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We study numerically the interactions of a kink (K) and an antikink (K) in the double sine-Gordon equation with potential 
V(qS) = - 4 [ -  cos(q~/2) + ~ cos q~]/[1 + 14 ~1]. As a function of initial velocity in the KK collisions, we observe and analyze 
quantitatively a rich structure of "resonances" in most ranges of ~. 

I. Introduct ion where the potential V(~) is given by [1] 

Among the non-integrable models used to de- 
scribe nonlinear phenomena in real quasi-one- 
dimensional physical systems, one of the most 
frequently occurring is the "double sine-Gordon" 
[DSG] equation. In this model, a real scalar field 
~(x ,  t) satisfies an equation of the form [1] 

02¢0(x, t) O2do(x, t) + 2 
Ot 2 0X 2 1 + 14,11 

× [ - s i n  ¢O(x,t) ] ------~-~ + 2~/sin q~(x, t) = 0 ,  (1.1) 

where 71 is a parameter ( - o c  < 71 < oo) that is 
determined by the physical system being modelled 
and the specific choices of signs and constant 
factors in (1.1) have been made for later conveni- 
ence [1]. 

This equation follows from the Hamiltonian 
field theory described by 

H=fdx[l[ 0q,]2 )2 ~ , ~ _ ]  + 1 ( 0 ~  +V(q~)] ,  (1.2) 

*C.T.P. 6/408, MIT, Cambridge, MA 02139, USA. 

4 + 71 cos q~ ]. V ( ~ ) =  1 + b4~l [ - c o s  ~ (1.3) 

As 71 is varied over the range - ~ < ~/< ~c, this 
potential exhibits a variety of structures. Although 
in later sections we shall discuss these different 
structures in some detail [2], it is important here to 
provide a qualitative feeling for them. Clearly, for 

~ _+ oo, 'V(~) reduces to a sine-Gordon [SG] 
form for q~, while for 71 = 0, it leads to a SG form 
for q~/2. Thus in both these limits the familiar 
sine-Gordon soli tons-kinks and breathers-will  
occur as spatially localized, nonlinear excitations 
in the physical systems being modelled. The be- 
havior of V(q~) for general ~/ can usefully be 
divided into four regions [2] as shown in figs. 
l a - d .  In region I, defined by ~ < - ¼ (fig. la), the 
potential has two distinct types of minima, degen- 
erate in energy and separated by inequivalent bar- 
riers. Recalling that topological "kink" solitons 
connect adjacent degenerate minima of the poten- 
tial, we see that there are two different types of 
kinks in this region. In regions II (fig. lb) and II'  
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Fig. 1. A plot of the potential V(¢)  = - 4 / ( 1  + 14rtl) 
× ( cos 4 / 2  + ~ cos ~) showing its characteristic structure in 
each of the four distinct regions in ~. a) Region I: For 71 < 
(here we have chosen ~ = - 1.00), the potential has two distinct 
types of minima,  degenerate in energy and separated by 
inequivalent barriers. Thus there exist two types of topological 
kinks, b) Region II: For ] < ~ < 0 (here we have chosen 
r /=  -0 .20 )  the potential has broad minima separated by nar- 
row barriers. There exists one type of topological kink. c) 
Region II': For 0 < ~l < ] (here we have chosen ~ = +0.20) the 
potential has narrow minima separated by broad barriers. 
There exists one type of topological kink. d) Region III: For 

> 4 t (here we have chosen ~1 = + 1.00) the potential has two 
distinct types of  min ima but  they are non-degenerate except for 

---, oe. Thus  there exists only one type of topological kink. 

(fig. lc), defined by - ¼ <~  < 0 and 0 < ~  < ~, 
respectively, the potential has a single type of 
minima, is thus structurally similar to the pure SG 
potential, and has a single type of kink soliton. We 
distinguish between these two regions for later 
convenience. In region III (fig. ld), defined by 
¼ < 7, there are two distinct types of minima for 
the potential, but they are not degenerate except 
for ~ --+ oc. Thus for finite ~1 there exists one type 
of topological kink, but, as ~--+ m, it in effect 
splits into two separate and independent kinks. 

Importantly, particularly given the variety of 
possible structures of V(q}), the values of ~ that 
arise in actual physical situations cover essentially 
the whole possible range. In the B phase of super- 
fluid 3He, kink soliton solutions to (1) can be 
viewed as the boundary (domain wall) between 
two different homogeneous textures; for this appli- 
cation, ~ = - 1  [3-5]. 

The phenomenon of self-induced transparency 
in a two-level system in which each of the levels 
has a five-fold degenerate structure has also been 
modelled by the DSG, but with 71 = + 1 [5-8]. In 
this application, experiments on sodium vapor [8] 
have confirmed qualitatively theoretical expecta- 
tions based on the DSG model. 

Magnetic systems with low effective dimension 
have also been modelled by (1.1). For ferromag- 
netic Heisenberg spin chains, the DSG can arise 
when effects of single-ion or exchange anisotropies 
or applied magnetic fields are considered [9 11]. 
Further, when the coupling between magnons and 
their induced dipolar electromagnetic field is in- 
cluded, a DSG model can be derived to describe 
solitary waves related to "polaritons" [12]. In these 
applications, depending on the values of anisotro- 
pies and applied or induced fields, essentially all 
values of ~ are possible. In antiferromagnetic 
Heisenberg chains, both Ising-like single ion an- 
isotropies [11] and Dzyaloshinski-Moriya anti- 
symmetric exchange interactions [13] can lead to 
the DSG equations. In each of these cases, the 
relevant regime is ~ >__ 1. Again, there are experi- 
mentally accessible sys tems-CsNiF 3 in the ferro- 
magnetic case [14], and (CH3)4NMnC1 3 (called 
T M M C  in the literature [15]) in the antiferromag- 
netic case to which the DSG description can be 
compared. 

In the rapidly growing area of commensurate- 
incommensurate (C-IC) phase transitions [16], the 
DSG equation has arisen in several contexts. Apart 
from general studies aimed at clarifying the nature 
of the (C- IC)  phase transition [17, 18], the DSG 
equation has been derived as a model for the 
influence of an external electric field on the C- IC  
transition in the improper ferroelectrics K2SeO 4 
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and (NH4)2BeF 4 [19] and as a description of 
the spin density wave properties of the material 
(TMTSF)2PF 6 at ambient pressure [20]. In both 
these physical applications, a wide range of values 
of 7 / -bo th  positive and negat ive- is  accessible, 
depending on the externally applied fields. 

A physical application that relies on the propa- 
gating nature of the kink solutions to (1.1) has 
been suggested [21] in the context of the piezoelec- 
tric long chain polymer PVF 2 (polyvinylidene 
fluoride), which has the chemical formula 

(-CHz-CF2-) ,  , with n large. In the presence of an 
external field, the large electric dipole moments 
associated with the CF 2 units can be aligned. The 
dynamics of this process, which is called poling, 
has been modelled [21] by the propagation of a 
kink soliton down the length of the chains. 

Most of these studies have focused on the na- 
ture, properties, and physical interpretation of the 
static solitary wave solutions to the classical field 
equation, (1.1). However, in many of the applica- 
tions, the thermodynamics has also been investi- 
gated [2, 10, 12, 19, 22] and a study of the relation 
of the quantum double sine-Gordon system to an 
eight-vertex model in an external electric field has 
also been made [23]. Further, a number of authors 
have investigated, both analytically and numeri- 
cally, several aspects of the dynamics of the soli- 
tary wave solutions to (1.1), including the evolu- 
tion of individual solitary waves from various 
initial conditions [4-7, 24] the nature of uniformly 
translating solitary waves in damped DSG systems 
[25, 26], and the properties of kink-antikink (KK) 
interactions in these systems [4-5, 27, 28]. 

Apart  from indicating clearly that the DGS 
model is not a completely integrable system, these 
dynamical studies have revealed a number of 
tantalizing features, including the trapping of kink 
and antikink to form a localized, long-lived 
breather state [4-5, 27, 28], conversion between 
different types of kinks (for ~/< - ¼) [4-5, 27-28], 
and the existence of "wobbling" kink solutions 
(for 77 > ¼) [4-5, 7, 29]. Given the broad physical 
relevance of the DSG model, it seems clear that a 
systematic numerical study of the DSG dynamics, 

extending this earlier work and leading hopefully 
to an intuitive and quantitative theoretical in- 
terpretation, would be valuable. 

Accordingly, in the present paper we have be- 
gun such a study, focusing on the problem of KK 
interactions in the DSG equation for several rep- 
resentative values of 71 in the range - oo < , /<  oo. 
This investigation follows naturally from our pre- 
vious papers [30, 31] - hereafter referred to as CSW 
and PC, respect ively-on kink interactions in 
non-integrable field theories, and we will discover 
that the theoretical concepts introduced in CSW 
and P C -  in particular, the importance of the na- 
ture of the small oscillations around individual 
kinks and the "resonant energy exchange mecha- 
nism" [30, 31] -permi t  a quantitative interpreta- 
tion of our results for most values of ~/. In 
addition, for certain values of 7, we observe 
qualitatively new p h en o m en a - fo r  example, the 
formation of two counterpropagating "breathers" 
as the final state of a KK interact ion-which we 
are able to interpret qualitatively within our theo- 
retical framework. 

The remainder of the paper is organized into 
five sections. In section 2 we review briefly the 
explicit forms of the kink solutions for the differ- 
ent regimes in 7/ and discuss the small oscillations 
around these solutions. In section 3 we study the 
range 7/< - ~, in which there exist two types of 
kink solitons. To complement previous numerical 
work [4-7, 27-28], we focus primarily on the 
interactions of the "small" kinks [2, 22] and dem- 
onstrate the existence of resonances in KK scatter- 
ing both for , /=  - ½ and 71 = - 1 .  In addition to 
the " two-bounce"  resonances familiar from CSW 
and PC, we exhibit several "multi-bounce" reso- 
nances, as expected from our earlier general theo- 
retical considerations but not previously studied 
systematically. We develop an explicit theory of 
these higher bounce resonances and find that it 
provides a quantitative explanation of our data. In 
section 4, we consider the region - ¼ < ~/< 0, in 
which the potential is topologically similar to the 
SG potential and for which there is only one type 
of kink. Since in the small oscillations around this 
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kink there is no internal shape mode, we expect no 
resonances in KK scattering. Our numerical re- 
sults confirm this expectation, and in addition 
show a qualitative difference between the trapped 
KK find states for - ¼ > 77 >_ - 1 / 1 6  and - ~ _< 

< 0. We explain this behavior by an analytic 
estimate of the allowed region in ~ for the ex- 
istence of a stable "breather" solution to (1.1). In 
section 5 we investigate the region ~ > 0. Introduc- 
ing a new parameter, R, such that ~ - sinh 2 R/4, 
and following previous work [5, 19, 32, 33], we 
show that the 2~r kink soliton of (1.1) in the 
variable ,/,/2 can usefully be viewed, for large R, 
as a bound state of two solitons (separated by a 
distance R) of the SG equation that holds for ~ as 

--* m. We examine numerically and analytically 
the consequences of this decomposition [33] for 
K K  collisions and demonstrate that (again for 
large R) one possible final state of these interac- 
tions is two counterpropagating "breathers". We 
summarize our principal results and discuss their 
implications in section 6. 

