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A continuum model of a Peierls-dimerized chain, as described generally by Brazovskii and 
discussed for the case of polyacetylene by Takayama, Lin-Liu and Maki (TLM), is considered. The 
continuum (Bogliubov-de Gennes) equations arising in this model of interacting electrons and 
phonons are shown to be equivalent to the static, semiclassical equations for a solvable model field 
theory of self-coupled fermions- the N = 2 Gross-Neveu model. Based on this equivalence we note 
the existence of soliton defect states in polyacetylene that are additional to, and qualitatively 
different from, the amplitude "kinks" commonly discussed. The new solutions do not have the 
topological stability of kinks but are essentially conventional strong-coupling polarons in the 
dimerized chain. They carry spin (½) and charge (±e).  In addition, we discuss further areas in 
which known field theory results may apply to a Peierls-dimerized chain, including relations 
between phenomenological q~4 and continuum electron-phonon models, and the structure of the 
fully quantum versus mean field theories. 

1. Introduction 

The subject of intrinsic defect (or inhomogeneous) states in conjugated polymers 
has received close renewed attention in the last two years, both experimentally and 
theoretically [1]. The simplest case is that of dimerized polyacetylene ((CH)x) and 
this has been studied in especial detail [2], including possible soliton (defect)-based 
doping and transport characteristics, which are of great technological potential [2]. 

Previous discussions [1-10] have focused almost exclusively on the kink-like 
soliton states. These appear as extended structural inhomogeneities in the C-C 
backbone of (CH)x interpolating between the two degenerate dimerized phases of 
trans-(CH)x. Again, most treatments have viewed (CH)~ as a prototype Peierls- 
dimerized system, neglecting electron-electron interactions. Within the Peierls 
electron-phonon interaction models, band-gap electronic defect levels, necessarily 
accompanying the structural distortions, are readily determined. With further analy- 
sis, spin characteristics can also be identified. In their theoretical analysis, Su, 
Schrieffer and Heeger [3] (SSH) worked directly with a discrete lattice, adiabatic 
mean-field hamiltonian and imposed a hyperbolic tangent (tanh) kink form on the 

* Work performed under the auspices of the US DOE. 
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staggered atomic displacement coordinate (the Peierls amplitude order parameter). 
Using standard 1-electron Green function theory, they identified the associated 
electronic defect level and numerically optimized the tanh profile. This suggested a 
defect ~ 15 C-C units wide so that for most properties discrete lattice effects are not 
expected to be important. It is, therefore, not surprising that Brazovskii [5] and 
Takayama, Lin-Liu and Maki [6] (TLM) have obtained many of the SSH results 
working in a continuum limit of the SSH model. Brazovskii and TLM show that the 
tanh order-parameter profile is an exac t  solution (in the continuum limit) of the 
self-consistent equations of motion for phonon and electron operators determined in 
a variational scheme. Although lacking realistic discreteness, this approach has the 
important advantage of being analytic and therefore is a very useful guide to studies 
with more complete harniltonians. The approach has, for instance, been used to 
study widely separated kink-antikink pairs [11] as well as soliton "lattices," [7] which 
may play a role in understanding the insulator-metal transition observed [2, 7, 9] 
under doping in (CH)x. 

A less immediate but potentially valuable feature of the continuum model is the 
connections that exist between it and certain model field theories. It is these 
connections that we wish to explore and exploit in this paper. Some important 
aspects of these connections have been noted elsewhere [7, 12] and suggest that a 
useful dialogue can be established in this area between field theory and condensed 
matter physics. In particular, we expand here on the previous observation [13]* that 
a formal equivalence between the equation of a relativistic model field theory and 
the continuum model of a Peierls-dimerized chain allows one to predict the existence 
of new inhomogeneous states in materials such as (CH)x. These states (which are 
essentially strong polarons**) have, in fact, been seen very recently in discrete 
lattice simulations [15]*** and are in good agreement with the continuum theory 
[13]. In addition, based on recent model field theory studies, we comment on the 
usefulness of phenomenological q~-four (q~4) field theory descriptions of poly- 
acetylene which have been advocated by some authors [8-10] and questioned by 
others [3, 6]. 

* Although the emphasis  in these two articles is quite different, the major new results in each is the 
existence of the polaron excitation within the standard cont inuum model of (CH)x; the results of the 
two calculations of this excitation are in complete agreement. 

** It is straightforward to construct a conventional 2-band polaron theory for the Peierls-dimerized 
chain. This will be reported separately (see also ref. [14a]). Here we only note that, as is common in 
one-dimensional polaron theories (e.g., ref. [14b]), certain approximations reduce the polarons to 
solutions of a non-linear Schr~zlinger (NLS) equation. Recall that NLS is a valid description of 
extended, small amplitude breathers of both sine-Gordon and q~4-1ike models. We emphasize that the 
strong-coupling polaron solution (3.8) solving the T L M  equations is distinctly non-perturbative. The 
static polaron solution found in sect. 3 is, of course, the lowest member  of a polaron band. This band 
corresponds to the dynamic NLS solitons or to the (CH)x analogs of the Gross-Neveu breathers 
discussed in sect. 4. Finally, we note that polarons do not require degenerate ground states as do 
kinks. Thus  they can be anticipated as stable excitations in a much  more general class of conjugated 
polymers than trans-(CH)x, including cis-(CH)x (c.f. Brazovskii and Kirova, ref. [13]). 

***  We are especially grateful to these authors for detailed discussion of their results. 
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More specifically, we note an exact formal equivalence between the 
Brazovskii/TLM continuum equations [5, 6] for (CH)x and the static, semiclassical 

equations for a recently studied solvable model field theory: the N = 2 Gross-Neveu 
model [16, 17]. Using this equivalence, we establish the existence of localized 
solutions additional to, and qualitatively different from, the amplitude kinks on 
which previous discussions have focussed. These new localized solutions imply .the 
existence of further soliton-like excitations (polarons) in polyacetylene. From a 
solid-state perspective the polaron state is entirely expected qualitatively. However, 
the field theory connection offers the clearest derivation and allows us to unify kinks 
and polarons within the same model. In the present article we shall concentrate on 
presenting the polaron solutions and clarifying the equivalence that has led to their 
discovery. In sect. 2 we introduce the continuum model for polyacetylene and show 
that, in the mean field approximation, it leads to a set of coupled equations-also 
called [6] the Bogliubov-de Gennes equations-relating the electron and phonon 
fields. We then show that these same equations have recently arisen in the study of 
the static solutions to the semiclassical equations of the N-----2 Gross-Neveu field 
theory model. In sect. 3, we discuss the static solutions to the continuum equations 
for (CH)~ and, using the formal connection to the field theory model and known 
properties of its solutions, derive the explicit form of the polaron solution in 
polyacetylene. For completeness, in the appendix we present the necessary details of 
the construction of the polaron solution directly from the continuum, self-consistent 
electron phonon equations for (CH)~. In sect. 4 we pursue this field theory 
connection further by stressing that, beyond this explicit but limited quantitative 
equivalence of the static equations, there are a number of known or potential 
qualitative similarities among the Gross-Neveu, self-consistent, continuum electron- 
phonon, and q~4 (coupled to fermion) models, including time-dependent properties 
and solutions. Finally, we speculate on the possible implications of field theory 
models for the fully quantum mechanical treatment of the properties of poly- 
acetylene. In sect. 5 we conclude with a discussion of questions and problems for 
further research. 

Since one of our aims will be to bridge the gap between the condensed 
matter/many-body and field theory languages, we attempt in the following sections 
to give more detail than might be necessary in an article for specialists in either 
discipline separately. Nonetheless, since we must begin somewhere, we assume that 
serious readers will at least peruse the articles describing the SSH lattice model of 
polyacetylene [3], its continuum limit [5-7] and the semiclassical analysis of the 
Gross-Neveu model [16] before studying our results in detail. 

2. The continuum electron-phonon and Gross-Neveu models 

In this section we introduce both the continuum electron-phonon model of a 
Peierls-dimerized chain and the Gross-Neveu field theory and establish an exact 
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formal equivalence for the static, semiclassical (mean field) equations of these 
theories. Since polyacetylene is the prototype Peierls-dimerized material, we shall use 
these nomenclatures interchangeably. 

