period doubling phenomenon. More generally, the "geometry from a time series" (see, 

for example, ~4) reconstructions based on embedding theorems a2 give information about the 

dimension of the reduced system but not about the nature of the modes themselves. 

Clearly, then, the challenge is to construct methods that  are deductive, controlled, and 

constructive. In view of some substantial very recent progress, the future prospects of this 

approach are quite bright. Let me focus on three specific areas of great near-term potential. 

First, as exemplified in these proceedings ss, results are now available establishing rigorously 

that  the long-time behavior of certain partial differential equations is controlled by a finite 

number of modes (for systems in finite geometry !). At present, the successes of the method 

for the Kuramoto-Sivashinsky equation for unstable chemical fronts ss and for the (one- 

space dimensional) complex Ginzburg-Landau equation s4 describing certain situations near 

the onset of turbulence have depended on the existence of (increasing) gaps in the (discrete) 
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spec t rum of the (linear) dispersion relation to control the nonlinear effects and hence to 

produce the rigorous bounds.  The impor tant  next step is to deal with models - involving, 

for example,  hyperbolic,  "wave-like" equations - in which these increasing gaps are not 

present; significantly, it appears  that  this step will be possible in the near future 35. Second, 

the intuition tha t  if one observes a part icular  flow, it should be possible to determine a "best" 

set of modes - spat ial  "basis vectors" to be used in a t runcated Galerkin approximation - 

to describe tha t  flow has recently been concretely realized in a s tudy of coherent structures 

in the wall region of a turbulent  boundary  layer 3s. Interestingly, this approach involves a 

"singular value decomposition" similar to tha t  successfully applied in these proceedings is 

to the analysis of a chaotic t ime series. Third, the vital  question of the relation of mode 

reduction to the actual  s tructures observed in space is rapidly becoming approachable.  I 

will i l lustrate this in more detail in Section V. 

The second useful guiding principle - the "hierarchy of equations" - is also most  conve- 

niently i l lustrated in the context of fluid flows, where the technique in various forms has long 

been established s~. Start ing from the Navier-Stokes equations, one derives for the specific 

type of flow under s tudy an approximate  (typically partial) differential equation (PDE). 

Among the desired features of this approximate  equation are tha t  it is simpler to solve than 

Navier-Stokes, and /o r  tha t  it contains obvious coherent spatial  structures,  and /o r  that  it 

has controllable tempora l  asymptotics.  This approximate  PDE may be further  reduced - 

via rigorous "inertial manifold" techniques 33'34 or more heuristic methods - to a (finite) set 

of coupled ordinary differential equations (ODE's) .  Finally, in some cases this finite set of 

ODE's  may fall into a "universality class" that  permits  further  reduction to the simplest 

element of the class - for example,  a period doubling transit ion to chaos being model by the 

logistic map.  

Although this "hierarchy" approach is conceptually clear, implementing even pieces of 

it successfully remains more an art  than  a science. Future progress in this area will depend 

upon establishing systematic  answers to two very broad questions: 

(1) How does one derive the hierarchy of equations? 

and (2) How can one "match" solutions between the various levels of the hierarchy? 

Let me discuss briefly various aspects of these questions. 

The first step in establishing the hierarchy of equations - deriving an approximate  PDE 

for specific types of flows - has by now become fairly systematic 17'3~. Although the details 

natural ly vary f rom case to case, two broad classes of approximate  equations have emerged. 

The first, known as "ampli tude equations" - of which the complex Ginzburg-Landau equa- 

tion is an example s4 - are generally valid near the onset of a part icular  instability; in a sense, 

the ampli tude equations at the non-equilibrium analogs 3s of the phenomenological equations 

describing phase transitions sg. The second, known as "phase equations",  apply in the case 

of slow spatial  modulat ion of a sys tem in which there is a dominant  wave vector - call it 

k0 - so tha t  there exists some spatial periodicity. Such "phase equations" can be viewed 
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as the non-equilibrium analogs ss of hydrodynamics, which applies to the low-frequency, 

long-wavelength motions near equilibrium. 