2. Isolated kink solutions and small oscillations 

Although the properties of the DSG potential 
and its isolated kink solutions have been exten- 
sively studied and recorded in the literature, given 
the bewildering array of conventions, prudence 
requires that we summarize the relevant results 
here in our notation. As defined by (1.2) and 
depicted in fig. 1, the DSG potential has period 4~ 
in ~ and has extrema at q~ = 2n~r and ~ = 4rn~ _+ 
q'o, with q~0- 2c° s -1 (1 /4~)  and n, m integers; 
clearly, the latter extrema exist only for I~/[ > ~. 
As ~ varies, the nature of these extrema changes. 
One finds (see also fig. 1) 

1) for ~ < - ¼, the values q~ = 2n~r are maxima, 
whereas q~ = 4mqr 4- q~0 are minima; 

2) for ]~l < ¼, the values ~ =  2n(2¢r) are max- 
ima, whereas those at ~ = (2n + 1)2~r are minima; 
and 

3) for ~ > ¼, the values at 4~ = 2n~r are minima 

(for n even, they are local minima, for n odd, 
global), and those at q~ = 4m~r _+ q~0 are maxima. 

The solutions for small oscillations about the 
minima of the potential are plane waves, satisfying 
the dispersion relation 

= + k 2)'/2, 

with 

COo(~) = [(14~11 - 1)/14~1111/2 (2.1) 

for ~ < - ~ and w0(~) = [(1 + 4~)/(1 + 14nl)] 1/: 
for ~ > - ¼. The behavior of w0(~) versus ~ is 
sketched in fig. 2. 

Since (stable) kink solutions interpolate between 
adjacent (global) minima of the potential, we see 
that for ~ < - ¼, there exist two different types of 
kinks. The corresponding static solutions are (1) 
the "small"  kink (antikink), q~(~), interpolating 
between q~0 and 4~r - q~0 (mod47r) and given by 

~ ( ~ ) ( x )  = (2n + 1)21r 

[i + 4 t a n  1 ] 4 ~ ] - 1  - 1  14~l + 1  ) tanh~ 141~[1~11 ) x] ,  
L x  

(2.2a) 

where ( + )  refers to kink (K) and ( - )  to antikink 
(K). The energy of the static kink is 

i ( 4 ) 1/2 2 
EK( ~ ) =  1 + 4 l ~  { 

and (2) the "large" kink (antikink), n 4'K(~), inter- 
polating between -q~0 and q~0 (mod 47r) and given 
by 

~li~(~)(x ) = (2n)21r 

[( ,1/2 / )1/2x1 _+4tan t 14~ll4~l- +11) tanh[ 14~[~6~-1 , 

(2.3a) 
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Fig. 2. A plot showing the spectrum of small oscillations versus ~ for the DSG. The continuum, shown as a shaded region, exists for 

l inear oscillations both about the ground states and about the kinks. The dashed line below the continuum corresponds to the 
1 1 localized shape qaode of a kink and exists only for ~ < - ~ and ~ > 0. Note that for ~ < - a the shape mode exists on/y around the 

small  kink solution. 

where again + ( - )  refers to K(K). The energy of 
this static kink is 

n ( EK(K) = - -  
4 ]1/2 2 [(1672 _1)1/2 + 9 1 .  

1 + 4171 } 
(2.3b) 

for - ¼ < , 1  < 0 a n d  

( 4 )1/2 4 [2~/-~(1+4~)1/2 
E K ( K )  = 1 + 417~----- ~ ~ -  

+ In (2V~ + (1 + 47)1/2)] (2.4c) 

In both (2.2b) and (2.3b) q~0 = 2cos a (1/47).  In 
fig. 3 we display these solutions, together with the 
DSG potential, for 7 = - 1.00. For '1 > - ¼, there 
is only one type of kink, q~K(g)(x), interpolating 
between -27r  and 2~r (mod4~r) and having the 
f o r m  

~K(V~)(X) = (2n)2~r 

1 ) sinh 1 + 477 
_+4tan 1 ( 1 + 4 7 )  1+1471}  x] ,  

(2.4a) 

for 77 > 0. 
From the form of these kink solutions, as well as 

from the form of ~o0(7 ), shown in (2.1) we see that 
the value 7 = - ¼  is a special point [34]. From 
(2.2) and (2.3) it is straightforward to see that as 
7 - - - ' -  ¼ from below, the "small" kink goes 
smoothly to one of the minima of the potential 
(and EI--*0) whereas the "large" kink goes 
smoothly to the correct kink solution for 7 = - ¼, 

• ( i / 4 )  _ (2n)2~r _+ tan -1 x/v/-2, K(K) (2.5a) 

where as usual + ( - )  refers K(K). The energy of 
this solution is 

( 4 )  1 / 2 4  
EK(K)  = 1 + 4171 I ~  

X [2 ]~fi~-(1 + 47) 1/2 q- sin - 1 2 ~ ]  

(2.4b) 

with energy 

E (1/4) = 4v~-~r. (2.5b) 

Similarly, as 7 ~ -  ¼ from above, the solution 
(2.4) for 7 > - ¼ goes smoothly to (2.5). 

Since the small oscillations about the kink solu- 
tions play a major role in our interpretation of KK 
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Fig. 3. A plot for T t = 1.00 of a) the D S G  potential; b) the "smal l "  kink solution, 4~K(X); and c) the " large"  kink solution, 0z~[(x). 

scattering [30, 31], we conclude this section by 
discussing them. The linearized oscillations about 
the static kinks obey an equation of the form 

- d 2 ¢ ( x )  

d x  2 
+ VScH(x)+(x ) = co2+(x), (2.6) 

where q,(x) -= ~ ( x )  - q,K(X), with q,K(X) the par- 
ticular kink or antikink solution under considera 
tion and 

d2V(q') ~,=~,K(x) (2.7) VscH(  x ) - d~2 

The notation Vscn(X ) is chosen because (2.6) has 
the form of a Schr~dinger equation in one-dimen- 

sional quantum mechanics; we shall find this anal- 
ogy useful in interpreting the small oscillations. 
Although one can, using the kink solutions, write 
an explicit expression for Vsc n, the resulting equa- 
tion does not, for general 7, admit a useful ana- 
lytic solution [22]. Thus, following previous work 
[22], we have solved (2.6) numerically for each 
value of 77 we have studied. The results, which are 
sketched in fig. 2, show that, for all ~, (2.6) admits 
a continuum of plane wave solutions starting at 
co = co007), with co0(~) given by (2.1). In addition, 
one finds localized solutions to (2.6), correspond- 
ing, in the language of quantum mechanics, to 
states " b o u n d "  to the kink. First, for each of the 
kink solutions listed above, there is the well-known 
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"Golds tone"  mode, having ~0=0 and + ( x ) =  
dq~K(x) /dx ,  where ~K(x)  is the particular kink 
being considered. As is familiar, these modes arise 
because the translation invariance of the theory is 
broken by choosing a particular location for the 
kink. Second, for 7 1 < -  ¼, one finds for the 
"small"  kink an additional localized mode, with 
~0 - ~0 s v~ 0, which can be viewed as an "internal" 
oscillation of the shape of the kink [29-31]. As in 
CSW and PC, we shall refer to this as a shape 
mode. Its location is illustrated in fig. 2. Im- 
portantly, there is no such shape mode for the 
large kink. Similarly, for the kink in the region 

¼ < 71 < 0, there is no shape mode. For ~ > 0, 
however, the shape mode is again present; as is 
shown in fig. 2, for ~ ~ + m, ~0~--* 0. We shall 
present an interpretation of this result in section 5. 

With our summary of single kink properties 
now complete, we need only to describe the 
numerical method used to study the KK interac- 
tions before turning to our results. As in PC, our 
numerical scheme involves using a fourth-order 
Runge-Kutta  algorithm for solving the Newtonian 
equations of motion (coupled ODE's) for particles 
in a discrete chain whose continuum limit is eq. 
(1.1). To avoid discreteness effects, we used chains 
of 600 particles and kink widths of 20 particles. In 
K K  collisions, the kinks were started 300 particles 
(i.e., 15 kink widths) apart and, to save computer 
time, the spatial reflection symmetry (x ~ - x )  of 
the system was used. 

L 3. Kink-ant ikink scattering for 77 < 4 

3.1. General considerations 

In view of the potential applications to 3He in 
the B phase [3-5], interactions of kinks and anti- 
kinks in the DSG model for ~/< - ~ have been 
the subject of numerous previous studies [3-5, 27, 
28, 35]. Among the important phenomena previ- 
ously observed in collisions of kinks (with velocity 
v) with antikinks (with velocity - v )  are (1) the 
trapping, at low velocity (v < vc -~ 0.359 for 71 = 

- 1 . 0 0 ) ,  of a small KK pair to form a spatially 

localized, oscillatory (decaying "breather")  final 
state; (2) the conversion, at very high velocity 
(v >_. Vco" --- 0.92 for T/= - 1.00) [4], of a "small" 
K K  pair to a "large" K K  pair [28, 35]; and (3) the 
conversion, for essentially all velocities tested, of a 
" large" K K  pair to a "small" K K  pair [4, 28]. 