Beginning from the lattice hamiltonian of SSH, a sequence of approximations 
described (for example) by TLM leads in the continuum limit to an effective 
adiabatic mean-field hamiltonian in terms of the (real) gap parameter A and electron 
field W of the form 

<,.,a, 

= f a y  a2( y ) -- ivFu( y )-g-fiy ( y ) + ivFv( y )-gfiy ( y ) 

+ •(y)[u*(y)v(y) + v*(y)u(y)]}, (2.1b) 

where ~o~/g z is the net effective electron-phonon coupling constant [3, 6], oi; is the 

(u(Y)).ForconsistencywiththenotionofTLMwe i th Pauli matrix and q '(y)  = v (y )  

have suppressed the electron spin index, s. Variation of H with respect to the 
electron field yields the equation of motion for the single-particle electron wave 
functions, 

O 
E,u,(y) = --iv,-~-fiyU,(y) + A(y)%(y), (2.2a) 

a 
E.v.(y) = +ivv-gfyV.(y) + A(y)un(Y), (2.2b) 

whereas variation of H with respect to A leads to the self-consistent gap equation 

_ _g___~2 ~ '  (v*(y)un(Y) + u*(y)vn(y)). (2.2c) 
2 ,4  . , ,  

Here, for undoped (CH)x, the summation is over the two spin states (labeled by s) 
for every energy level (labeled by n) in the valence band; thus the sum is up to the 
Fermi energy, which is chosen to be zero. In eq. (2.2c) the wave functions are 
assumed to be normalized to unity: 

f ?  dY{lu~(y)[ 2 +[Vn(Y)] 2} = 1. (2.3) 
0C 
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Eqs. (2.2), which form the basis of the continuum model of polyacetylene, are 
referred to by TLM as the Bogliubov-de Gennes equations. This terminology stems 
from their earlier appearance in the theory of inhomogeneous superconductors [18]. 
To make the present application to polyacetylene clear, we shall henceforth refer to 
them as the self-consistent, continuum electron-phonon equations. 

Perhaps the most striking change in going from the lattice to the continuum 
theory is in the single electron spectrum. The naive lattice mode l - tha t  is, the lattice 
model before Peierls distortion effects are included-has  the typical band structure 
spectrum of a periodic system; in (CH)x, the band is exactly half-filled, as shown in 
fig. 1 a, and, naively, polyacetylene appears to be a metal. When the ground state of 
the lattice theory is actually calculated [3], the Peierls distortion effects produce a 
gap in the spectrum at the Fermi surface, as shown in fig. lb. Since the lower 
(valence) band is full, (CH)~ is, in fact, an insulator. 

To obtain the continuum model, one linearizes the electron spectrum around the 
Fermi surface. This leads to the (apparently) linear, gapless (Luttinger-like) spectrum 
shown in fig. lc and (apparently) reflected in eqs. (2.2a) and (2.2b), in which, 
assuming A(y)----0 in the ground state, the electron spectrum appears to be simply 
E(k )  -- +-kv F. However, if one actually solves for the ground state in the continuum 
model, one finds explicitly that the Peierls distortion leads to a (uniform dimerized) 
ground state with A = A 0 v ~ 0, so that a gap of 2A 0 emerges between the (filled) 
valence band and the (empty) conduction band; this is illustrated in fig. ld. 

Although we shall reserve for sect. 3 most of our discussion of the solutions to 
(2.2), for purposes of establishing clearly the equivalences with the field theory 
model we need to exhibit here the explicit form of the ground-state solution to (2.2). 
One finds [5, 6] that A ( y ) =  A 0, where A 0 is related to the other parameters of the 
theory according to 

A o = Wexp(--~rvFo~/g 2). (2.4) 

Here W, the full band width, is related, as indicated by figs. lc, ld, to the wave 
vector cut-off K by 

W=2(K2V2F+A2o~-2Kv v. (2.5) 

The approximate equality in (2.5) assumes Kv F >> A0, a weak coupling limit reason- 
ably satisfied in (CH)x where [3, 6] W-~ 10 eV, Ao--~0.75 eV. The normalized 
electron wave functions in the valence b a n d - t h a t  is, with E n < 0 - a r e  labeled by a 
continuous wave vector, k, and have the form 

un( x ) :-- u( k; x ) = N~eikX( --VFk + ~ + AO k , (2.6a) 

) 
VF k 

(2.6b) 
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,,,= E . - E ( k ) = - , , , ,  

N ~ = I  1 ( 2o) . 

(2 .6c)  

(2 .6d)  

By d i rec t  e v a l u a t i o n  of  the  r i g h t - h a n d  side of  eq. (2.2c) us ing  the  e l ec t ron  w a v e  

f u n c t i o n s  in eq. (2.6), o n e  can  show tha t  this se l f -cons i s ten t  gap  e q u a t i o n  is sa t is f ied 

fo r  A = A 0 g iven  b y  e q u a t i o n  (2.4) [6]. 

Ac tua l ly ,  eqs. (2.2), th in ly  disguised,  have  recen t ly  ar isen  in ye t  a n o t h e r  con tex t :  

name ly ,  t hey  are  exac t ly  e q u i v a l e n t  to the  static vers ions  o f  the  semiclassical 

e q u a t i o n s  [16] of  the  N =  2 G r o s s - N e v e u  m o d e l  f ie ld  t heo ry  [17]. T o  see this 

equ iva l ence ,  we recal l  tha t  the  G r o s s - N e v e u  m o d e l  is a one-space ,  o n e - t i m e  d i m e n -  

s iona l  t h e o r y  o f  se l f -coup led  fe rmions ,  de sc r ibed  by  the  re la t iv is t ic  l a g r a n g i a n  

dens i ty  

E ( x )  = ~ ~ ' ~ ( x )  _ _  ,i , ,~(x) + , _ 2  ~ " ( x ) ' P ~ ( x )  (2.7)  ,~=1 t7~, Ox~ ~ g G N  ,~=1 " 

(a) 

W ~ L ,~(k) 

~-~ , , ', 
- . , , b  _ ', ', + , ,~b 

Fig. 1. Successive approximations to the single electron energy levels in (CH),.. (a) The apparent single 
electron spectrum of a half-filled band material, such as (CH)x, before the Peierls distortion effects are 
included. W is the full band width. Recall that in (CH)x, ~r/b = 2 k F" (b) A schematic illustration of the 
actual single electron spectrum in (CH)x after Peierls distortion effects are included. Note the gap, 2A 0, 
between the filled valence and empty conduction bands. (c) The approximate Luttinger-like (linear, 
gapless) electronic spectrum obtained by expanding the spectrum of (a) around k - k v and shifting the 
energy scale so that the Fermi energy is zero. The linear dispersion relation is E(k)= +-vvk. (d) The 
electronic spectrum produced from (b) when the Peierls distortion and, for (CH)x, consequent dimeriza- 
tion are included. The non-zero gap parameter, A 0, is determined self-consistently as described in the texL 
Note the relation among the full band width, W, the "cut-off" momentum, kF, and A 0, which relation is 

used in the discussion of renormalization in the text. 
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Here 3'~ (/~ = 0, 1) are the Dirac y matrices in two dimensions; we shall use the 
convention Yo =o3 and 7~ = icq. Recall that ~ = ,I, tTo . For each a, ,I, is a two- 

component Dirac spinor ' t ' =  ,t,2 ; the internal SU(N) symmetry index a = 

{1 ... . .  N} labels the "particle type." Apart from this internal symmetry, the 
lagrangian possesses a "chiral symmetry", in that it is invariant under qJ--, g / =  Ys~', 
with 75 ~- ~'0Yr This model was originally proposed [17] as an example of an 
asymptotically free* field theory exhibiting dynamical spontaneous symmetry break- 
ing of the chiral symmetry** [201. It has also been studied in the semiclassical 
approximation, and the complete particle spectrum has been calculated [16]. Re- 
cently, some exact properties of the full quantum field theory [21, 22], including the 
exact S-matrix, have been found [21]. For comparison to the continuum model of 
(CH)x, however, we need to concentrate only on the semiclassical results obtained by 
Dashen, Hasslacher, and Neveu [16] (henceforth DHN). In their calculation, the 
Gross-Neveu model was studied in terms of the (equivalent) lagrangian density 

Y. "I'°(x)-goNo(x) 2 
a = l  ~=1 

(2.8) 

The formal field equations resulting from this lagrangian are a Dirac equation 

)) l~/p. - -  gGNO(X x~ta(X)  = 0,  £g = 1 .... .  N, ( 2 . 9 a )  

and a "self-consistency" equation for o(x), which is schematically of the form 

o(x)  = - -gGN"~(X)~(X)""  (2.9b) 

m 

Here the quotation marks indicate that the formal expression '~(x)'~(x)must be 
correctly interpreted (see below). Already these equations, when written in terms 
of components xI'l(x ) and '~2(x), are qualitatively strikingly similar to the electron- 

* The adjective "asymptotically free" applied to a field theory means that the renormalization group 
effective momentum-dependent coupling constant, geff(q2), decreases to zero as the momentum 
squared, q2  approaches infinity. The interest in "asymptotic freedom" arises primarily because it has 
been shown that the non-abelian gauge theory currently thought to describe strong interactions- 
quantum chromodynamics (QCD)- i s  asymptotically free. Hence simpler theories exhibiting asymp- 
totic freedom are useful theoretical tools. See, for example, ref. [19]. 