Of course, "phase" and "amplitude" equations can, in some cases, arise in combined 

forms. An example discussed in the present proceedings is a set of coupled equations de- 

scribing the evolution of coherent structures in shear flows and having the form 4° 

aAat = i~a - IAI'A 4- ~ -t- ,7-~z 2 A - i A (1.a) 

o ( a, a' ) a, 
+ ¢ = (1.b) 

For a full explanation of the interpretation, see Ref. (40). Our purpose in writing these 

equations explicitly is in part to emphasize that the approximate PDE's need not appear 

simpler than the original Navier-Stokes equations to represent in fact a simplification. 

The second step in establishing a hierarchy of equations - deriving a finite dimensional, 

coupled ODE description of the approximate PDE's - is (partially) illustrated in these 

proceedings in the case of the Kuramoto-Sivashinsky equation ~ and has also been (partially) 

carried out in the case of the complex Ginzburg-Landau equation 34. I stress "partially" 

carried out because although the existence of a finite dimensional inertial manifold has been 

proven, the explicit equations governing the motion on it have not been established. 

The final possible step in the hierarchy of equations - reduction of the coupled set of 

ODE's, via universality, to the simplest example of a given universality class - typically 

can be expected to hold only for certain limited parameter ranges and thus remains very 

problem specific. Actually, deriving such reductions - predicting, for example, for which 

parameter ranges the damped, driven pendulum will exhibit a period-doubling transition to 

chaos 41 - remains an open problem. 

In general, the issue of "matching" solutions between the various levels in the hierarchy 

represents terra in¢ognita and as such is clearly an important area for future work. An 

example 42 will suffice to indicate both the difficulty and the importance of this "matching" 

problem. Suppose, for example, one level of approximate equations supports spatial struc- 

tures which become singular in finite time: a familiar case is the two-space dimensional 

(cubic) nonlinear Schroedinger equation (NLSE), for which the localized, "self-focusing" 

solutions - the analogs of the solitons in the one dimensional NLSE - do blow up in fi- 

nite time. As these solutions collapse, they transport their energy from large spatial scales 

(small k) to very small spatial scales (large k). Clearly understanding a single, identifiable 

- and possibly "isolatable" - nonlinear mode that cuts across a range of spatial scales is of 

considerable importance for general turbulence modeling. However, as the solution becomes 

singular, one expects that physical effects not incorporated into the approximate model will 

enter to prevent this singularity. To follow the flow beyond this point, one must "match" 

onto the (higher level) equations incorporating these additional physical effects. Thus the 

"matching" problem across the hierarchy can be absolutely critical to the whole approach. 



550 D. Campbell / Chaos. chto delat? 

A concrete, albeit qualitative, example of an a t t empt  to unders tand turbulence via 

this hierarchy of equations and matching approach is the "turbulence engine" suggested by 

Yakhot and Orszag in these proceedings 43. A three-dimensional,  turbulent ,  nearly Beltrami 

(~ × ff ~ 0) in which energy is t ranspor ted  from small k to large k becomes unstable via 

a hyperscale instability and leads (with appropr ia te  matching assumed) to a quasi-two- 

dimensional flow. Here a rapid energy build-up from large k to small k occurs, and a 

secondary instability leads back (via another  matching problem) to the three-dimensional 

nearly Beltrami flow, and the cycle repeats.  The central role tha t  detailed matching would 

play in the quantification of this scheme is obvious. 

Finally, in searching for more insight into the relation of chaos and turbulence, one must  

always be a t tuned to novel approximations or calculational techniques. Recent examples, 

many  of which were discussed at the meeting, include renormalization group methods 43, 

"cellular a u t o m a t a ' / " l a t t i c e  gas" models for hydrodynamics  44, the use of (real space) lattices 

of point vortices 45, and "vortex tube" dynamics 46. 