To complement and extend these prior results, 
we have focused our study on the scattering of 
"small"  K K  pairs at low velocities (v _< vc) and for 
values of 7/= - 0.50 and - 1.00. From the form of 
the DSG potential for 77 < -  1 (see fig. 1), the 
difference in energy between "small" and "large" 
kinks (cf. (2.2b) and (2.3b)), and elementary topo- 
logical considerations, we expect that the interac- 
tions of these "small" KK pairs, for v < v . . . . .  will 
be similar to those in the ~,4 theory [30] in that the 
K and K can not pass through each other and 
thus will typically reflect. Further, given the ex- 
istence of the shape mode around the small kinks, 
we expect that the "resonant energy exchange 
mechanism" developed in CSW and PC will apply 
and that there should exist considerable structure 
in these interactions, with ranges of initial velocity 
in which the K K  are trapped alternating with 
ranges in which they escape after a second (or 
higher) interaction [30-31]. Indeed, our numerical 
results confirm these expectations quantitatively. 
Before presenting these results, let us recall in a 
minimally self-contained discussion the essential 
concepts and equations of the "resonant energy 
exchange mechanism"; readers interested in de- 
tails and derivations are referred to CSW and PC. 

In picturesque physical terms, the central ideas are 
that in their interactions K and K can be viewed 
as particles which (1) have a mutually attractive 
potential [36], which can lead to trapping and (2) 
are individually deformable, with an internal oscil- 
lation corresponding to the "shape" mode dis- 
cussed in section 2. During the first KK collision, 
these internal modes are excited, removing energy 
from the translational modes of the kinks and 
trapping them in their mutually attractive poten- 
tial. Since the internal modes move with the kinks 
(essentially as adiabatic invariants) the energy 
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transferred to them is stored, not lost. Thus when 

the t rapped kinks return for their second interac- 
tion (as they must, since they are trapped), this 
energy can be restored to the K and K transla- 
tional motion, leading to escape for the K and K, 

if  an appropr ia te  resonance condition is met. This 
condition has the form 

~,T2 = 2n2vr + ~2, (3.1) 

where w~ is the shape mode frequency, T 2 is the 
time between the first and second K K  collision, 62 
is an offset phase (between 0 and 2~r by conven- 

tion), and n 2 is an integer, which is the "order"  of 
the resonance. Simple particle mechanics, applied 
to the individual kinks [30, 31], leads to the esti- 
mate  for T 2 in terms of the K K  binding energy, e, 
(i.e., the amount  by which the kinks are bound) 

~r 1 
T 2 -  w0(7/) v~-'  (3.2) 

where ~00(~/) is the lowest frequency in the con- 
t inuum (cf. (2.1)). This estimate is the leading term 
for e ---, 0. Heuristic arguments developed in CSW 
and PC, supported by empirical fits to the numeri- 
cal data  [30, 31], allow one to express the binding 
energy of the K K  pair as a function of their initial 
velocity, v, in the center of mass; one finds [30, 31] 

for v < G, where u c is the critical velocity for 
which the kinks first trap, that 

e (v )  = a (  2v c - u2). (3.3a) 

Here  the constant a is determined empirically 
f rom the data  for u > o~ according to [30, 31] 

v~ = a (  v 2 - v~ ). (3.3b) 

Combining (3.2) and (3.3) leads an expression for 
T 2 in terms of u, 

(3.4a) 

with 

fl = ~r/(c%(~/)Cd).  (3.4b) 

Combining (3.4) with (3.1) leads to the prediction 
for those initial velocities, G2, below the initial 
t rapping velocity (Vc) , which lead to resonant 
escape of the K K  pair: 

(2n2  + 82) 2. (3.5) 

Thus the theory predicts a sequence of resonances, 
becoming increasingly dense as v ~ v c from below. 
In addition, the width of the n th resonance is 
estimated [30] to fall (for large n) as 1/n  3. Limita- 

tions on the range of n for which the theory is 
expected to apply are discussed in detail in CSW; 
in essence, one finds that n 2 cannot be too small 
(otherwise the leading order estimate for T 2 in 
(3.2) fails) nor  too large (when T 2 becomes very 
long, the coupling through higher order nonlinear 
terms to nonlocalized modes which remove energy 
f rom the kink becomes important). Empirically, 
we shall find that in the DSG system for 7/= - 0.50 
resonances satisfying 3 < n 2 -< 22 can be observed. 

3.2. "'Small" KF, scattering for ~ = -0 .50  

In fig. 4 we plot the DSG potential for ~ = 
- 0 . 5 0 ,  together with the "small"  and "large" kink 
solutions. For this value of ~/, the continuum of 
small oscillations begins at ~o 0 = 1 / v ~  = 0.7071... 
and the " shape"  mode of the small kink occurs for 
~o = w s = 0.6592 . . . .  Fig. 5 illustrates the potential 

for linear oscillations around the "small"  kink, 
II,, 1 , scH (fig- 5a), and the spatial distribution of the 
wavefunction of the shape mode (fig. 5b); for 
completeness,  the potential for linear oscillations 
around the large kink, V, H for which there is no S C H ,  

shape mode, is also shown (fig. 5c). 
Using the analytic forms of the "small"  K and 

K solutions (see eq. (2.2)) for ~/= - 0 . 5 0  as initial 
conditions [37] we have studied K K  scattering in 
the velocity range 0.20 _< v <_ 0.40. In fig. 6 we plot 
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Fig. 4. A plot for 71 = - 0 . 5 0  of a) the DSG potential; b) the 
"small" kink solution; and c) the "large" kink solution. 

2 

0 

t~ 
"7- 

t y p e  II 
C 

i i i f ! 

-15.0 -10.0 -5 .0  0.0 5.0 10.0 15.0 

X 

Fig. 5. a) The potential, VlcH(x)=-d2V(qJ)/d~2iq,~, de- 
termining the linear oscillations around the "small" kink for 
rt = -0 .50 ;  b) the spatial distribution of eigenfunction corre- 
sponding to the localized, "shape" mode of the "small" kink. 
Note  that, as expected, this mode corresponds to the first 
excited state in this potential, since the ground state is the 
translation (Goldstone) mode of the kink; c) the potential, 
VSIcIH(X) ~ d 2 V(@)/dt~ 2 I~u, determining the linear oscilla- 
tions around the "large" kink for *l = -0 .50 .  The only local- 
ized mode in this potential in the translation (Goldstone) 
mode; there is no localized shape oscillation of the large kink. 
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Fig. 6. The outgoing velocities ( V output) of the "smal l"  DSG kink and antikink as a function of their incoming velocities ( V input) 
for ~ = -0 .50 .  The vertical lines below v = o  k = 0.345...  indicate the resonances in which the K and K reappear in the final state. 

Note that the widths of these resonances are not depicted on this figure. The nature of the KK collision is indicated by the insets, 

which show q,(x = 0, t) versus t. 

Table I 
Analysis  of two-bounce windows in "smal l"  Kg. scattering for ~ = 0.50 

Position Final Time between 

of resonance velocity first and second /3 = 

Un2 Uf interactions T 2 Tz(v ~ v~2) 1/2 ~o~T2/2~r 
Index Theoretical 

n 2 value of t~2 

0.3000 0.1425 35.63 6.092 
0.3200 0.2094 43.41 5.633 

0.3285 0.2385 53.03 5.642 

0.3330 0.2075 62.29 5.689 
0.3360 0.2436 72.12 5.741 

0.3380 0.2192 82.23 5.808 
0.3395 0.2643 92.91 5.855 
0.3405 0.2403 103.02 5.911 
0.3412 0.2557 112.07 5.946 
0.3418 0.2420 121.76 5.971 
0.3423 0.2442 131.52 5.972 
0.3427 0.2523 140.99 5.963 
0.3430 0.1824 149.69 5.956 
0.34330 0.2517 159.80 5.930 
0.34355 0.2649 169.74 5.893 
0.34375 0.2708 179.46 5.865 
0.34395 0.1954 190.35 5.806 

0.34410 0.2392 198.126 5.698 
0.34425 0.2411 209.376 5.634 
0.34435 0.1145 217.22 5.560 

3.731 3 0.30446 
4.555 4 0.32047 

5.564 5 0.32857 
6.536 6 0.33324 
7.567 7 0.33620 
8.628 8 0.33818 

9.748 9 0,33958 
10.809 10 0.34060 
11.7588 11 0.34137 
12.775 12 0.34197 
13.799 13 0.34244 
14.793 14 0.34281 

15.705 15 0.34312 
16.7665 16 0.34337 
17.808 17 0.34358 
18.828 18 0.34376 
19.971 19 0.34391 

20.786 20 0.34405 
21.967 21 0.34416 
22.790 22 0.34425 
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T a b l e  I I  

W i d t h  of the r e sonances  for * /=  - 0 . 5 0  for several values of n 2 

Index ,  Obse rved  wid th  Product ,  

n 2 in veloci ty ,  Av X = (n 2 + 82/27r)  3 . Av 

5 (1.90 + 0.1) X 10 3 0.360 ± 0.020 

9 (0.40 + 0.1) × 10 3 0.370 i 0.090 

14 (1.14 +_ 0.1) × 10 4 0.365 + 0.003 
17 (6.95 ± 0.15) × 10 5 0.388 i 0.009 

the outgoing velocity of the kinks as a function of 
their incoming velocity. For v > v c = 0.3453...  we 
see that, as anticipated, the K and K reflect; this is 
indicated by the right inset of fig. 6, which shows 

that q~(x = 0, t)  for v > v c returns to its initial 
value ( =  2cos  1 (1/4, / ))  at large time. For v < Vc, 
we see in fig. 6 the expected resonances; as shown 
by the left inset, these are indeed " two-bounce"  
resonances. In table I we present the results of 
applying the "resonant  energy exchange" theory 
[30, 31] summarized above to these numerical data. 
Altogether, twenty resonances (n = 3 to n = 22) 

were observed, and the fit to the theoretical predic- 

tions is excellent. Several specific remarks are in 
order. First, the values of fl and 82 used to de- 
termine the theoretical velocities, v,2 , at the centers 
of the resonances were deduced from the mean 
values of the observed quantities T 2 × ( v~ - v2)  1/2 

and ( % T 2 - 2 n 2 1 r )  and were found to be f l =  
5.815. . .  and 8e/2~r = 0.745 . . . .  Although 82 is a 
parameter  which the theory cannot predict, since it 

depends on the details of the K K  interaction at 

short range, fl, as shown by (3.4b), should be 
given by fl = ~r¢~-/~/-~ = 5.990, since our fits to 
the data for v > v c give a = 0.55. This 3% agree- 
ment  between "predicted" and "observed" values 

of fl is consistent with the level of accuracy found 
in previous applications of the resonant energy 
exchange mechanism [30, 31]. Second, the ob- 
served variation in the final velocity, vf, of the 
resonances (compare n = 15 to n = 14 and 16, for 
example) arises, as in our previous studies [30, 31], 
f rom the fact that for most resonances we did not 

a t tempt  to scan through the resonance carefully to 
determine the maximum outgoing velocity corre- 
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Fig. 7. The o u t g o i n g  velocit ies (V output)  versus the incoming  velocit ies (V input)  for the three-bounce resonances  (vertical  lines) 
obse rved  nea r  the edges of the n 2 = 14 two-bounce  resonance  for ~ = 0.50. The insets  show the behav ior  of ,~(x = 0, t). 
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sponding to a given resonance. That this output 
velocity is extremely sensitive to the precise input 
velocity is clear in principle from the theory and 
will be demonstrated in great detail shortly. Third, 
in CSW we argued that the width of the reso- 
nances in initial velocity, Av, should be propor- 

8 -3 tional to (2n2~r+ z) , so that the resonances 
rapidly become extremely narrow as n 2 increases. 
In table II  we exhibit the width of four of the 

observed resonances, covering the range from n 2 
= 5 to n 2 =  17. The constancy of the product 
Av × (2n2~r + 82) 3 is satisfied to 5%. 