** "Dynamical spontaneous symmetry breaking" occurs when quantum corrections of some sor t -  l-loop 
fermion corrections, in the Gross-Neveu model - lead  to a ground state which "breaks"- tha t  is, does 
not have - a  symmetry possessed by the original classical lagrangian. See refs. [l 7, 20]. We stress that 
in the semiclassical analysis of the GN only these l-loop fermion corrections are incorporated. In the 
fully quantum GN theory (see sect. 4), all quantum fluctuations are included. 



D.K. Campbell, A.R. Bishop / Soliton excitations 305 

phonon equations (2.2). To establish that this correspondence can indeed be made 
exact, we begin by noting that although the fermions in the lagrangians (2.7) and 
(2.8) appear formally massless, dynamical symmetry breaking [20] implies that the 
"free" solutions, to eqs. (2.9) have o(x) = o 0 # 0; this produces a mass gap and leads 
to the spectrum shown in fig. 2. A comparison of figs. 1 and 2 (correctly) suggests 
that this dynamical symmetry breaking is the analog of the (uniform) dimerization 
A(x) = A o in (CH)x. 

To pursue the equivalence further, we note that for a time-independent o(x) the 
Dirac equation can be studied [16] in terms of the stationary solutions defined by 
• t'~(x, t) = e-i~,ta,'~(n; x) for which eq. (2.9a) becomes 

• ~ }q'~(n; x) (2.10a) { 0)n~t0 ~- lVl ~X -- gGNO'(X) = 0, 

or, in terms of components, 

; ~ + ~ . , 60nXIt~(r/ X)  = xIt~(r/; x)  gGNO(X)q[ 1 (rl, X) 
o x  

(2.10b) 

,%q,;(n; x )  = - q , r ( , ;  x) -goNo(x)q,;(n; x). (2.10c) 

Here as usual a is the particle-type index. Eq. (2.10) is immediately seen to be 
precisely equivalent to the electron part of the continuum electron-phonon equa- 

g(k) 

/ \ 
Z (k) 

: 2%N % 

(a) (b) 

Fig. 2. Successive approximations to the energy spectrum in the Gross-Neveu model. (a) The apparent 
Luttinger-like (linear, gapless) spectrum for the single particle states of the Dirac equation in the 
Gross-Neveu model. Here A represents the ultraviolet cut-off required to define the theory precisely. (b) 
The actual "free" fermion spectrum of the Dirac equation in the Gross-Neveu model showing the 
presence of the mass gap induced by the dynamical symmetry breaking. Again A represents the required 

ultraviolet cut-off. 
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tions, (2.2a) and (2.2b), by making the transformations ~l-- '  ½(u + v), g/2--' -½ i (u  
- v), g~No --, A, and y -~ VrX and performing some straightforward algebra. 

To establish the equivalence of the Gross-Neveu self-consistency equation, (2.9b), 
and the self-consistent gap equation, (2.2c), requires a little more care. For clarity, 
we make the argument for constant o(x) = %. In this case, as shown by DHN, the 
correct interpretation of the formal equation (2.9b) is 

Z(A)°o  = --gGN E ~'*(n; x )g ' " (n ;  x) .  (2.10d) 

tOn<O 

In eq. (2.10d), Z(A) represents the ultraviolet renormalization-A is the ultraviolet 
momentum cut-off-necessary to cancel the divergence of the infinite (as A ~ oo) 
sum over xI,~I,. As indicated in eq. (2.10d), this sum is over all states-i.e., all 

~(n;x) satisfying eq. (2.10a)-with energy less than zero. Intuitively, it is clear that 
this "Dirac negative energy sea" must be filled completely, for otherwise the 
supposed ground state with o(x) -- o 0 would not be the lowest energy state. Clearly, 
the sum over the negative energy sea is analogous to the sum over the valence band 
in (CH)x. Further, note that the sum over et in eq. (2.10d)just introduces an overall 
factor of N, since the a dependence of eq. (2.10a) is trivial; this is just like the spin 
sum in the continuum electron-phonon equation. The explicit form of Z(A) is, as 
shown by DHN, 

2 
Z(A)  = . . ~  f0A dk (2.1 la) 

(k 2 + m2) 1/2 

gZN Nln A + f ~  + m 2 
- , (2.11b) 

tr m 

where m--g~Noo. The consistency of the Gross-Neveu equations (2.10) is easily 
demonstrated. The normalized negative energy solutions to (2.10a) are, for each a, 

where 

(it q'(n; x) = '~'(k; x) = N k i____~__k e 'kx, 
w - m !  

~o= + k ~ + m  2 , 

(2.12) 
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with m = goNoo. Thus 

' t ' (k;  x ) ' t ' (k ;  x )  = [ q ' , (k;  x)12 - I "I'd k; x)12 - 
?n 

2~r~0 ' 
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(2.13a) 

-~,~(n;x)xt, ,(n.x)=_ N fA  dkm (2.13b) 
' 2~r A ~  " Or, n ;  

~n<0 

Since m=gGNo o, the consistency of eq. (2.10d) follows immediately from eqs. 
(2.13b) and (2.11). 

Although this consistency is obviously directly analogous to that of the gap 
equation in (CH)x, establishing an exact equivalence between (2.10d) and (2.2c) at 
first appears to present a problem, for the renormalization factor Z(A)  in the field 
theory seems to have no counterpart in the condensed matter case. A bit more 
thought establishes that this is not a difficulty. In the solid state context if the limit, 
K, of the sum over wave vectors were allowed to approach infinity, a similar 
"divergence" would occur because the linearization of the dispersion relation about 
the half-filled band removes the true lower energy cut-off of the band. But as 
suggested by fig. 1, in the case of a dimerized chain, the consistency of the 
linearization approximation with the true spectrum requires the identification of the 
actual full band width, W, with the energy at the wave vector cut-off, K, as already 
indicated in eq. (2.5). Indeed, the relation between A 0 and W [eq. (2.4)] is just the 
requirement that the self-consistency equation for A be solved with a "renormaliza- 
tion constant" equal to 1. We can achieve a comparable situation in the field theory 
context by choosing o 0 such that 

m = gGN O0 = 2 A exp( -- vr/Ng~y). (2.14) 

Using this result, from eq. (2. l ib)  it follows that Z ( A ) =  1. Although this choice 
might at first appear unconventional in a field theory analysis, it is, in fact, 
completely equivalent* to the standard prescription that renormalizes the theory by 
requiring the second derivative of the effective potential to be unity at an arbitrary 
subtraction point, o s [17]. 

Clearly eq. (2.14) is the field theory counterpart of the relation between the band 
gap and full band width, eq. (2.4), in the condensed matter problem. There is an 
important difference in interpretation, however, since both A 0 and W are measurable 
in (CH)x whereas in the field theory, only m is measurable; A is an unphysical 
cut-off introduced to make the theory finite. Actually, eq. (2.14) illustrates rather 

* Although this prescription is indeed equivalent to that used by Gross and Neveu in ref. [17], it is not 
identical. Their A is a cut-off on the modulus of the euclidean two-vector (k0 2 + k 2 ~< A 2) whereas we, 
following DHN in ref. [16], use A as a cut-off on the spatial part only ( ] k l l < A ) .  This leads 
eventually to a trivial numerical difference between our eq. (2.14) and the corresponding eq. (4.19) in 
ref. [17]. 
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transparently three crucial concepts developed in recent field theory studies and 
embodied in the Gross-Neveu model. Let us digress briefly to clarify these points. 

First, as noted above, the original Gross-Neveu lagrangian [eq. (2.7)] possesses a 
discrete "chiral symmetry" (~'5 invariance) and appears to describe massless ferm- 
ions. Nonetheless, the actual ground s ta te- tha t  is, the vacuum-contains  a filled 
Dirac sea of massive fermions and is not invariant under 'I' ~ ~,5~. This is "dynami- 
cal spontaneous symmetry breaking." Second, for fixed N, the original lagrangian 
contains only one parameter: the dimensionless coupling constant, goN. In the final, 
renormalized theory, the one physical parameter, as suggested by (2.14), is the 
dimensional quantity the fermion mass [17]. This is the phenomenon of "dimensional 
transmutation" [20]. Third, eq. (2.14) correctly reflects the "asymptotic freedom" 
[19] of the Gross-Neveu model, for if one insists on a fixed m - t o  define the same 
theory-as  A ~ ~ ,  then the coupling constant, g~Y must go to the zero like one over 
the logarithm of A. 