V. CHAOS AND C O H E R E N T  STRUCTURES:  P A T T E R N  S E L E C T I O N  

As I have already suggested briefly in the introduction, "solitons", or more generally 

"coherent s tructures" - tha t  is, spatially localized, long-lived nonlinear excitations - are 

a striking but  remarkably  common feature of spatially extended nonlinear systems. These 

coherent s tructures can dominant  the long-time behavior and are thus, in a sense, the natural  

"modes" of the system. It is therefore equally natural  to ask how these coherent structures 

can interact with the chaos tha t  we now know is also a common feature of nonlinearity 47. 

This question looms as even more important  when one recognizes the possible connection 

between coherent structures,  viewed as spatial  nonlinear "modes",  and the process of "mode 

reduction",  described in Section IV as a key ingredient in the potential  relation between 

chaos and turbulence. Explicitly, to what  extent can one identify the coherent structures 

with the spatial  modes described by the reduced equations ? 

Considerable progress has recently been made in answering this question, but  in view 

of its broad scope it nonetheless promises to remain one of the most  impor tant  and exciting 

challenges in studies of chaos for years to come. One clear line of a t tack is to s tar t  with a 

sys tem tha t  has exact solitons - the sine-Gordon or nonlinear Schroedinger equations, or 

the Toda lattice, for example - , per turb  the system by damping and driving, and then 

look for evidence of chaos. In the case of the sine-Gordon equation, this approach has been 

investigated extensively 4s and a very rich phenomenology has been developed. This general 

approach,  of course, is intended to work in a regime of "strong" nonlinearity in the sense 

tha t  it requires the "soliton" modes to be the dominant  coherent structures.  

An al ternative approach,  which in a sense starts  from the weakly nonlinear limit, is 

aimed at systems where some mechanism causes very strong growth in some linear - typically 

Fourier - modes while damping others. A clear example discussed in these proceedings is 
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the effective "negative viscosity" in systems like the Kuramoto-Sivashinsky equation ss. As 

noted above, here one can establish that  even for the partial differential equation (in a finite 

box !), only a finite number of modes are necessary to capture the long-time dynamics. 

Further,  in many regions of the parameters,  interesting bifurcation sequences leading to 

chaotic motions arise ss. An essential subtlety, however, is tha t  the modes that  diagonalize 

the asymptot ic  "inertial manifold "ss are not quite the Fourier modes themselves, so the 

precise nature  of the coherent structures is not immediately known; this is in clear constrast 

to the "soliton" case discussed above. Nonetheless, particularly in view of the recent success 

in extending this approach to other systems - for example, the complex Ginzburg-Landau 

equation s4 - this method  promises to be very important  in future studies of the interaction 

of chaos and coherent structures.  

Between these two limits there are numerous examples of coherent structures in non- 

linear systems, many of which are t reated in these proceedings. The convection rolls in 

fluid experiments n,ls,~7,44,s° come immediately to mind, as do the vortices 45 and the ir- 

regular structures in turbulent  boundary layers s6. Even singular solutions can play a role 

as (transient) coherent structures; examples include the collapsing "cavitons" of the two- 

dimensional nonlinear Schroedinger equation discussed in Section IV and the (near singular) 

vortex filaments tha t  emerge in the numerical simulations of the Red Spot of Jupi ter  4s. A 

less visually apparent  possible coherent s tructure is the "helicon" - an object obtained by 

averaging over bands in Fourier space with ~' parallel to c~ (the vorticity) - discussed by 

Orszag 4s. Incidentally, as this last example suggests, if you are lucky enough to discover a 

novel coherent structure,  history shows that  you should pay special a t tent ion to naming it 

properly. The  celebrated "solitons", discovered by Martin Kruskal and Norman Zabusky sl 

in their asymptot ic  and numerical studies of the Korteweg-de Vries equation, had actually 

been "seen" - in  the form of localized, nonlinear, kink-like waves that  preserved their form 

exactly under  collisions - in earlier analytic studies of the sine-Gordon equationS2! But they 

were not  properly named! 