All in all, our numerical results for the " two-  
bounce"  resonances in the DSG model for 7/= 
- 0 . 5 0  provide a striking confirmation of the reso- 

nant  energy exchange mechanism. In view of its 
previous successes in similar models [30, 31], how- 

ever, this is perhaps not surprising. It  may there- 
fore be of greater interest to discuss the higher 
bounce resonances, which we have studied quanti- 

tatively for the first time in this model. In fig. 7 we 
show (on a greatly expanded horizontal scale) a 
plot of initial velocities in the region of the n = 14 
two-bounce resonance. Apart  from providing a 
very accurate determination of the resonance width 
and illustrating the dramatic sensitivity of the out- 
put  velocity to the exact input velocity within a 

resonance, our data show clearly sequences of 
three-bounce resonances - see insets - on both sides 
of the two-bounce resonance. Before discussing 
these data in detail, we note that we have observed 
this phenomenon around other two-bounce reso- 
nances; fig. 8 shows three-bounce resonances 
below the n = 17 two-bounce resonance [38]. Fur- 
ther, and, very interestingly, the answer to the 
obvious q u e s t i o n - " D o e s  this structure of reso- 
nances upon resonances con t inue?" - i s  "yes".  In 
fig. 9 we illustrate a sequence of four-bounce reso- 
nances just below the lowest three-bounce reso- 
nance shown in fig. 7. In addition, individual 
f i ve -bounce  resonances have been seen (see, for 
example,  the lowest resonance in fig. 8). 

The detailed numerical results on the three- 
bounce resonances around the n = 14 two-bounce 
resonance are presented in tables III  and iV. From 

fig. 7 and these tables several important features of 
these resonances are immediately clear: 

1) the three-bounce resonances occur at the edge 
of two-bounce resonances; 

2) the sequences of three-bounce resonances 
show structure very similar to that seen in the 
two-bounce resonances, with three-bounce reso- 
nances accumulating as one moves to the threshold 

at the edge of the two-bounce resonance; 
3) the small oscillations in data on q~(0, t), shown 

on the insets of fig. 8, suggest that the sequence of 
three-bounce resonances corresponds to a series of 
resonant interactions with the same frequency, ~o S, 

that occurs in the two-bounce resonances; that is, 
the three-bounce resonances seem to be de- 
termined by an equation of the form 

¢0sT 3 = 2~rn 3 + 83, (3.6) 

where T 3 is the time between the second and third 

collision, 8 3 is a phase shift (0 < 8 3 < 2~r) and n 3 
is an integer; and 

4) the shape of the two-bounce resonance, as 
shown in fig. 7, is asymmetric, with the large v side 
(v _< vc,,) being much steeper than the small v side 

(V>Vc,); correspondingly, the spacing of the 
three-bounce resonances above vo,, is much closer 
than that of those below vc,. 

The first two features provide a strong qualita- 
tive hint that the resonant energy exchange 
mechanism is operating, whereas the last two give 
semi-quantitative hints as well. In particular, the 
relation between the steepness of the outgoing 
velocity and the spacing of the resonances is just 
what one would expect from the arguments pre- 
sented in CSW and PC. Consider fitting the outgo- 
ing velocity within the two-bounce resonance 
window by a formula analogous to (3.3b) 

v 2 = a'[v~, - vzl. (3.7) 

This fit amounts  to an expansion around the lower 

critical velocity, Vc,. Clearly, one could make a 
similar fit around the upper critical velocity, vc,,, 
with a different coefficient, a" .  From fig. 7, a "  > a' .  
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T a b l e  I I I  

Th ree -bounce  resonances  observed jus t  below the m i n i m u m  veloci ty for the n 2 = 14 two 
b o u n c e  resonance ;  v,., = v c ( 1 4  ) = 0.3426405(5) 

Pos i t i on  F ina l  Time between 

of r e sonance  veloci ty  second and third ¢ /=  Index Theoret ical  

v,, 3 vf in terac t ions  T 3 7"t(@ v 2) wsT3/2~7 n 3 value of t,~ 

0.342595 0.1533 21.34 11.97 × 10 2 2.240 2 0.3425940 

0.342622 0.1684 32.202 11.62 × 10 2 3.378 3 0.3426194 
0.342630 0.1898 41.51 11.40 × 10 2 4.355 4 0.3426286 

0.342634 0.1685 51.51 11.28 × 1 0  2 5.403 5 0.3426330 
0.342636 0.1721 60.74 11.25 × 10 2 6.373 6 0.3426354 

0.3426374 0.2146 71.81 11.28 × 10 2 7.534 7 0.3426368 
0.3426381 0.2248 80.64 i1 .40 × 10 2 8.460 8 0.3426378 

Tab le  IV 

Th ree -bounce  resonances  observed jus t  above the m a x i m u m  veloci ty  for the n 2 = 14 two 

b o u n c e  resonance ;  vo,, = v c (14 + ) = 0.3427545(5) 

Pos i t ion  F ina l  Time be tween 

of  r e sonance  veloci ty  second and  third /3" = Index Theoret ica l  

Un3 Vf in terac t ions  T 3 T3(t;c2,, U23 )1/2 %7~/2~r  n 3 value of vn3 

0.3427690 0.1092 24.88 7.95 x 10 2 2.610 2 0.34276789 
0.3427620 0.0701 34.062 7.93 × 10 2 3.574 3 0.34276145 
0.3427585 0.1771 45.43 7.89 x 10 2 4.768 4 0.34275865 

0.3427572 0 .1660  54.32 7.92 × 10 2 5.699 5 0.34275719 
0.3427563 0.1218 64.55 7.93 X 10 2 6.773 6 0.34275634 

0.3427558 0.1111 73.34 7.92 × 10 2 7.695 7 0.34275579 

0.3427554 0.1130 83.86 7.92 × 10 2 8.798 8 0.34275543 

If  one now applies the standard resonant energy 
exchange analysis, one obtains for the locations of 

the three bounce resonances, G,, located below/)o,, 
the equations 

2 2 
~r ~0 s ( 3 . 8 )  

I/3 2 , - -  /)n3[ 2 =  ~ O O ( ~ ) 2 0 t , ( 2 n 3 q r j r . ~ 3 )  2"  

A similar equation will apply to resonances above 
/)c". Since c~" > a ' ,  one expects the resonances on 
the high side to be more closely grouped around 
/)¢,, than those on the low side are around /)c,; this 
is precisely what is observed. 

Buoyed by this semi-quantitative consistency, 
we have applied the standard formulae of the 
resonant  energy exchange mechanism to the three 
bounce resonances. The results are in remarkable 
quanti tat ive agreement with the theory. In particu- 

lar, the p roduc ts /3 '  - T 3 X (v if, -/)2)1/2 and / 3 " =  

7-3 × (v 2 - @,)1/2 are, as anticipated by the theory, 

constant  to high accuracy (5% for/3 ' ,  1% for/3",  
see tables I I I  and IV). The values of 3 3, although 
less well determined, are also reasonably constant 
(3~ = +_25% and 8~ '= _+20%). Clearly the reso- 
nant  energy exchange mechanism is at work. In- 
deed, as in PC, we were able to observe the large 
number  of three bounce resonances only because, 
on the basis of the formula, we were able to 
predict  their locations. 

There are two important questions that should 
be answered before a true quantitative picture can 
be claimed, however. First, why do the observed 
three-bounce resonances occur at the edge of two- 
bounce resonances (and similarly, from fig. 9, 
four-bounce resonances at the edge of three-bounce 
resonances)? Second, can the theory predict the 
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large difference in scale between 13-  T 2 X ( v ~ -  2 
v2) 1/2 shown in table I and fl '  or f l"? 

To answer these questions, we need to extend 
the detailed analysis of two-bounce scattering de- 
veloped in CSW to the three (and higher) bounce 
case. Since the full motivations and derivations are 
available in CSW, we shall simply sketch the argu- x 
ments  here. 

Let S be the (complex) amplitude of the shape 
mode  at time t = 0, so that the full space and time 
variat ion of this mode is * 

V I * s ( X , t ) = ( S e i % t +  S * e - i % t ) ~ s ( X  ), (3.9) 

where ~s(X) is the spatial wavefunction (as shown, 
for example, in fig. 5b) for the mode. For a given 
S, the total energy in the shape mode of a single 
kink is 

E s = 2 1 S I 2 ~ .  (3.10) 

m 

K K  collisions can excite (or de-excite) the shape 
modes. A useful visualization of the sequence of 
two-, three- , . . ,  bounce interactions is presented in 
fig. 10. Here the locations of the centers of the K 
and K are plotted versus time for interactions in 
which the K and K emerge with the final state 
after 1, 2, 3, 4, and 5 collisions. In CSW, we 

assumed that  the shape mode immediately after a 

collision, S ' ,  was related to that immediately be- 
fore,  S, by the simple linear relation [39] 

S '  = aS  + b S *  + P, (3.11) 

and then showed that general constraints (eg., time 
reversal invariance) implied relations among a, b, 
and 0 such that 

S '  = -~-ff(1 + i3 ')S + i3'S* + P, (3.12) 

where 3' is purely real. In principle, both y and p 
are expected to vary with v, but only rather slowly. 
Since the resonances occur in a relatively narrow 
range of velocities near Vc, we neglect this depen- 
dence here. F rom (3.12), the general condition for 

i 

i 

t ime 

Fig. 10. Plots for the locations of the kink and antikink versus 
time for several different sequences of interactions leading 
finally to escape of the K and K. From the top down, these 
interactions involve, respectively, 1, 2, 3, 4, and 5 KK, colli- 
sions. 

resonance after two interactions can be derived. In 
addition, one can derive an expression for the 
width of the resonances. In the t~ 4 simulation - and, 

as we shall see later, for the DSG as we l l - t h e  
resonance width was consistent with y = 0. Taking 

this hint, let us study the three-bounce resonance 
condition when y = 0 in (3.12). 