With the above choice of o o, making the formal identification g~N = g2/2~0~, and 
noting that because of the change of independent variable, a relative factor of v F 
comes in the normalization of wave functions between (2.10d) and (2.2c), we see that 
these equations can be exactly transformed into each other, provided we choose 
N =  2 to correspond to the correct spin degeneracy in the continuum (CH)x 
equations. Thus the continuum, self-consistent electron-phonon equations for (CH)x 
are precisely equivalent to the static, semiclassical equations for the N = 2 Gross 
Neveu model, and we can immediately translate solutions from one model to the 
other. 

3. Static solutions: ground state, kinks and polarons 

The static solutions to the semiclassical equations have been analyzed, and 
systematically constructed, by DHN [16]. Since we have shown that the adiabatic 
mean field equations for (CH)x are equivalent, the same techniques can be im- 
mediately applied to them. Alternatively, one can simply translate, according to 
(2.11), known solutions from the Gross-Neveu model to (CH) x. To stress the field 
theory connection while explicitly exhibiting the constructive method, we follow a 
dual course. In the appendix the method for constructing solutions is briefly 
summarized and the form of the solutions are derived in Gross-Neveu language. In 
the present section, we translate these solutions into the explicit forms appropriate to 

(CH) x. 
As first shown by DHN and as illustrated in the appendix, there are three classes 

of solutions to eqs. (2.10) for static o(x).  The first class, with o ( x ) = %  given by 
(2.14), corresponds to the vacuum-with,  of course, the filled Dirac negative energy 
sea-  in the Gross-Neveu model. In sect. 2 we have already shown that this translates 
into the ground s ta te-with  the filled valence b a n d -  in (CH)x. The explicit forms for 
the wave functions in both models are given in sect. 2. 
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The second class of solutions to the Gross-Neveu model are the "kinks," with, as 
shown in the appendix, 

o (x)  = o0tanh mx. (3.1) 

These exist for any N and always have a zero energy, w o = 0, bound state which can, 
by the Pauli principle, be occupied by up to n o ---N fermions. Obviously, these 
translate to the familiar "kink" solitons in (CH)x, which have been extensively 
discussed elsewhere [5, 6]. For completeness, we quote the explicit form of the 
solutions in (CH)x. For A(y) one has 

A(y ) :Ao tanh(Aoy /vF)  (3.2a) 

and for the "midgap" state (e n -- e o = O) 

Uo( Y ) : Nosech( Aoy/vF ) , (3.2b) 

Vo( y ) : - iN o sech( A 0 y / v  F ), (3.2c) 

with 

N o = ~ /  A° 
4v F " 

The negative energy scattering solutions corresponding to the valence band elec- 
tronic states are 

* [ A° (~°- -kVF)]  (3.2d) u n ( y ) = u - ( k ; y ) = N k e '  Y[tanh-~FY+i A0 ' 

(o+kvF)] 
v , (y )=-v_(k;  y ) =  - iNk e' Y[tanh-~FY--i A o ' (3.2e) 

with 

= "o  ~- '¢ v F )  , Uk = 2 2~g - 2  

It is straightforward to verify that these functions satisfy the continuum electron- 
phonon equations (2.2). The form of the kink solution and the electron density, 
lu0[ 2 + I%12, in the midgap state are shown in fig. 3a. 

The third class of solutions [16] to the static, semiclassical equations of the 
Gross-Neveu model can be called "bags." As the corresponding solutions in (CH)x 
have only recently been found, first numerically [15] and then analytically [ 13], let us 
first describe the qualitative features of the solutions in some detail. The bag 
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Fig. 3. A comparison (continuum electron-phonon model)of the gap parameter A(x), solid line, for (a) 
the "kink" excitation, and (b) the static "polaron" excitation. The vertical scale is in eV, the horizontal 
one in ,~ (for parameter values relevant to (CH) x [3]). The dashed lines indicate (in arbitrary units) the 
electron density q'0 + (x)qSo(X) in (a) the "midgap" state (w 0 = 0), and (b) the "bound state" (w 0 < A 0) 

(see text for nomenclature). 

t o p o l o g y  d i f fe rs  i m p o r t a n t l y  f r o m  tha t  of  the  k ink;  ra ther  t han  i n t e r p o l a t i n g  

b e t w e e n  the  two d e g e n e r a t e  g r o u n d  states,  - - % ,  the  o f ield for  the bag  has  a 

loca l i zed  " d i m p l e , "  as s h o w n  in fig. 3b. Th is  " d i m p l e "  acts  as a p o t e n t i a l  in the  

D i r a c  e q u a t i o n ,  p r o d u c i n g  a s i n g l e  pos i t ive  ene rgy  b o u n d  s ta te*  at E = w 0 < m and  

m o d i f y i n g  the  c o n t i n u u m ,  as i l lus t ra ted  in fig. 4. As  s h o w n  by D H N  and  r ev iewed  in 

the  append ix ,  for  genera l  N there  exist  bag- l ike ,  se l f -consiStent  s o l u t i o n s - t h a t  is, 

so lu t ions  sa t i s fy ing  b o t h  eqs. (2.10a) and  ( 2 . 1 0 d ) - i n  w h i c h  all nega t i ve  ene rgy  states  

( i nc lud ing  the  b o u n d  s ta te  wi th  E = - - w 0 )  are  o c c u p i e d  by  N f e rmions  and  the  

pos i t ive  ene rgy  b o u n d  s ta te  is o c c u p i e d  by  1 ~< n o ~< N -  1 fe rmions .  Fu r the r ,  by  

the  cha rge  c o n j u g a t i o n  s y m m e t r y *  of  the  equa t ions ,  there  exis t  " a n t i p a r t i c l e " -  in the  

* With only a o field present, the energy levels of the Dirac equation are "charge conjugation 
symmetric": that is, for every positive energy level, r+ -w,,,  there is a negative energy level with 

= -co,. In fact, the components of the Dirac wave function, q'~ and "t'2, are simply interchanged 
in going from the state with e+ to that with e . In terms of u and v this implies, using (2.11), that 
u ~ iv and v ~ - iu. Note that the special state e - 0 -  the "midgap" electronic state induced by the 
kink "potential"-is its own charge conjugate. 
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Fig. 4. The energy spectrum of the Dirac equation in the presence of the "bag" o(x). Note the 
occurrence of a single positive energy bound state at E(0) = w o < m. The symmetry between positive and 

negative energy states follows directly from eqs. (2.10b) and (2.10c). 

sol id state appl ica t ion ,  " h o l e " - s o l u t i o n s  in which the negat ive energy b o u n d  state is 

occupied  by  only  m o < N fermions.  F o r  those exci ta t ions  in which n o fermions  occur  

in a posi t ive energy b o u n d  state, the value of  w 0 for  which the self-consis tency 

equat ions  is sat isf ied is given by  wo(no)= mcosO(no) [16] where, as sketched in the 

appendix ,  

n 0 7r 

The  energy of the cor respond ing  bag- l ike  exci ta t ion is 

E(no) = 2 NmsinO(no). (3.4) 
"IT 

The expression for the bag  energy provides  an insightful  in te rpre ta t ion  of  this 

exci ta t ion.  F o r  no/N << 1, expand ing  (3.4) gives 

n3omqr 2 
e ( . o ) = . o m  - -  + - - .  ( 3 .5 )  

24N 2 

which shows that  in this l imit  the exci ta t ion can be viewed as a weakly  b o u n d  state 

of  n o e lementary  fermions  of  mass  m. Conversely,  for n o -~ O ( N ) ,  0 ~- O(½~r), so 

E(no) <~ 2 Nm. (3.6) 
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Recalling that the energy of a kink in the Gross-Neveu model  is 

N 
E K = - - m ,  (3.7) 

we see that in this limit, the bag energy approaches that of  two kinks. We shall 
return to these results later. 