In all these examples, the central issue is to identify a dominant coherent s t ructure and 

then to understand its role in the chaotic or turbulent  motion, first qualitatively and then 

quantitatively. In general, this last step is a wide-open problem and represents one area of 

great importance for future research. Among the specific issues that  come to mind are 

• What is the nature of the interactions among the coherent 

structures? Can one write effective equations that capture the 

essence of these interactions? Clearly, these questions are a 

restatement of the problem of "hierarchies of equations" discussed 

above; the reappearance of these questions here correctly 

reflects the crucial importance of coherent structures for understanding 

the relation between chaos and turbulence. 
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To what  extent can one expect "superposition" of these coherent 

s t ructures  to apply, and in what  "space"? The expansions 

of the velocity field in a fluid into a sequence of Beltrami 

components  43 and of a solution to the damped,  driven 

sine-Gordon equation into "inverse spectral  t ransform" modes 4s - 

"breathers" ,  "kinks", and "radiation" - illustrate tha t  

superposi t ion may be valid, even if not naively in real space. 

• Can one establish the "long-time" dominance of coherent s tructures 

and, if so, on what  t ime scales? Here one must  recognize the 

distinction between rigorous asymptot ic  results - as for the 

Kuramoto-Sivashinsky equation ss - and the (often physically more 

relevant) dominance over long, but  not infinite, times. 

In a large aspect  rat io finite system, or more generally in an open flow system, the num- 

ber of coherent s t ructures  can be very large. Further,  these structures,  part icularly when 

driven by chaotic dynamics,  can arrange themselves in a bewildering array of pat terns.  A 

very clear visual example  of this is provided by Fig. 2 of reference 12, which shows just  a 

few of the many  pat terns  observed in experiments on Rayleigh-Benard convection in a high 

Prandt l  number  fluid. The resulting "pat tern  selection" problem is one tha t  exists in virtu- 

ally all spatially extended, chaotic nonlinear systems. Although exciting prel iminary results 

are beginning to appear  4°,5s, this problem promises to occupy both  theoretical and exper- 

imental "chaoticians" for years to come, for it is one of the central  problems of nonlinear, 

nonequilibrium systems. Here, some obvious but difficult specific questions include 

• To what  extent  can one view the static pa t terns  as multiple 

(perhaps nearly degenerate) min ima in a (vague) "accessibility" 

space? Is there an analog, at least for some of these nonequil ibrium systems, 

of the "free energy" functional for equilibrium systems ? 

• What  is the dynamics of the competi t ion among patterns4°,53? 

Can one define basins or a t t ract ion for the "minima" 

corresponding to the pat terns  ? Do these basins have the 

complicated (fractal) boundaries observed in simpler finite 

dimensional dynamical  systems54? Can one in some cases 

find a Lyapunov functional that  allows determination of the 

"winning" pat tern?.  

• In systems with constrained geometry (see, for example,  12, 

can one unders tand quanti tat ively the observed selection of more 

symmetr ic  pa t terns  over less symmetr ic  ones? Here the analogy 

to "pinning" phenomena  in commensura te / incommensura te  solid 

s tate  transitions should be useful 55. 
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Although I have thus far focused my remarks on fluid problems, it is important to note 

the broad impact of the pattern selection question. In these proceedings the problem of 

dendritic growth 5e'57'Ss was shown to depend critically on a pattern selection mechanism 

that is exquisitely sensitive to anisotropy and to extrinsic noise 59. Further, in solid state 

physics applications, an important issue not yet fully resolved is that of the nature of the 

communication between patterns. Since here one does not have the Navier-Stokes equations 

to rely on as a macroscopic model, one cannot simply naively assume diffusive coupling but 

must look closely at various competing mechanisms 15'6°. 