Immediate ly  after the first K K  collision, which 
we shall take as defining t = 0, (3.12) (with 3' = 0) 

shows that S '  = O. Just before the second collision 
occurs, at t = 7"2, this S "  has evolved to S' (T2)  = 
p e i~sT2, so that immediately after the second colli- 
sion, one has 

S " =  - O / p * ( p e  i~Sr2) + 0 (3.13a) 

= p[1 - ei(2°+~sr2)], (3.13b) 
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where we have introduced 0 - arg p. Note  that the 

resonance  condi t ion  for the two bounce collision is 

par t icular ly  t ransparent  in this ~, = 0 case. F r o m  

(3.13b), to have no energy in the shape mode  

( I S " I  = 0) so that  the kinks are most  likely to 

escape, one needs 

O~sT 2 + 20 = 2n 2~r, (3.14) 

exactly the familiar condit ion (3.1) with 3 2 ~ 20. 

In  CSW we presented arguments  that the width of 

the resonances  should be constant  in the phase, 

X - ~sT2 + 20 - 2n27r. Note  that X = 0 exactly on 
resonance.  The  value of X - X0 at which the reso- 

nance  disappears  should be determined by  the 

condi t ion  that  the energy in the shape mode  after 

the second collision be precisely equal to what  it 

was before:  that  is, using (3.13b) and (3.10), 

2~o2101211 - e~Xo 12 = 2~o21012 (3.15a) 

so that  

c o s x 0  = ½ (3.15b) 

and  thus 

X0 = +~r /3 .  (3.15c) 

Thus  (3.15c) implies that the two-bounce reso- 

nances  should disappear at values of  T2 ( ± ) defined 

by  

~osT2(-+) + 20 - 2n2~r = +~r /3 .  (3.16) 

N o w  consider  the third K K  collision, which 

occurs  at t ime T 3 after the second collision. The 
ampli tude,  S" ,  immediately before the third colli- 
s ion is thus S " =  p[1 - ei(2°+~°sT2)]e i~°sT3, so (3.12), 

with V = 0, gives the amplitude ( S  '" ) immediately 

after the third collision as 

S ' "  = - e 2 i ° [ p ( l  - ei(20+~°sTD)] e i°~sT3 q- p 

= p[1 -- e i(z°+'~T3) + e i(4°+°'dT:+T3) ]. (3.17) 

Thus  the resonance condit ion I S ' " I =  0 can be 

wri t ten as 

1 + e i~x + e i"2 = 0 (3.18) 

with ~q = 20 + wsT3 + 7r and /t 2 = 40 + ws(T2 + T3) 
which has the solutions 

v 1 = 2~r/3 + (2mlvr) (3.19a) 

and  

P2 = - 2 ~ r / 3  + (2m27r) (3.19b) 

or ~'1 ~ u2; here m 1 and m 2 are arbitrary integers. 
In  terms of  T 2 and /'3, we see that the resonance 
condi t ions  become either 

wsT3 + 20 = - ~ r / 3  + 2mllr (3.20a) 

and  

~sT2 + 20 = - ~ r / 3  + 2 (m 2 -  ml ) ,  (3.20b) 

o r  

% T  3 + 20 = + ~r/3 + 2rn~r (3.21a) 

and  

~sT2 + 20 = +~r /3  + 2(m~ - m~)~r. (3.21b) 

N o t e  that eq. (3.20b) and (3.21b) are exactly the 
condit ions,  (3.16), determining the edges of the 

two-bounce  resonances. Hence we predict that 

the three-bounce resonances should occur at the 
edge of  two-bounce  resonances, exactly as our  

da ta  indicate. A similar analysis for the case of  

four  K K  collisions shows that four-bounce reso- 
nances  should occur, as observed, at the edge of 

three-bounce  resonances. 
Turn ing  to the second of the questions posed 

above, we ask whether our approach can account  

for the large difference between fl - T 2 x (re 2 - 
U2)  1 / 2  and fl '  -=- T 3 X (V 2, - -  0 2 )  1 /2  and f l"  - T 3 X 
(/3 2 2 1/2 - G " )  . To  study this point  let us focus on 

fl ' ,  that  is, on  the three-bounce resonances just 
be low vc,. First, as indicated by (3.3), the value of 
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/3' should be related to a '  in (3.7) according to 
(see (3.4b)) 13' = ~r/(~Oo(~)(a')l/2). Using the "ex- 
perimental" fit to a '  (~- 2.3 × 10+3), we find/3'  = 
9 .9×  10 -2 , which is 15% agreement with the 
observed value shown in table III. This level of 
agreement is consistent with previous results in 
other models [30, 31]. Second, one can make a 
much more demanding test of the theory by trying 
to predict the magnitude of a '  and hence/3' from 
previously known parameters. This is possible since 
our analysis essentially determines the dependence 
of the shape mode energy as a function of time 
between collisions (and therefore as a function of 
initial velocity) for the whole region near Vc. Ex- 
plicitly, we note that for two-bounce resonance 
window region, o~, < o < vc,,, total energy con- 
servation can be written 

M#= -es(V 2) + 

OEs ~o, = -  O v  2 (v 2 - v  2 , ) + ' ' '  . (3.22) 

Frr~m (3.10) and (3.17), we know that 

es (v  ) = 81o12~o~[1 -cos(o~sTz(v) +200)1. 
(3.23) 

Since we have always assumed p to be weakly 
dependent on v, the only v dependence comes 
from T2(v ) and is explicitly given in (3.4). Work- 
ing through the algebra and using 81p[2~o2 = 2Mv2c 
and sin(o~sT2(vc, ) + 200) = v/3/2 (from (3.15)), we 

obtain 

(3.24) 

which, comparing to (3.7), amounts to a prediction 
of a'. Plugging in the approximate values, we 
obtain a '  = 5.06 × 103; although off by a factor of 
2 from the experimental a '  (=2 .3  × 103), this 
does give the correct order of magnitude and 
amounts to an a priori prediction of the two-order- 
of-magnitude difference between/3 and/3' .  

The same analysis can be applied to the region 
near the upper critical velocity (vc,,) of the two 
bounce window. We find similar rough agreement 
and predict the asymmetry a "  > a', although not 
to the extent observed in the data. It appears that 
a full quantitative explanation of these results 
requires a more detailed modelling of the KK 
interactions. 

One can extend the analysis presented here to 
higher bounce resonances. In particular, one finds 
that four-bounce resonances should occur at the 
edges of the three-bounce windows and that a 
formula analogous to (3.8) correctly predicts their 
locations. In table V we present data on the four- 
bounce resonance observed just below the n 2 = 14, 
n 3 = 1, three-bounce resonance (fig. 8); the agree- 
ment between the theoretical and observed values 
of the resonances is again quite good. 

It is natural to wonder whether this "resonance 
upon resonance" structure continues, in a manner 
reminiscent of the self-similar/structures-on-all- 

T a b l e  V 

F o u r - b o u n c e  
th ree -bounce  

Pos i t i on  
of  r e sonance  

v4 

0 .3425850 
0.3425892 
0.3425906 
0.3425911 
0.3425914 

resonances  observed jus t  below the m i n i m u m  veloci ty  for the n 2 = 14n 3 = 1 
resonance ,  re,,, = re(14_,  1 _)  = 0.3425921(2) 

F ina l  Time between 

ve loc i ty  third and fourth fl ' "  = Index  Theoret ica l  
Uf in terac t ions  T 4 T3 (@, ,  .2 ,1/2 - v,.) wsT4/2~r n 4 value of v.4 

0.0144 20.51 4.37 × 10 -2  2.152 2 0.34258657 
0.1652 30.84 4.35 × 10 -2 3.236 3 0.34258940 
0.0997 42.02 4.26 × 10-2  4.408 4 0.34259051 
0.2367 50.99 4.22 × 10 -2 5.350 5 0.34259106 

0.1602 61.08 4.23 × 10 -2  6.408 6 0.34259136 
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scales behav io r  observed in cer tain chaot ic  dy- 

namica l  systems.  Wi th  our  present  numer ica l  

p rec i s ion  [37], at a level be tween the four- and  

f ive-bounce  resonances  the width  of the windows 

in V~r~t a p p r o a c h e s  the size of discreteness  effects 

on  the (nomina l )  k ink velocities,  and  we then 

c a n n o t  make  accura te  de te rmina t ions  beyond  this 

order .  M o r e  fundamenta l ly ,  since our  " r e s o n a n t  

energy  exchange  mechan i sm"  ignores the (effec- 

t ively " i ne l a s t i c " )  coupl ing  to non- loca l ized  small  

osc i l la t ions ,  the fine s tructure of the very h igh-order  

r e sonances  mus t  be  b lur red  even in an a rb i t ra r i ly  

prec ise  numer ica l  s imulat ion.  Ob ta in ing  an ana-  

ly t ic  e s t ima te  for the l imits to the " r e sonance  upon  

r e sonance"  s t ruc ture  remains  an interest ing open 

p r o b l e m .  

3.3. " S m a l l "  K K  s c a t t e r i n g  f o r  ~1 = - 1 .00  

In  view of bo th  the exper imenta l  interest  [3-5]  

a n d  prev ious  numer ica l  studies [27-28] in the case 

71 = - 1 . 0 0 ,  we present  here results  of  a de ta i led  

ana lys i s  of  the  two-bounce  resonances  for this 

value.  The  s t ruc ture  is very s imilar  to that  ob- 

served  for ~ = - 0 . 5 0 ,  except  that  the resonances  

are  s o m e w h a t  nar rower  and therefore  more  dif- 

f icult  to find. 