Intuitively, the existence of  the bag excitations can be unders tood as a balance 
between the "pressure" of the f e rmions -push ing  "ou t"  and preventing the o field 

f rom "collapsing" to o( x ) -- %-  and that of the o f i e ld -push ing  " in"  and trapping 
the fermions in the localized well*. This implies that, in contrast  to the kink-like 

excitations, in which the single Dirac bound state having ~00 = 0 can be occupied or 

not, for the bags the presence of  fermions in the positive energy bound  s t a t e -o r ,  
equivalently, their absence from the negative energy bound  state, in the case of  

antiparticle or  hole exci ta t ion-  is essential to the existence of  the excitation. 
To translate these bag-like solutions from the Gross-Neveu model  to poly- 

acetylene, we note that since (CH)x corresponds to the N = 2 semiclassical equations, 

one expects a single bag-like excitation with n o = 1; the state with n o = 2 is, as a 

compar ison of eqs. (3.4) and (3.7) suggests, in fact identical to a kink and antikink 
pair  infinitely far apart. As noted above, the n o -- 1 excitation corresponds to the 
presence of  a single additional, unpaired electron in the (CH)x chain and conse- 
quently has the s tandard relation of charge ( - e )  and spin (½). Since the electron is 

t rapped in a field driven by its coupling to phonons*,  this excitation is clearly a 
"po la ron"  [14]. The fact that  the cont inuum electron-phonon model of (CH)~ admits 
(in an approximate form) both  conventional  strong-coupling polarons and ampli tude 

kinks will be a useful starting point  for studying these particle-like excitations (and 
their interactions) in a unified theory. 

In  the appendix, we show how to construct  explicitly these "po la ron"  or "bag"  
solutions, using techniques related to the inverse scattering method [16, 23-25]. 
Translating the forms of  o in (A.20) and of  'Is in (A.21) and (A.22) via the 
t ransformation in eq. (2.11), we find for A(y),  

A ( y )  = A o -- KoVF {tanh [ Ko(y + Yo)] - tanh[  K o ( y - y o ) ] }  

= AO-- (Kovv)2t°o'sech[Ko(y +Yo)]sech[Ko(y --Y0)],  (3.8a) 

* Note that in the Gross-Neveu model the fermions are self-interacting and the o field is essentially 
introduced as an "auxiliary" field. Actually, one can show (see ref. [16]) that the ~ field does 
correspond to a true bound state and acquires non-trivial dynamics in the time-dependent semiclassi- 
cal formalism. In the context of (CH):,, the phonon field is ab initio dynamical and it is the electron 
coupling via phonons that leads to the polaron state. Nonetheless, for static o (or A) fields, the 
equations are identical. 
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and  for the posi t ive  energy b o u n d  state, E -- + ~o o, the wave funct ions  

uo(y ) -- No((1 - i ) s e c h [ K o ( y  + Yo)] + (1 + i ) s e c h [ K 0 ( y -  Yo)] }, (3.8b)  

vo(y) -- No((1 + i)sech[Ko(y +Yo)]  + (1 - i)sech[Ko(y - -Yo) ]}-  (3.8c) 

Here  

KoVF: --'o 2, 

A0 --  ~0 
t a n h K o y  o -  Kovv 

The  negat ive energy b o u n d  state follows s imply  f rom eqs. (3.8b) and  (3.8c) by  the 

t r ans fo rmat ion  u _ o ---- u IE= - ,oo = iVo and v o ~ v[E= - ~o = - iuo, while the negative 
energy scat ter ing states have the forms 

u_(k ;x )=N~'e ikX[ (~+Ao-kVF)- -q , ( l+ i ) t+  Wr(1-- i ) t  ], (3.8d) 

v_(k;x)---- --N~'eik~[(o~+ Ao + kVF)--'r(1--i)t+ +6(l + i)t_], (3.8e) 

where  

t~=tanh[Ko(y±yo)],  ~o = (k2v2  + A 2 , 

ikVF ] 
"y ~½Kov F 1 

09 - - m  0 
6 ~½K0VF[ 1 ikVv ] + 

,, __ 1 ( oJ - -  A 0 
22 2 2  " 2 2d-; v +KoV,) 

By direct  calculat ion,  one can verify that  these forms for u and v satisfy the e lec t ron 

par t  of  the con t inuum (CH)x e q u a t i o n s - o u r  eqs. (2.2a) and  ( 2 . 2 b ) - f o r  any value of  

~o o in the range 0 ~< ~o 0 ~< A 0. However ,  as the results for the Gross -Neveu  mode l  

imply  [16], only  for 

¢o0= K0VF = ~ - A  0 (3.9) 

is the (CH) x " g a p "  e q u a t i o n - o u r  ( 2 . 2 c ) - a l s o  satisfied*. To verify this in detail ,  

* One could also imagine taking the form of A(y) given by (3.8a) as an ansatz and then varying Y0 to 
satisfy (2.2c); this would, of course, reproduce (3.9) and would be conceptually similar to the method 
used to find the self-consistent kink solution in ref. [6]. However, because of the constraints among all 
the parameters in (3.8a), it is hard to imagine "guessing" such an ansatz a priori. 
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recall that the polaron solution corresponds to the presence of an additional, 
unpaired electron beyond those in the valence band. We see that the precise form of 
eq. (2.2c) for these solutions is 

a(y) = 2w~ 1. (u'~v o + V~Uo) + 2(u*_0v_ 0 + V*_oU_o) 

K • X +2f_dku_(k;x)v_(k; )+v*_(k;x)u_(k;x)}. (3.10) 

Using the explicit forms of the electron wave functions from eqs. (3.8), one can 
verify the consistency of eq. (3.10) as follows: 

A(y)  = ~ - ~ g  w° w° 
9 

" ~VF ( t + -- t -  ) -- 2 " ~--~vF ( t + -- t -  ) ~,o h 

2 K dk  [ o ~ 2 K o v F . t ]  2=f'K A(y)  - - t _  (3.11a) 

(k~o4 + a~o 

g2 {_~K 
2w~ ( t + - t - )  fo 

dkw~Kovv Wo } 

[~2v~ + a~o]'/2[k~v~ + Kgv~] UvF 

(3.11b) 

Now the first term in brackets in eq. (3.1 lb) is just 1, by the definition of A 0. Hence, 
for eq. (3.10) to be consistent, the second term in brackets must vanish. We note that 

fo K dk w 2KovF 
2 1 / 2  2 2 2 2 [k2v~+a0] [~ VF+K0VF] 

[ ,  1 'tan 
-~ to2K0VF t) F KoV F to o 

(3.12) 
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where, consistent with the previous approximations and the rapid fall-off of the 
integrand, we have taken the K ~  oe limit of the integral. Using result (3.12) to 
evaluate the second term in brackets in eq. (3.1 lb) we see that setting it to 0 requires 

o r  

- - - t a n  - l  - = 0 ,  (3.13a) 
~r v v 2v  v 

t a n - ' (  WK~v~ ) = ¼~r, (3.13b) 

so that indeed w o = Kov F = ~-A o, as asserted above. From eq. (3.4) we observe that 
the energy of this excitation is 

E ( n  o = 1) = 2 . 2 .  A0sin~r (3.14a) 

- -  A o 

-~ 0.90A o. 

(3.14b) 

(3.14c) 

The energy of the single additional electron in the localized bag (polaron) excitation 
is thus less than that (A0) in the lowest conduction band state. Further, it is also less 
than the energy required to create, and place a single electron into, a kink/antikink 
pair, since [5, 6] E~ + E K = 2(2/~r)A 0. Since topological constraints require kinks to 
be produced in KK pairs, the polaron is the lowest energy state available to a single 

electron. The form of the polaron solutions and its comparison with the amplitude 
kink are shown in fig. 3. 

Although the polaron is a true solution to the coupled equations (2.2) only for 

Kot~ F z ~ - A 0 ,  considering its form for arbitrary K 0 in the range 0 < K0VF < A 0 

provides useful insight. For K o ~ Ao /vF ,  tanh K o y  o -,  1 and, from (3.8a), we see that 
A(y) looks like a widely separated kink and antikink. Note that since this limit 
corresponds to O(no) -, ½rr, this result corroborates the previous comments based on 
the energy of the polaron. For K o y  << A o / v v ,  one has w 0 -,  A o and that A ( y ) -  A 0 
approaches a shallow ( - s e c h  2 K 0 y)  structure; both these results are characteristic of 
the conventional weakly bound polaron described, in certain circumstances [14] by a 

non-linear Schr6dinger equation. With K o = f~-A0, our polaron is ambivalent about 
its parentage. 
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From (3.8a) it follows that the characteristic polaron width is 

2 Yo = (2 /Ko) tanh-  '[ Kov F / (  A0 + c°0)] 

= (Wa/A~-) ln(1 + ~ )  

_~ 1.24~o 

-~ 10.8A (for (CH)x [3, 61). (3.15) 

Here ~0 is the kink width parameter. The value of A at the polaron center is 

= ---- a o ( g  - 1 ) .  (3.16) 

From (3.14) the polaron binding energy is 

BEp ~- 0.10A 0 

0.07 eV (for (CH)~ [3, 6]). (3.17) 

Apart from the recent discovery of this analytic form in the continuum model [13], 
the polaron has been independently observed in a numerical simulation [15] of single 
electron injection in a lattice model of (CH)x which makes the same adiabatic 
mean-field approximations as (2.1). All of the continuum polaron results above are 
in good agreement with these discrete simulations, in the same way that the 
continuum kink features compare favorably with lattice results. Furthermore, the 
numerical simulations [15] revealed a polaron "instabil i ty"-that  is, the absence of a 
polaron state-  for the (hypothetical) spinless electron case. This result is immediately 
understood from our discussion of the semiclassical spectrum of the Gross-Neveu 
model; spinless electrons in (CH)x correspond to the N = 1 Gross-Neveu equations, 
and, as eqs. (3.3) and (3.4) suggest, these are no bag-like or "polaron" states-only 
kinks- in  this case. 