VI. CHAOS AND STATISTICAL MECHANICS 

For over a century, successive generations of mathematicians and physicists have sought 

a rigorous, or at least fully compelling, answer to the fundamental question of statistical 

mechanics: how does one go from a reversible, Hamiltonian microscopic dynamics to the 

irreversible, "ergodic", "thermal equilibrium" motion assumed in statistical mechanicsSl'S2? 

The chaos revolution, with its sharp quantification of deterministic chaos and its predictions 

of "sensitive dependence on initial conditions" and long time behavior "as random as a coin 

toss", clearly offers a renewed prospect of answering this question. However, despite this 

strong intuitive connection, a full understanding of the relation between chaos and statistical 

mechanics is not yet at hand. In this section I will discuss briefly several issues related to this 

problem and try to indicate why it remains one of the most subtle and profound challenges 

in studies of chaos. 

Let me start with a somewhat more focused version of the general question being ad- 

dressed: "What is the minimum necessary set of conditions/circumstances/features for a 

large (but not necessarily infinite) degree of freedom system described by a Hamiltonian 

involving realistic interactions among the sub-systems to exhibit (at least effectively) the 

features we associate with statistical mechanics, for example, time averages -- ensemble 

averages ?" 

To confront this question, we must first shift our focus from dissipative dynamical sys- 

tems - to which the bulk of this overview has been devoted - to conservative (indeed Hamil- 

tonian) ones. This has a number of important (and generally complicating) consequences. 

First, and most importantly, for most (finite dimensional) Hamiltonian systems, the KAM 

theorem 63 shows that, in addition to "chaotic" regions of phase space, there are non-chaotlc 

regions of finite measure. These invariant tori imply that ergodicity does not hold for most 

finite dimensional Hamiltonian sytems. Second, the (few) Hamiltonian systems for which 

the KAM theorem does not apply, and for which one can prove ~ ergodicity and the ap- 

proach to thermal equilibrium, involve "hard spheres" and consequently contain interactions 

which are not "realistic" from a physicist's perspective. Third, because of the absence of 

"attractors", the numerical simulations needed to stimulate intuition are often more subtle 19 

than in the dissipative case. Further, when one does perform such experiments - as in the 

celebrated Fermi-Pasta-Ulam problem e5 - the dominant feature, despite non-integrability 
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and the presence of chaos, can be "solitons" and surpising recurrences of the initial state61! 

Finally, in finite dimensional systems it is in general possible for the paths in phase space 

to wander among the chaotic regions - and hence to explore "most" of the energy surface 

- via "Arnold diffusion "6s,~. But calculating the resulting "Arnold web" is a very difficult 

and subtle task even in simple systems. 

For many years, most researchers have believed that  these subtleties become irrelevant 

in the "thermodynamic limit" in which the number of degrees of freedom (N) and the 

energy (E) go to infinity such that  e = E /N  remains (a non-zero) constant.  For instance, 

the KAM regions of invariant tori may approach zero measure in this limit. However, 

recent evidence suggests 67 that  there may exist (non-trivial) counterexamples to this result. 

Given the increasing sophistication of our analytic understanding of chaotic dynamics and 

the growing ability to simulate numerically systems with large N, the time seems ripe for 

quantitat ive investigations that  can establish (or disprove !) this belief. Among the specific 

issue which should be addressed in a variety of physically "realistic" models are 

• How does the measure of phase space occupied by KAM tori depend 

on N? Is there a class of models with realistic interactions for 

which this measure goes to 0? Are there (non-integrable) models 

for which a finite measure is retained by the KAM regions? If so, 

what are the characteristics that  cause this behavior? 

How does the rate of Arnold diffusion depend on N in a broad 

class of models? What  is the s tructure of important  features 

- such as the Arnold web - in the phase space as N approaches infinity? 

• If there is an approach to equilibrium, how does the time-scale 

for this approach depend on N? Is it less than the age of the 

universe? 

Currently there is considerable work in this area, and many results are beginning to 

appear eT'ss'eg. Limitations of space and the detail required to make precise the various 

assumptions preclude fuller discussion here. But clearly this is an exciting, and profound, 

area for future research in chaos. 