In  fig. 3 we show the D S G  poten t ia l  for ~/= 

-1.00, toge ther  with the " sma l l "  and  " l a rge"  kink 

solut ions .  F o r  this value of 7/, the con t inuum of 

smal l  osc i l la t ions  begins at w 0 = ~f3/2  = 0 .8660 . . .  

and  the shape  mode  of the small  k ink occurs  at 

to = % = 0 . 8 4 0 9  . . . .  In  fig. 11 we d isp lay  the 

po t en t i a l  for  l inear  osci l la t ions a round  the small  

k i n k ,  V, Ix the spat ia l  s t ructure of the wavefunc-  S C H ,  

tion for the shape mode, and finally the potential 
for  l inear  osc i l la t ions  a round  the large kink, V, I SCH,  

for  which  there  is no shape mode.  

W e  have s tud ied  numer ica l ly  K K  i n t e r a c t i o n s -  

us ing  the ana ly t ic  forms of  the K and K for 

= - 1 . 0 0  as ini t ial  c o n d i t i o n s - i n  the veloci ty 

r ange  0.25 _< v ~< 0.40. In fig. 12 we plot  the outgo-  

ing veloci ty  of  the k ink  as a funct ion of the 

i n c o m i n g  veloci ty.  Fo r  v >__ v~ = 0 .35907. . .  the K 

and  R. reflect, as ind ica ted  by the r ightmost  inset  

o , . . f .  
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Fig. 11. a) 
termining the linear oscillations around the "small" kink for 

= -  1.00; b) the spatial distribution of the eigenfunction 
corresponding to the "shape" mode of the "small" kink. As in 
fig. 5, this mode corresponds to the first excited state in this 
potential. Note that this ~/= -1.00 shape mode is slightly less 
localized than the same mode for ~ = -0.50; c) the potential, 
VSI~.H(X) =-- d 2 V(~)/dq~ 2 [~,~, determining the linear oscilla- 
tions around the "large" kink for ~ = -  1.00. As in fig. 5, 
the only localized mode in this potential is the translation 
(Goldstone) mode; there is no localized shape oscillation of the 
large kink. 

t y p e  II 
C 

- 1  i - -  i i 
5 . 0  0 . 0  5 0  10 .0  15 .0  

X 

The potential, VstcH(X) ~ dF(~,)/d~l,~,  de- 
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Fig. 12. The outgoing velocities ( V output) of the small DSG kink and antikink as a function of their incoming velocities ( V input) 
for 77 = - 1.00. The vertical lines below v = v c = 0.359... indicate the resonances in which the K and K appear in the final state. Note 
that the widths of the resonances are not depicted on this figure. The nature of the KK collision is indicated by the insets, which show 
q,(0, t) versus t. 

Table VI 
Analysis of two-bounce windows in "small" KK scattering for 7/= 1 

Time be- 
Position Final tween the 2 
of reso- velocity first bounce fl = Index 

~ ,  2 2,1/2 ~sT2/2~r n nance v. o r T 2 12 (v c - o n ) 

Theoretical 

vn 

0.3340 0.1059 32.96 4.345 4.513 4 0.33652 
0.3431 0.1449 40.30 4.268 5.518 5 0.34397 
0.3480 0.1739 47.81 4.230 6.546 6 0.34825 
0.3510 0.1452 55.72 4.218 7.629 7 0.35093 
0.3528 0.2491 63.00 4.209 8.627 8 0.35272 
0.3540 0.2124 70.17 4.219 9.609 9 0.35398 
0.3550 0.0340 78.45 4.229 10.742 10 0.35490 
0.3556 0.1297 84.95 4.230 11.631 11 0.35559 
0.3562 0.2273 93.29 4.227 12.774 12 0.35612 
0.3566 0.2505 100.69 4.233 13.787 13 0.35654 
0.3569 0.2655 107.57 4.239 14.723 14 0.35687 
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to fig. 12. For  v < v c, we see the expected series of 
two-bounce resonances; the fit of the "resonant  

energy exchange" theory to these data is sum- 
marized in table VI. As in the previous case (7/= 
-0 .50) ,  the comparison of "experimentally" de- 

termined flexp = 4.24.. .  with the "theoretically" 
p r e d i c t e d  /~theor ~ 4.04.. .  is quite good. As usual, 
knowledge of the theoretical values of v, was 
essential in finding the higher-lying, narrower reso- 

nances. We find 82/2~r = 0.6365 . . . .  

In addition to the two-bounce resonances, fig. 
12 illustrates isolated "three-bounce" and "five- 
bounce"  resonances. We did not study these fea- 
tures systematically, but considering the success of 

the mult i-bounce theory for ~/= 0.50, we feel con- 
fident that these resonances also arise from reso- 

nant  energy exchange. 

4. K i n k - a n t i k i n k  scattering for - ¼ < ~ < 0 

In the region - ¼ < 77 < 0, the DSG potential is 
topologically similar to the sine-Gordon model, 
and there exists a single type of kink solution with 
the form given by eq. (2.4). In figs. 13a and 13b we 
plot the forms of the DSG potential and the kink 
solution for two values of ~q( - 0.05 and - 0.15) in 
this region. Importantly,  as illustrated in fig. 2, for 

< ~ < 0 there is no  "shape"  mode in the small 
oscillations around the kink. Thus, on the basis of 
the theory developed in CSW and successfully 
tested on a model w i t h o u t  a shape mode in PC, we 

expect that there will be no  resonances in KK 

scattering here. 
We have studied extensively K K  collisions for 

both  ~/= - 0.05 and 7/= - 0.15. Below the critical 

"r/ = - 0 . 0 5  

1 I I 

'-4rr 4~ 

. . . . . . . . . . .  l y 2 ;  .... 

I I I V I I I 
-15.0 -10.0 -5.0 ~ . 0 - - 5 . 0  10.0 15.0 

'-4rr 

-'15.0 -10.0 

=-0 .15  

4.,n ) 
¢ 

I 

-5.0 / 
I I 

5.0 10.0 

-2n b 

I 

15.0 

Fig. 13. a) A plot of the DSG potential and the single kink solution for ~/= -0.05. b) A plot of the DSG potential and the single 
kink solution for */= -0.15. 
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3000.0 0.0 200.0 
I I I I I I 

moo o zo0oo 400.0 600.0 s0o.0 looo.0 
t i m e  Lime 

Fig.  14. A p lo t  ve rsus  t ime of  f f (x  = 0, t)  i l lus t ra t ing  the  n a t u r e  of  the osc i l l a to ry  final  s ta te  f o r m e d  in K K  coll is ions:  a) for  

= - 0 . 0 5 ,  w h e r e  v c = 0.112,  a col l is ion wi th  v less t h a n  v c (here v = 0.07) leads  to a long- l ived,  s lowly d e c a y i n g  state;  b) for  

= - 0 . 1 5 ,  w h e r e  v c = 0.390,  a col l is ion wi th  v less t h a n  v¢ (here v = 0.350) leads  to a r a p i d l y  d e c a y i n g  state.  

velocities for trapping (v c = 0.112 for B = - 0.05, 
v c = 0.390 for 7/= -0 .15)  we have observed only 
localized, decaying oscillatory states. No reso- 
nances were seen. Although it is impossible for us 
to exclude entirely the existence of very narrow 
resonance regions, we can assert that if present 
this structure is on a very fine scale indeed. 

There is one striking qualitative difference be- 
tween the decaying, oscillatory final states ob- 
served for v < v c for the two values of ~/. For 

= -0 .05 ,  this state survives for a very long time, 
with the "ampl i tude" -de f ined  as the maximum of 
q~ (x -- 0, t) over a single pe r iod -  decaying roughly 
linearly in time. In sharp contrast, for ~/-- -0 .15,  
the amplitude of the oscillatory state decays rather 
rapidly, apparently following an exponential law. 
This difference is very clearly illustrated in fig. 14. 

It is possible to understand this difference semi- 
quantitatively in terms of the existence or non- 
existence of stable "breather"  solutions to the 
DSG for different values of ~ [31, 39]. To be 
specific, let us consider the expansion of VDSG(q 0 
around its minimum value for 1711 < ¼. In terms of 

0 - q~ - 2rr one finds for O ~ 0 

- 4  [ 1 2 1+4~ 
VDSO(0)-- 1+14711 1 + ~ - -  ~0  ( T )  

04f1+16 1 ] 
+ ~ 1-------(~ + " '"  • (4.1) 

Hence keeping nonlinear terms up through 0 4 in 

VDS o yields the field equation 

d20 d20 ( I+4 T t  ) 
dt  2 dx  2 + 1 + ]4~1 0 

1 + 1671 ) 
24(1 + 14hi) 03 = 0. (4.2) 

The search for "brea ther"- i .e . ,  nonlinear, spa- 
tially localized, time-periodic - solutions to eq. (4.2) 
can be handled by standard asymptotic perturba- 
tion theory methods [40-43]. Expanding 

O(x,t)=e(q,(X,T)ei, + g,,(X,T)e iv), 
(4.3) 
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with 

( 1 + 4 7 )  1/2 
r =  1+1471  t, 

T : E2T, 

suggest that the large amplitude, (apparently) sta- 
ble breathers, which connect smoothly with the 
analytic small amplitude solution, do exist. 

and 

]1/2 
1 + 4 7  f x, 

X =  e 1 + 147] 

one obtains, after equating powers of e, a nonlin- 
ear SchriSdinger equation for the envelope func- 
tion, 'IT', of the form 

8 ~  02~ It 
2i 0 ~  OX 2 KI q'12q" = 0' (4.4) 

where K =  (1 + 167)/[8(1 + 47)1. Eq. (4.4) will 
have spatially localized soliton solutions, and hence 
eq. (4.2) will have breather solutions, only for 
K > 0. Thus the dividing line for the existence of 
stable, small amplitude breathers for 171 < ¼ is 
7 > - ~ .  For  values of 7/> - ~ ,  one finds the 
explicit breathers solution in terms of the original 
variables to be [¼ > 7 > - 11 

5. Kink-ant ikink scattering for 7 > 0 

5.1. General properties of the kinks 

As previously mentioned, for positive values of 
7 two different regions can be distinguished, 
according to the topology of the DSG potential. 
For  0 < 7 < l ,  the potential is topologically similar 
to the SG potential, while for 7 > ¼ the tops of the 
potential barriers are replaced by local minima, as 
indicated in fig. 1. These local minima are respon- 
sible of the existence of an additional unstable 
solution [2]. Since we are interested here in topo- 
logical kink solutions connecting two adjacent 
absolute minima of the potential, we shall treat 
these two regions simultaneously. It is interesting 
to observe that, in the domain 7/> 0, the DSG 
potential can be written in terms of a new parame- 
ter R which has a natural physical interpretation. 
Specifically, one has 

e x ( 1 + 1 6 7 )  1/2 
4 , ( x , t )=2rr+2esech~-  1 +  1471 (s)  