4. Further model field theory implications for polyacetylene 

In a separate article we shall pursue the physical implications of polarons (and the 
possible time-dependent extensions mentioned below), in (CH)x including their 
potential effects in specific types of doping, their possible role as "doorway" states 
to KK pair production or annihilation, their implications for tunnel injection 
experiments*, and the possibility of polaron transport mechanisms**. However, 

* We thank S. Etemad and J.R. Schrieffer for discussions on this point. 
** We thank D. Emin for discussions on this point. 
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here we turn to a number of additional field theory connections that may provide 
further insight into solitons in (CH)x. To avoid any possible confusion, let us state 
our perspective in this section quite precisely. In the previous sections we have 
established that an exact formal equivalence holds between two sets of equations, 
and hence that the previously known solutions of one set can be translated into 
solutions of the other. Although this has provided an important quantitative insight 
into polarons in continuum models of polyacetylene, it is in a sense an "accident" 
that the bag-like solutions were first discovered in the context of the semiclassical 
Gross-Neveu equations; one could have found the polaron solutions directly by 
applying inverse scattering techniques to the continuum model of (CH)x with no 
mention of a field theory connection. In addition, as we have indicated and will 
discuss further below, the full dynamics of (CH) x differ from those of the Gross- 
Neveu fermions even at the semiclassical-let alone fully quantum mechanical-level. 
Thus, if one goes beyond the static solutions treated above, no precise quantitative 
connections can be made. Nonetheless, as we shall see, if one looks for possible 
qualitative similarities, a number of interesting suggestions follow from pursuing this 
field theory connection. 

Perhaps the most striking qualitative suggestion comes from known results on the 
full quantum Gross-Neveu model [21, 22] and may have bearing on the existence of 
polaron-like excitations in the full quan tum-as  opposed to adiabatic mean field- 
theory of (CH)x. Although our results here have established that the polarons are 
genuine solutions to the adiabatic mean field equations, one can question whether in 
a fuller description of the dynamics of (CH)x- as provided, for example, by the SSH 
lattice hamiltonian with non-trivial quantum corrections-the polaron solutions 
persist. Technically, this question can be phrased in terms of the stability of 
polaron-like states under perturbations to the adiabatic mean field equations. This 
stability question is both difficult and important, for unlike the individual kinks, the 
bags are not guaranteed to be stable by general topological considerations. Further, 
in this regard, a cursory glance at the Gross-Neveu analogy proves worrying [5], for 
in the full, quantum theory [21, 22] of the Gross-Neveu model, it has been shown 
that, for the case N = 2 ,  only kink-like excitations exist*; the bag-like states 
disappear in the full quantum theory with exact Gross-Neveu dynamics. However, as 
we have constantly stressed, the equivalence of the adiabatic mean field equations in 
(CH)~ is to the static, semiclassical equations of the Gross-Neveu model. Indeed, it is 
clear that the full dynamics of even the continuum model of (CH)x-let  alone the 
underlying SSH lattice model-differ  from those of the Gross-Neveu model, for in 
deriving the adiabatic mean field hamiltonian, an explicit term involving 2x2(y) was 
dropped. As an inspection of equation (2.8) shows, there is no 62(x) term in the full 

* Interestingly, in ref. [23], Witten obtains the "absence of bags" result by mapping the N = 2 quan tum 
Gross-Neveu model into two decoupled quantum sine-Gordon systems, Note the relation to Horovitz' 
results in ref. [7] and the question of charge /sp in  degrees of freedom. We thank V.J. Emery for 
discussions of this point. 
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Gross-Neveu model. Thus the detailed results for the full quantum Gross-Neveu 
model can not be translated directly to (CH)x, and one can not conclude from 
studies of the N = 2 quantum Gross-Neveu theory that polaron excitations should 
not exist in polyacetylene. Nonetheless, this aspect of the Gross-Neveu model 
underscores the importance of studying polaron stability in (CH)x. Although one 
could certainly study this question-probably by numerical (e.g., quantum Monte 
Carlo) techniques on ly - in  the full, quantum, time-dependent continuum model, we 
believe that since the underlying lattice theory is closer to the true physics, it is most 
sensible to study the question of polaron stability numerically in that context. 

Apart from this-possibly negative-implication, the field theory connection pro- 
vides a number of additional insights into, and suggests further possible studies of, 
solitons in polyacetylene. As a first example, let us return to semiclassical or mean 
field approaches and consider the relation between the continuum coupled electron- 
phonon description of kink-like solitons in (CH)x and recent attempts [8-10] to 
apply a q~4 theory to these same excitations. The use of q~4 theory (which is motivated 
by a Landau-Ginzburg expansion) in this context is subject to (and has received 
[3, 6, 7]) the a priori criticism that since the (CH)x ground-state energy varies as 
Eo(A0) -  A%ln A20 [26] and is strongly non-local, the conventional Landau-Ginzburg 
gradient expansion must fail in small amplitude regimes. And yet, comparison of the 
results with those of the coupled electron phonon theory indicates that the q4 theory, 
at least qualitatively, can describe the kink-like solutions. A perhaps illuminating 
perspective on this apparently puzzling circumstance can be gained by referring to 
known results on a similar circumstance in field theory: namely, the qualitative 
similarities between the Gross-Neveu model [16, 17] and the one-space, one-time 
dimensional scalar q~4 field theory described by the lagrangian density 

(4.1) 

wheref i s  a constant [27-29]. In this q>4 theory, the lowest-order "effective potential" 
which determines the ground state has the simple polynomial form 

V(~) : i~k(~p2 - - f 2 )  2 (4.2) 

from which one sees immediately the two degenerate ground states with non-zero 
values of q~ - ~0 = -+f; this is explicit (rather than dynamical) spontaneous symmetry 
breaking. For the Gross-Neveu model, the effective potential for the o field must be 
calculated dynamically [20] and the result contains a term of the form [17] 

V( o ) oc oZlno 2 (4.3) 

in direct analogy to the full (CH)x result [26]. This form of V(o) leads to the 
dynamical spontaneous symmetry breaking result o -- ±o  0, for the ground state. In 
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both theories, as a further consequence of the two-fold degeneracy leading to this 
spontaneous symmetry breaking, there exist topological kink-solitons [12, 27, 28]. 
Thus, despite the fact that the effective potential for the (composite) scalar field o in 
the Gross-Neveu model can not be expanded around o : 0, both the structure of the 
symmetry breaking and the existence of kink-like solutions are correctly modeled by 
a polynomial-namely ~4-effective potential with the appropriate minima. The 
structural similarity between the Gross-Neveu model and ~4 theory goes further. If 
fermions are coupled to the ~ field in the ¢4 model via the standard Yukawa 
interaction, the full lagrangian becomes [27-29] 

N 

~ :  E ~ " ( i y O  -- gep)xt'~ + ½(0"q~)(0~,) -- ¼~(q~2 _ f 2 )  2. 
ot--I  

(4.4) 

One can study this lagrangian semiclassically [25] in two related but separate cases 
that have interest for comparisons to (CH) x. First, one can treat only the "bound- 
state" fermions in the Dirac potential, ignoring the negative energy sea. Alterna- 
tively, the full effects of the negative continuum can also be included. In both cases 
one finds that not only zero energy fermion states coupled to the ~4 kinks, with 
unusual spin/charge assignments [12] but also that bag-like (polaron) excitations, 
qualitatively similar to those in the semiclassical Gross-Neveu equations, exist [25]. 
Indeed, for a particular ratio ( X = 2 g  2) of ~4 coupling constants in (4.4), the 
functional forms for ~ and the u i and v i for the q~4 plus fermion "polaron" are 
identical to those given in (3.8) [25]. Only the relation determining K 0- the analog of 
(3.3)-is different. For other ratios of ~/g2 ,  analytic forms of the polaron solution 
are not available, but numerical results confirm their existence [30]. Thus the ~4 
model of (CH)x, even without explicitly including valence electron effects, does 
contain essentially the same polaron found in the continuum electron-phonon 
model: in solid state language, the ~4 potential is, in a sense, imitating the effects of 
valence band electrons. Notice, however, the important role in q~4 models of spatial 
gradient terms which determine the kink and polaron characteristic sizes. Such terms 
are absent in the continuum electron-phonon model and their role is played instead 
by nonlocalities coming from the valence band electrons (or "negative energy 
fermion sea" in the Gross-Neveu language). 