To render these fairly abstract considerations somewhat more concrete, let me present 

a specific example that  nicely illustrates the subtlety of the integrabi l i ty/chaos/KAM is- 

sues in models of physical systems with many degrees of freedom. This example involves 

"effects beyond all orders" in perturbat ion theory, and apart  from its relevance to the rela- 

tion between chaos and statistical mechanics, is particularly appealing because of its strong 

conceptual connection to several other topics discussed in these proceedings. The general 

problem concerns a comparison of the type of "coherent structures" possible in integrable 

versus non-integrable "classical field theories", which in mathematical  terms are just  non- 

linear PDE's  and hence model dynamical systems with an infinite number of degrees of 

freedom. The specific question posed (and answered (!)) in an important  recent s tudy z° 

is, "Does the (non-integrable) ¢4 theory possess a "breather" solution analogous to that  
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found in the (integrable) sine-Gordon theory?" Recall that the sine-Gordon "breather" is 

a spatially (exponentially) localized, time-periodic nonlinear coherent structure having the 

explicit analytic form 

UB (X, t) = 4tan -i \<o h6 l  vY-4-  ) (2.a) 

where the approximate equality holds for small 6. By direct differentiation, one can verify 

tha t  eqn. (2.a) represents an exact solution to the (unperturbed) sine-Gordon equation, 

utt -- u== + sinu = 0 (3) 

As we indicated earlier, the role of the breathers in the temporal  chaos and spatial complexity 

of the damped,  driven sine-Gordon equation has been extensively studied recently *s. 

At issue in To is whether  the ¢4 equationTt 

¢ .  _ ¢ : ,  _ ¢ + Cs = 0 (4) 

also can support  a breather  solution. Since ¢4 is known to be non-integrable 72, one does not 

expect  to  find a closed-form analytic expression for such breathers.  However, using multiple 

scale techniques 7s,z4 similar to those used to derive the "amplitude equations" discussed 

in Section IV 17,s7, one can search for breathers in terms of an (asymptotic) per turbat ion 

expansion in the ampli tude of the breather.  Explicitly, one defines Cs = 1 -t- zB and expands 

Z B as 

z s  6 [A(X,  T),  + + (5) 

Here X and T represent scaled variables X=e  x and T = 62t. The resulting "amplitude 

equation" for A(X,T) is the celebrated nonlinear Schroedinger equation (NLSE) 

OA O1A 
i2v"2--~ - OX' - 12IAI'A = 0 (6) 

which admits (exponentially) localized solutions - the solitons - for A. Specifically, one finds 

/]- ;r 
A(X,T)  = V :~sechXe-7-~ (7) 

so that (to this order in 6) zB ix,t) does represent a breather solution in the sense defined 

above. Importantly, if one applies the same multiple scale technique to the sine-Gordon 

equation, one again obtains the NLSE (with trivially different coefficients) as the leading 

order amplitude equation; one immediate indication of this is the form of the small e ex- 

pansion of Us in eqn. (2.b). Further, carrying out the expansion to all orders in 6, one 

finds that both Cs and us remain localized in space and periodic in time; at no order in 

does one see a distinction between the "breather" solutions to the integrable versus the 

non-integrable case. 

And yet there is a difference. Using asymptotic matching techniques, one can show ~° 

that in the 4b 4 theory there are "effects beyond all orders" in e, so that the true solution to 
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which zB is asymptotic has the form 

~ , , e  = z~ + c l e - ° ' / ' c o ,  Ckox - wot) + - . .  (8) 

where wc = 2 v ~ ( 1 - e 2 / 2 ) ,  kc -- V / ~  2 -  2, and cl and e2 are two (non-zero) constants. Hence 

ztr~e is not localized in space and in the ¢4 theory there is in fact no true "breather" solution. 

The "miracle" of the integrable sine-Gordon case - for which Eq. (2.a) represents an exact, 

closed-form solution - is that  when similar "beyond all order" techniques are applied to 

it, the constant analogous to C1 vanishes identically (as do all higher order non-localized 

terms). 