X COS 
1 + 47 1/21 

1 + 1471 32(1 + 47) " 

(4.5) 

The interpretation of our data is thus that for 
7 = -0 .05 ,  one is in the range for which stable 
breathers can exist, and hence the oscillatory state 
formed in K K  collisions being "near"  a stable 
solution decays very slowly, whereas for 7 = 
-0 .15 ,  since there are no stable breathers, the 
corresponding trapped KK state decays much more 
rapidly. Of course, the analytic breather solution 
in (4.5) is valid for small amplitude, e, whereas the 
oscillatory states formed in the KK collisions have 
large amplitude (see fig. 14). Nonetheless, numeri- 
cal simulations in the closely related q, 4 model [43] 

v(4,) 4 
( - cos 4,/2 

cosh 2 R 

+ ¼ sinh 2 R cos 4, - 1 - ¼ sinh 2 R ). (5.1) 

Apart  from the term introduced for convenience to 
insure that V(4,) vanishes at the absolute minima 
(4, = 27r + 4n~r), this expression is equivalent to 
eq. (1.3) used previously if 7 is expressed as 

~/= 1 sinh 2 R. (5.2) 

Eq. (5.2) shows that this new parametrization is 
indeed valid only for positive 7. As noted in 
section 2, for 7 > 0 there is only one type of kink 
interpolating between two absolute minima of the 
potential. In terms of the parameter R the static 
kink (antikink) solution has a very simple form, 

sinh ( x ) 
4 , K ( K ) ( x ) = 2 n ( 2 q r ) + 4 t a n  l c o s h ( R ) .  (5.3) 
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Interestingly, this solution can be expressed in 
terms of two sine-Gordon soliton solutions, 

= 2n (2 r) 

+ [*soK(X + R)  -- *soK(R -- x ) ] ,  (5.4) 

where 

q~scI~ ( x ) = 4 tan -  %xp ( x ) .  (5.5) 

Eq. (5.4) shows clearly the physical meaning of the 
parameter R: the DSG kink can be considered as 
the superposition of two (bound) sine-Gordon 
solitons centered at _+ R and thus separated by the 
distance 2R. Fig. 15 shows the shape of the DSG 
potential (5.1) and the corresponding kink solu- 
tions for various values of R (R = 0.5, 1.2, 2.4, 
and 10 which correspond respectively to 7/= 0.136, 
0.567, 14.960, and 3.023 x 107). The meaning of R 
is graphically demonstrated in fig. 15: when R is 
small (R < 1) the DSG kink appears only as a 
slightly distorted 47r kink but at large R (R = 10) 
the DSG kink is split into two sine-Gordon-like 
2~r kinks. This property appears also in the 
expression of the kink energy as a function of R, 

( 2R ) (5.6) 
E(R) = 16 1 + sinh2R " 

In the limit R --* 0, the model tends to a pure SG 
model with period 4~r and kink energy E(0) = 32, 
while in the limit of large R the DSG model tends 
to a pure SG model of period 2 ~r. In the later case, 
the DSG kink tends to a pair of SG solitons and 
its energy is E(R ~ o¢) = 2 × 8 = 16, as shown by 
eq. (5.6). 

Although for large R the DSG kink looks like 
two SG kinks (that we shall henceforth designate 
'subkinks')  the two subkinks are not free to move 
with respect to each other. Their equilibrium spac- 
ing is approximately given by 2R. When the DSG 
kink moves, the two subkinks perform identical (in 
phase) translations. In terms of the small oscilla- 
tions around the kink waveform, this overall trans- 
lation corresponds to the "Goldstone mode" of 

the 4rr kink. In addition to this " in  phase" trans- 
lation, one can expect an "out  of phase" motion, 
in which the relative distance between the two 
subkinks changes [44]. This observation was al- 
ready used by Hudfik [19], who analyzed this 
oscillation in the limit of large subkink separation 
(our large R limit) in terms of the distance be- 
tween the subkinks. Since we are interested here in 
K K  scattering, in which small oscillations around 
the kink waveform have been shown to play a 
major role, we have solved numerically for all 
values of R the SchriSdinger-like eq. (2.6) which 
describes these small oscillations. The results are 
summarized in fig. 16 in terms of parameter R. In 
addition to the continuum starting at ~00 = 1 inde- 
pendently of R and to the 0a = 0 Goldstone mode, 
we found a localized shape mode of the kink. Its 
frequency is very close to 1 for small R and 
decreases to 0 when R becomes large. Fig. 17 
shows the Schri3dinger potential Vscn(X ) and the 
corresponding eigenfunctions of the shape mode 
for several values of R. Although we have not 
been able to solve this equation analytically for all 
values of R, we have carried out a perturbation 
analysis in the two limits R--+ 0 and R ~ ac. 
Using the solution (5.4), the potential VScH(X) 
given by eq. (2.7) is obtained as 

d2g(~b) ddp2 q, =q,K(x) 

= - 1 + tanh 2 R cos q~ 
1 4 

cosh2----~cos~ 

2 c°sh2 R - sinh 2 x _ 1] 
= - 1 + tanh 2 R [ cosh 2 R -~ sinh 2 x 

- sech2 R [ c°sh2 R - sinh2 x ] (5.7) 
cosh 2 R + sinh 2 x ' 

As usual, the corresponding Schr~Sdinger equation 
admits deoK/dx as a zero energy (Goldstone) 
mode. Using (5.4), its (unnormalized) eigenfunc- 
tion is obtained as 

+o(X) = Oo(X + R)  + O0(R - x ) ,  (5.8) 
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Fig. 16. The spectrum of the small oscillations around the DSG kink in the domain ~/> 0 as a function of the parameter R. The 
continuum starts at ~ = 1. The full line shows the frequency % of the shape mode (numerical result). The dashed line shows the 
frequency of the shape mode obtained for large R from the odd combination of the Goldstone modes of the 'subkinks'. The dotted 
line shows the frequency of the shape mode obtained from perturbation of the lowest state in the continuum of the SG model 
corresponding to R = 0. 

where  

dCs~K = 2 sech ( x )  (5.9) th°(x)  - d x  

is the Golds tone  mode  of the s ine-Gordon kink. 

This result has an immediate and illuminating 

in terpre ta t ion in terms of  an analogy to quan tum 

mechanics ;  this analogy is appropriate,  of  course, 

because of  the previously noted formal similarity 
of  eq. (2.7) to the SchrSdinger equation. Consider 

fig. 17d. The  SchrSdinger potential  has a clearly 
separated "doub l e  well" form and thus one ex- 
pects  that  the g round  state wave f u n c t i o n -  i.e., the 
Go lds tone  m o d e - w o u l d  have a wave function 
approximately given by the sum of the individual 
g round  state wave functions for the two separate 
potent ia l  wells. Eq. (5.8) shows tha t  this result is 
exactly true, for  all R. The same analogy suggests 

that,  for large R,  the first excited state of  Vsc H 

should  (1) be very close in energy to the ~0 = 0 

g round  state and (2) have a wave function, ~bl(x), 

given approximately by the difference between the 
two individual  ground state wave functions: 

@ I ( X )  = t~o(X At- R )  --  ~ o ( X  --  R )  

d~'K(X) 
d R  (5 .lO) 

N o t e  that fig. 16 shows that, indeed, for large R 

the first excited state of  VSC H does approach the 
g round  state (~0 = 0). Note  further that the final 

equali ty in (5.10) indicates that this first excited 

state is, as expected, the shape mode of  the 4~r 
kink, in that  it is related to the relative motion of  
the two subkinks. Thus henceforth we shall use the 
no ta t ion  ~ks(x) -= ~kl(x). 

Tak ing  ~bs(x ) as given by eq. (5.10), normalizing 
proper ly  and evaluating the energy corresponding 
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m o d e  ( f o r  v a r i o u s  v a l u e s  o f  R ) :  a) R = 0.50;  b )  R = 1.20; c) R = 2.40;  d)  R = 10.0. 
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to this approximate  solution we find 

/ (~bs(x) l~bs(x))  (5.11a) 

3 1 s inh2R + 2R 
sinh 2 R cosh 2 R s inh2R - 2R " 

(5.11b) 

The variation of &~(R) is plotted in fig. 16 (dashed 
line) together with the actual value c0s(R ) obtained 
numerically. As expeCted ~s(R) gives a very good 
estimate of ~0s(R ) for large R. Moreover, fig. 16 
shows surprisingly that ~s(R) is rather accurate 
even for R as small as R - - l ,  for which the 
individuality of the subkinks has disappeared. Of 
course, dq~/dR will not give an accurate estimate 
of ~0~ or of the shape of the eigenfunction for very 
small R. Such estimates can, however, be obtained 
if one looks for perturbations of the continuum 
eigenstates of the SG model obtained in the limit 
R ~ 0. Let us define A = 1 /cosh  2 R. The potential 

VSCH(X ) given by eq. (5.7) can be expressed around 
R = 0 (A = 1) as 

VScH(A, x )  = Vsc,(1,  x )  + (A - 1) 

d 
× ~ VSCH(A, X)lA= 1 + O(A - 1) 2 . (5.12) 

In this expression VscH(1 , x)  is the potential de- 
scribing the small oscillations around the sine- 
Gordon  soliton, so that 

Vsc H (1, x ) = - 2 sech 2 ( x )  (5.13) 

and the perturbative term is obtained as 

) A 8 sinh 2 x - 2 d VscH(A ' x - (5.14) 
d A = 1 cosh 4 x 

Under  the perturbation (5.14) the energy of the 
Goldstone mode of the SG system that exists for 
R = 0 is not shifted whereas the energy of the 
lowest energy state (k = 0) in the continuum, the 

eigenfunction of which is 

1 
Uo(X ) = ~ tanh x, 

is shifted by 

A E = ( A _ I )  4 -  4 ( 1 1) 
3~r 3~r cosh 2 R " 

The energy of this perturbed state is then 

~0;'2(R) = 1 - AE. (5.15) 

As shown in fig. 16 (dotted fine) this expression 
gives an estimate of the shape mode frequency 
which is valid only for very small values of R. 
Thus the shape mode of the DSG model for 77 > 0 
evolves as R increases from a perturbation of the 
lowest state of the SG model obtained for R -- 0 to 
the antisymmetric combination of the two SG-like 
Goldstone modes of the subkinks for large R. 