Other previous field theory studies, which have noted the relation between q~4 plus 
fermions and the Gross-Neveu model [29], may also prove useful in studies of 
polyacetylene. For instance, in the limit that N (the number of different fermion 
fields) approaches infinity, the q~4 (with fermions) and Gross-Neveu models become 
formally equivalent [29]. Despite its apparently formal nature, this large-N result 
may be relevant to (CH)x because it is known that semiclassically (although not, as 
noted earlier, in the fully quantum theory) the N = 2 theory does exhibit the generic 
large N behavior. 
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Despite the striking qualitative successes of the t~ 4 modeling outlined above, it is 
necessarily phenomenological. It would seem most likely to encounter difficulties 
over details of dynamics. This brings us to a final aspect of the field theory 
connection that deserves mention: namely, known field theory results on non-static 
solutions. In the semiclassical Gross-Neveu equations, time-periodic "breather"-like 
solutions have been found analytically [16]. Further, recent numerical studies [31] 
establishing the existence-and apparent stabil i ty-of similar time-periodic breather- 
like solutions to q,4 suggest that such solutions are "robust" under changes in the 
theory that preserve fundamental symmetry properties. It is thus natural to speculate 
that breather-like-that is, localized, time-dependent-solutions may exist in (CH)x. 
Unfortunately, in view of the absence in the Gross-Neveu model of a term compara- 
ble to the explicit A2(y) term in the full (CH)x continuum hamiltonian, one can not 
simply translate the known analytic or numerical results from field theory to 
polyacetylene, although the field theory forms may provide a convenient basis for 
perturbative approaches. In view of their strong potential interest, we feel such 
solutions should be sought in numerical studies of realistic models of (CH)x; indeed, 
there may actually be preliminary evidence in existing simulations [15]. A second 
crucial aspect of time-dependent solutions is the important role such excitations may 
play as kink decay channels. Kink(K)/antikink(K) scattering in I# 4 is known [32] to 
have a very interesting structure. In particular, although the K and K reflect from 
each other at high relative velocity, at low relative velocity they form a trapped, 
quasi-periodic decaying state [32]. Further, for intermediate velocities, there is an 
interesting resonance phenomenon. In the Gross-Neveu model, on the other hand, 
an analytic formula exists which describes semiclassical KK scattering: from the 
form of the (time-dependent) o field which describes such a collision, [32] 

o(x, t) = vcosh2Tx -- cosh2vTt (4.5) 
vcosh2Tx ~ cosh2vTt ' 

with Y = (1 - v 2 )  - 1/2, one sees that for all velocities the kink and antikink reflect; 
this "preservation of form" is a consequence of the infinite number of conservation 
laws underlying the complete integrability of the Gross-Neveu model [16, 21, 33]. 
One possible approach to understanding the differences is in studying the fluctua- 
tion spectra around kink profiles in the two models [34]. 

The existence of breathers and the persistence and details of resonances in KK 
scattering for more fundamental models of (CH)~ is again something which is 
probably best addressed in very careful numerical simulations. Breather-kink colli- 
sion processes in polyacetylene will also be interesting, as they are in the field 
theories themselves, and all of these details will presumably bear on questions of 
soliton transport and lifetime. 

It may be helpful to note that the static Gross-Neveu bag solution can, for given 
no, be shown to be the lowest energy (static) member of a family of Gross-Neveu 
breather solutions [16]. This suggests that one should think of the putative breathers 
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in (CH)x as the band of polaron states anticipated from general solid state experience 
[14]. That they should not, in (CH)x, have infinite lifetimes and "ideal" collisions (as 
in Gross-Neveu) is also expected in terms of "shake-off phonon" effects. 

5. Concluding comments 

Our aim in this paper has been to continue the emerging dialogue [7, 12] in the 
area of polyacetylene and related materials, between field theory and solid state 
physics. We used lessons from model relativistic field theories (the N -- 2 Gross-Neveu 
and q,4 with coupled fermions) to illuminate relations (and differences) among 
various theoretical models of Peierls-dimerized chains-discrete lattice hamiltonians 
[3, 26] continuum interacting electron-phonon models [4-7] and phenomenologically 
motivated q~4 Landau-Ginzburg-like descriptions [8-10]. In particular, we identified 
polaron-soliton solutions [13] in good agreement with those observed in recent 
numerical simulations [ 15]. 

A number of topics remain for future discussion and further work. Apart from the 
crucial questions of interpreting observed experimental phenomena in (CH) x in 
terms of any of the existing soliton based models [2, 35], it is clearly important to 
understand the full richness of the predictions of those models. Time-dependent 
properties are being studied further using time-dependent terms appropriate to 
(CH) x but with Gross-Neveu dynamics as an indicator for numerical and perturba- 
tional studies of breathers, KK and K-breather scattering. Similarly, the full quan- 
tum theories must be analyzed. The possibly discouraging indications [5, 21, 22] of 
full N = 2 Gross-Neveu quantum dynamics (that breathers, including the bag limit, 
are destabilized by quantum fluctuations) may well be invalidated by the differing 
dynamics in (CH)x. Further, one might question the utility of literal one-dimensional 
field theories in real materials like (CH)x-a mean field description may actually be 
more  appropriate than an exactly one-dimensional quantum theory, or at least 
correlation lengths may be large on a characteristic chain length scale. It is also 
essential to include Coulomb interactions, both to examine the relative effects on 
kinks [36] and polarons, and also to admit elementary exciton modes into the 
models, as well as possible bi-polaron or polaron-exciton states. Finally, we note that 
lattice Gross-Neveu models have been analyzed [37] which preserve complete inte- 
grability and support discrete generalizations of kinks, polarons and breathers. The 
possible implications of these results for (CH)x will be described separately. They 
may be important in the (CH)~ context because of small numerical differences [6] 
between soliton descriptions in discrete [15] and continuum models [13]. 

We have benefited greatly from discussions with D. Baeriswyl, V.J. Emery, D. 
Emin, S. Etemad, A.J. Heeger, J.A. Krumhansl, Y.R. Lin-Liu, D.C. Mattis, M.J. 
Rice, J.R. Schrieffer, T.D. Schultz, W.P. Su, W. Sutherland and Y. Tomkiewicz. 
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Appendix 

EXPLICIT CONSTRUCTION OF THE STATIC SOLUTIONS 

In this appendix we present in brief form a systematic method for constructing the 
solutions to the continuum electron-phonon model for polyacetylene. To tie in more 
directly with the previous field theory literature, we shall construct the solutions in 
the o and 'I' form; the translation into A u, and v is then immediate, using eqs. 
(2.11). 

Summarized very succinctly, the method starts from the observation that for static 
o fields the Dirac part of the semiclassical equations is simply a standard potential 
scattering problem having in general both a discrete (bound states) and continuous 
(scattering states) spectrum. For any given o, one can solve directly for all the 
scattering data. Conversely, using the "trace identities" [16, 24, 25] appropriate to 
the Dirac equation [25, 38], one can rewrite certain expressions involving integrals 
over the fields entirely in terms of the scattering data. In fact, for the Gross-Neveu 
model, one can replace the expression for the action [16] 

S ( T )  = f T c l t f  °* d x ~ ( o ,  ~ )  (A.1) 
aO a - o~ 

in terms of the fields by an equivalent expression in terms of the (as yet unde- 
termined) scattering data-bound-s ta te  energies and normalizations and the reflec- 
tion coefficient-associated with the "potential" (a known expression in terms of o) 
in the Dirac equation. Then, instead of varying S functionally with respect to the 
fields o and 'I" to obtain the field equations (2.9), one determines the scattering data 
directly by varying S with respect to them. Knowing the scattering data, one has 
only to solve the inverse problem for the Dirac equation [23] to reconstruct o and 
the 't' i. 