Why is this illustration relevant to our discussion of chaos and statistical mechanics and, 

more generally, of chaos itself? There are several reasons. First, it illustrates the subtlety of 

the integrable/non-integrable(and hence potentially chaotic) distinction in the many-degree- 

of-freeom systems relevant to statistical mechanics (and the thermodynamic limit). Second, 

very recently a conceptually related "beyond all orders" analysis 7s has shown rigorously that  

for a certain driven one-degree of freedom Hamiltonian system, the splitting of separatrices is 

also of order e-~,. Among the implications of this result are that  similar "beyond all orders" 

splittings should occur in separatrices in KAM theory and in the unfolding of degenerate 

singularities in certain cases involving the interaction of bifurcations. Third,  in Section V, 

I indicated that  the problem of dendritic growth s6'5~'s8 represents a spatial analogoue of 

the "sensitive dependence on initial conditions" characteristic of deterministic chaos. In 

fact, as shown in these proceedings 67 and e lsewherJ  6, "beyond all orders" effects occur 

in these systems and can play an essential role in the growth of dendrites. Fourth, in 

view of the similarity of the derivation of Eq. (6) to the s tandard amplitude equations 

discussed in Section IV, one must always be aware of the possibility that  similar beyond 

all order effects could be present. Here, however, the distinction between conservative and 

dissipative systems may be crucial. Finally, studies of the role of "coherent structures" in 

chaotic nonlinear systems must take account of the (very long but  finite) life times induced 

by these O(e-~) effects. In sum, the phenomena of effects "beyond all orders in perturbat ion 

theory" and the associated techniques are subjects about which students of chaos should be 

knowledgeable, for they promise to play an essential role in many future problems related 

to chaos. 

VII. CHAOS AND QUANTUM MECHANICS 

Many would argue that  the less said about  the often controversial subject of "quantum 

chaos" the better.  I do not agree, and I believe that  anyone who studies the articles de- 

scribing a quantum version ~ of the classical stadium problem, suggesting a novel "quantum 

chaotic" underpinning for resistivity in solids ~s, and reporting on the chaotic ionization of 

hydrogen atoms ~9 will discover how subtle yet exciting this subject can be. It is essential, 

however, to proceed from a clear starting point. To this end, I offer for consideration an 

unambiguous, albeit obvious, definition of "quantum chaos": namely, "quantum chaos" is 



D. Campbell / Chaos: chto delat? 557 

the study of the quantum mechanics of those systems whose classical Hamiltonians allow 

chaotic motion. A good example in this spirit of tying quantum and classical chaos di- 

rectly together is the discussion of the role of unstable periodic (classical) trajectories both 

in "scarring" the quantum wave functions (or probability densities) ~ and in analyzing the 

structure of the strange sets in purely classical problems 6. 

VIII. CONCLUSIONS: CHAOS: CHTO DELAT? 

From the extensive lists of open problems discussed in the previous sections, it is clear 

that the brief answer to my question ~Chaos: Chto Delat?" is simply "Much !'. In a 

broad array of subjects, ranging from fluid turbulence to semiconductors and from stability 

of the solar system to multiofractal strange sets, an exciting set of challenges awaits future 

researchers. Further, since the organizers of CHAOS '87 correctly chose to focus primarily 

on topics from mathematics and the natural sciences - areas in which the impact of chaos has 

most strongly been felt - a number of other subjects in which chaos may play a role could be 

mentioned only in passing, if at all. In particular, there were no detailed discussions of the 

implications of chaos in, for example, engineering or medicine s°, let alone economics or the 

social sciences. As the field of deterministic chaos matures, recognition of its implications 

will continue to spread to other disciplines, opening up still further questions that we can 

at present hardly anticipate. In this sense, the chaos revolution is only beginning, and we 

can all look forward with enthusiasm to a continuing role as revolutionaries. 
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