The utility of the method really follows from the simplicity of the expression for S 
in terms of the scattering data. In particular, extremizing S with respect to the 
reflection coefficient leads to the result that the Dirac potential is reflectionless [16, 
25]. Using this result and (without loss of generality for the present problem [16]) 
assuming that there is only one positive energy bound state, one finds after 
renormalization that the semiclassical action can be expressed as 

2N K Ko + 2N oa0tan- l , (A.2) S / T =  -notO o -  T o T o~ o 

where ~o o and K o --= m~-~Oo  2 are the positive energy, bound-state energy and 
momentum defined in the text. Introducing ~o o =  m cos0 and K o = rosin0 and 
varying (A.2) with respect to 0 yields 

NsinO( 20 no) g U = 0, (A.3) 
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which determines the non-trivial solutions 0 =--O(no) precisely as indicated in eq. 
(3.3). Similarly, since for static solutions E =  - S / T ,  substituting the solution to 
(A.3) into (A.2) yields 

E( no) = 2N msinO( no), (A.4) 

which is just eq. (3.4). 
To reconstruct o and the xI' i, we can use the techniques developed by Frolov [23] 

who established that a matrix generalization of the Gelfand-Levitan [39] -Marchenko 
[40] formalism is applicable to the one-dimensional Dirac equation. The procedure 
can be simply summarized. From the scattering data one forms a matrix kernel 
F(x, y) = Fs(x, y) + FBs(x, y); for reflectionless potentials, which is the case in 
which we are interested, the scattering contribution, Fs, vanishes and only the bound 
state contribution remains. In our representation of the Dirac matrices and for the 
case of a single positive energy bound state, too, and its "charge symmetric" negative 
counterpart at - too,  one finds [25] 

FBs(X, y )  = e-r°(x+Y)(c+M+ + c M _ )  (A.5) 

where the matrices M_+ are given by 

m + w  o 
m --  to o 

M+ = m + too 

Ko 

m + w  o 

g 0 

1 
(A.6a) 

M_ = 

m + t o  o 
1 

Ko 
m + w o m + w o 

KO m --  too 

(A.6b) 

and for the charge symmetric case c + - - c _  = c o. In (A.6), as usual too = + (  m 2 -  
Ko2 )1 / 2" 

From the kernel F one constructs the transformation operator K(x, y) by solving 
the linear integral equation 

fx °° K ( x , y ) + F ( x , y ) +  K(x , t )F( t , y )d t=O.  (A.7) 

Then the "potential" 

-  o(O - Oo) = [ g ( °  - Oo) V(x) [ 0 
0] 

--g(o--%) ' (A.8) 
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is given by the commutator 

V(x)  = [ - i y , ,  K ( x ,  x ) ] ,  (A.9) 

where as usual Y5 = ~'o'fi. Further, the Dirac wave functions for given k follow from 

f+_(x; k )  = e+_(x; k)  + f x ~ K ( x ,  y )e  _+(k; y ) d y ,  (A.10) 

where e _+ (x; k) are (unnormalized) plane-wave solutions to the free Dirac equation 
for positive and for negative energy, respectively. Thus, with o~ = + v / ~  + m 2 , 

e + ( x ; k ) =  ~o---~ e +ikx, (A.11a) 

1 

e _ ( x ; k ) =  i._.....~k e +ikx . (A.1 lb) 
~,,o - -  m 

Note that the solution in eq. (A.1 lb) is, as it should be, the same as that in eq. (2.12). 
With this formal structure established, we can construct the static solutions 

explicitly. For the kink, there is only one bound state and it has w 0 = 0. Since 
K 0 = m, the matrix F becomes, 

F(x ,  y )=Co  e-m~+ y)[11 1 1] . (A.12) 

For this simple kernel the integral equation (A. 10) can be solved by algebraic means, 
with the result that 

--coe-m(x+Y)[1 1] (A.13) 
K ( x , y ) =  l + 2 z  1 1 ' 

where z = coe-2": ' /2rn .  Then from (A.8) and (A.9) we find that 

g ( ° - ° o ) - - -  

and hence, after a bit of algebra, that 

- 4 g o o z  
l + 2 z  ' 

(A.14) 

o = %tanh(mx + 8o) , (A.15) 

where tanh~ o = (m - Co)/(m + Co). Clearly this translates into the "kink" A given by 
(3.2a). For the ~o o = 0 bound s ta te - the  "midgap" state (CH)x-One uses (A.10) with 
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k = ik o = im and % = 0 to find 

,~,o(X) = f+ (x;  im) - Coe- '~  ( 1 ) 
l + 2 z  1 ' 

(A. 16a) 

which, after some algebra and normalization, becomes 

1), ~t'°( x ) = ( ¼m )'/Esech( rnx + 6°)(  1 (A.16b) 

with/Jo defined above; this translates into the u and v given by eqs. (3.2b) and (3.2c). 
The negative energy scattering states follow from (A.7) using (A.11b) and the 
transformation operator for the kink, given by (A.13). The result is [(1) 

xp_ ( x ; k ) = f _ ( x ; k ) = e i k~ i____~k _ 
to - m 

2mz 1 
l + 2 z  m - i k  

ik 
1 +  

o . ~ - - m  

ik 
1 +  

~ - - m  

(A.17a) 

or, after some algebra and normalization 

q%(x;  k)  -- Nke ikx 
tanh(mx + 8o) - ( - ~ )  

tanh(mx + 6o) + ( ~  -~-- ) 
(A.17b) 

where N k = irn/2o~2v~. Again we see that this translates into the corresponding 
state-given by eqs. (3.2d) and (3.2e)-in (CH)x. 

For the "bag" or "polaron" excitation one starts with the form of FBS for the case 
of bound states at both + % and -~o o. Using (A.5) and (A.6) we see that this is 

,AI , 

where a = 2 m / ( m  - ~0o) and fl = 2 K o / ( m  - ~Oo). Again the integral equation (A.7) 
reduces to an algebraic one. The explicit solution is 

g ( x ' Y ) = - - c o e - K ° ( x + Y ) [  Ot-l-~(Ot2-fl2) D ( x )  fl Ot _~_ ~(~ t2  __ f 1 2 )  fl ] ( A . 1 9 ) ,  

where ~ = - c o e -  2Xox/2Ko and D ( x )  =-- [1 + (ct + fl)~][1 + (a -- fl)~']. Applying 
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(A.9) gives 

g ( o  - o o )  = - 4 f l K ° ~  
D ( x ) ' (A.20a) 

which, after considerable algebra, can be reduced to the form 

o = o  o -  K2 s e c h K o [ ( X + X o ) + 6 1 ] s e c h K o [ ( X - X o ) + 8 , ]  (A.20b) 
toog 

with tanh Kox o = ( m - ¢Oo)/K o and tanh81 = [Ko(m - ~Oo) - Co~Oo]/[ Ko( m - O~o) + 
Co¢0o]. Clearly this translates into the polaron form for A, given (for 81 = 0) by (3.8a). 
The positive energy bound-state wave function follows from (A.10) with k -- iko; the 
result is 

e-Ko x fl~(½a-- 1) + ½ill 
~ ° ( x ) - - f + ( x ; i k ° ) -  D ( x )  l + ~ ' ( a - ½ f l  2) ] '  (A.21a) 

which, after a substantial amount of algebra and normalization to 1, reduces to 

, f f ,o(X)=(½Ko) ' /2(  s e c h [ K ° ( x + x ° ) + S t ] + s e c h [ K o ( x - X o ) + 8 1 ] )  

-- sech[ Ko(x + x o) + 6,] + sech[ Ko(x - x o) + 6, ] " 

(A.21b) 

Again this translates into the correct result (taking 6~ = 0) for (CH)~. Finally, the 
negative energy scattering solutions for the polaron excitation follow from (A.7) 
using (A. 1 lb) and the transformation operator in (A. 19). The result is 

k) -f_ k) 

[(11 = eikx i_.__~k _ 2 Ko~ 
- rn D ( x ) ( K  o -- ik)  

a + ~ ( a 2  f12) + i k ~  
o 2 - - m  

fl + ik 
l o - - m  

l j 
which, again after considerable algebra and normalization, can be reduced to 

q ' - ( x ; k ) = N ~ r e i k x [ - i k + t + 7 + t  8 8 ' (A.22b) 
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w i t h  

, (  o m )"2 

8 = ½ K ° (  l + o ~ - m i k  ) ,  

K o + ik 

K2 + k 2 

A g a i n  this resul t  t r ans la tes  c o r r e c t l y - h e r e  in to  u and  v q u o t e d  in (3.8d) a n d  

( 3 . 8 e ) -  in to  (CH)x .  
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