Let us now turn our attention to K K  scattering. 
Since the model tends to a sine-Gordon model in 
the two limits R ~ 0 and R ~ oo, we expect only 
elastic scattering with a vanishing critical velocity 
in these two limits. That we observe this numeri- 
cally is shown in fig. 18. A maximum in the critical 
velocity is observed for R = 1 where v c = 0.24. 
Two points should be emphasized about these 
results. First, although it is not very far from 

R = 0.8813 07 = ¼), the maximum in the critical 
velocity does not correspond to occur at ~ = ¼, 

and thus this maximum does not seem to be 
related to the change in structure (the appearance 
of the additional minimum) of the potential. In- 
deed, a similar ' anomaly '  in the critical velocity 
has already been observed in PC for the gener- 
alized SG model [45], in which no such change of 
shape occurs. A theoretical determination of the 
position of the maximum of the critical velocity 
would require a complete description of the mech- 
anism of the K K  interaction during the collision 
process; this is beyond our present understanding. 
Second, the maximum critical velocity in the re- 
gion 77 > 0 is G = 0.24 and for most 7/> 0 v c is 
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Fig. 18. The variation of the critical velocity in KK collisions 
in the region ~ > 0 as a function of R. 

much less than 0.24. This value has to be com- 
pared with v~ -- 0.36 for 7/= - 1. We have already 
noticed [31] that when kinks pass through each 
other, v c is found to be smaller than when they 
reflect. This fact seems to be quite general but, 
again, its quantitative understanding would re- 
quire a detailed description of the collision pro- 
cess. 

5.2. K K  Scattering for various values of R 

We now consider in detail K K  scattering for 
various values of R. We shall see that in the region 

> 0 the D S G  model gives rise to an extremely 
rich variety of interactions between kinks and 
antikinks. In the intermediate domain R = 1, 
processes similar to those observed previously for 

< - ¼, and now well understood, take place. In 
this sense the region R = 1 is the simplest one, and 
we shall thus consider it first. We consider then the 
ranges of small R and large R where new phe- 
nomena  appear.  

5.2.1. K K  scattering for R = 1.2 
For  this value of R (corresponding to ~9 = 0.567), 

the frequency of the shape mode is ~0 s = 0.69204. 
Fig. 19 shows the final velocity as a function of the 

initial velocity in K K  scattering. One recognizes in 
this figure the resonant structures already discussed 
for ~ < -  ¼. The critical velocity is here v c=  

0.2305, and the inset in fig. 19 shows that, for 
v > v c, the kink and antikink pass through each 

other; this is as expected for this sine-Gordon-like 
model. For v < Vc, ten " two-bounce"  resonances 
were observed. Note that, as shown in the inset in 
fig. 19, the process is here similar to that previously 
observed in PC: the two kinks pass through each 
other a first time but cannot escape to infinity 

since v < v c. They come back, passing through 
each other a second time before escaping to infinity 
if the resonance condition is fulfilled. The net 
result of the resonance is thus a reflection of the 
two kinks, as in the case ~ < - ¼ ,  although the 

scat ter ing process is qualitatively different. 
Nonetheless, as we have shown in PC, the 

" resonant  energy exchange mechanism" developed 
for resonances in ~p4-1ike models still applies. Table 

VII  lists the observed resonances and shows that 
they are very well explained by the general theory 
presented in section 3 (eq. (3.5)). The indices of 
the observed resonances vary between 2 and 12. 
The mean value of the product T 2 × (v 2 -u22) 1/2 
is found to be fl = 2.418. The velocities for v > vo 
evolve according to eq. (3.3) with a = 1.98 which 
yields the theoretical value fl = 2.23, according to 
eq. (3.4b). Thus the two-bounce resonant exchange 
theory is again found to be in reasonable agreement 
with the numerical observations and, in particular, 
determines very well the positions of the resonances 
if we use the 'experimental value' of fl in eq. (3.5). 

Although both on general grounds and in view 
of the results of section 3 we would expect higher 
(three-, fou r - , . . . )  bounce resonances, these were 
not observed in our simulations. Several comments 
are in order at this point. First, in view of 
limitations of computer time, we were not able to 
carry out a systematic search for these higher 
resonances. Second, the two-bounce resonances for 
7/> 0 are already quite narrow; thus, for instance, 
the width of the resonance of index 3 for R = 1.2 
is A v = 1 . 2 5 × 1 0  -3 whereas for ~ = - 0 . 5 0  one 
must  go to the index 5 resonance before a similarly 
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Table  VII 
Analysis  of  the two-bounce resonances in KK. scattering for R = 1.2 

Posit ion Final Time between 
of resonance velocity the 1st & 2nd Index, Theoretical 
v.2 vf interactions T 2 T2(v 2 - 022) 1/2 wsT2/2'n n 2 On2 

0.2010 0.1721 21.55 2.447 2.373 2 0.20538 
0.2175 0.1918 31.05 2.404 3.419 3 0.21820 
0.2230 0.1954 39.80 2.378 4.384 4 0.22328 
0.2257 0.1954 49.05 2.383 5.402 5 0.22581 
0.2273 0.1688 59.40 2.402 6.542 6 0.22726 
0.2282 0.1578 68.90 2.412 7.588 7 0.22816 
0.2288 0.1287 78.5 2.421 8.646 8 0.22876 
0.2292 0.1228 87.75 2.432 9.665 9 0.22918 
0.2295 0.0280 97.30 2.444 10.761 10 0.22949 
0.2297 0.1549 105.90 2.458 11.664 11 0.22972 
0.22985 0.1147 113.40 2.454 12.490 12 0.22990 

small  width ( A v = I . 9 X 1 0  -3)  is encountered. 
Recalling that the resonance widths fall as 1 / n  3, 
one  sees that this difference is significant. Since the 

> 0 two-bounce  resonances are already quite 
narrow, the higher bounce structures, if present, 

are expected to be extremely narrow and thus very 
difficult to observe. Finally, particularly in 
anticipation of our forthcoming results, we must 
note  that for 71 > 0 the energy transfer from the 
translational mot ion into the shape mode seems 
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1 less efficient and well-defined than for ~ < 4. 
This is clearly indicated by the relatively low value 
of the critical velocity for ,/>_ 0. In particular, 
al though we did not have sufficient data to make 

an accurate separation, it appears that shape 
mode-translat ion mode energy transfer here was 
considerably less elastic than for ~ < 0 with the 
lost energy going into non-localized continuum 
modes. If  the collisions are sufficiently inelastic, 
one would expect the resonance structures to 

disappear,  with the higher bounce structure being 
more sensitive. More specifically since for both 

R ~ 0 and R ~ oc the DSG approaches (different) 
SG theories, for both large and small R one can 
describe the system as a weakly perturbed SG 

model. Hence, based on previous experience, we 
anticipate that even the two-bounce resonance 
structure will disappear for R < R ~n and for R > 

Rmax, where Rmi n and Rma x remain to be 
determined. Indeed, in the ensuing subsections, we 
shall see that this is the case. 

5.2.2. KK, scattering at small  R ( R = 0.5) 

The value R = 0.5 corresponds to ~ = 0.136, and 
the shape mode  frequency is ~0 s = 0.96692 in this 
case. As shown in fig. 15a the potential shape is 

very close to sinusoidal, and consequently the 

model  is quite close to a pure SG model. The 
critical velocity is found to be 0.117, which 
indicates that the energy removed from the kinks' 
kinetic energy in a K K  scattering is very small. In 
spite of a careful search, we have not observed any 
resonant scattering in this case: that is, for v < v c, 
the kinks appear  always to be trapped. Since there 
is a shape mode he re -a lbe i t  quite near the 
c o n t i n u u m - t h i s  result disagrees with a naive 
application of the resonant energy exchange 
mechanism. However, since the naive theory 
ignores inelasticity, in view of our previous remarks 
on the weakly perturbed SG system, we feel this 
result is not surprising. That the basic energy 
exchange mechanism still exists is shown by the 
fact that K K  scattering exhibits properties which 
are reminiscent of the resonant scattering observed 
for larger values of R. In particular, for v < vc, the 

time T 3 between the second and third interaction 
of the t rapped K K  pair does not evolve mono- 
tonically with v. Recall that if a resonant scattering 

were to exist, the time T 3 would become infinite at 

velocities vn2 corresponding to two-bounce 
resonances, because the K and K would never 
come back after their second collision. Here, 
instead of becoming infinite, T 3 exhibits well- 
defined maxima at particular velocities that we 
label v" in fig. 20. The positions of these maxima 

are listed in table VIII.  From this table we see that 
the velocities v~' can be determined by eq. (3.5), in 
a manner  similar to the velocities vn corresponding 

to resonances. These velocities v; correspond to 
'quasi-resonances' ,  as previously observed in PC in 
a case where the shape mode was absent. The 
origin of these quasi-resonances can be understood 
qualitatively in a manner similar to real resonances. 
The only difference is that, even if the resonance 
condition is fulfilled exactly when v =  v,', the 
energy restored to the K(K) translational motion 
after the second collision is not sufficient to allow 
the kinks to escape to infinity. Nonetheless, because 
the energy is partially restored at resonance, the 
kinks do escape to a large separation before 
returning to collide again; this behavior is reflected 

in the maxima observed in T 3, which occur, as 
expected, when the resonance condition (3.1) is 
satisfied. 

5.2.3. K K  scattering at large R ( R > 1.4) 

When R is increased beyond R = 1.2 the 
numerical results exhibit three particular features: 

i) a gradual disappearance of the resonances (for 
1.4 < R < 1.8); 

ii) the appearance of a new type of quasi- 
resonance apparently involving states in the 
cont inuum (for R = 2.4); 

iii) the appearance of a qualitatively new feature 
in K K  interactions (for R > 1.4). 

Let us examine now these points. Consider 
first the gradual disappearance of the resonances 
as R increases. As R is increased from R = 1.2, 
fig. 18 shows that the critical velocity decreases 
significantly: for R = 1.4 v c = 0.1996, for R = 1.6 
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Table VIII 
Analysis  of the quasi-resonances in K K  scattering for R = 0.5 

Posit ion 
of quasi- 
resonance Time Time r =  Index Theoretical 
Vn2 T 2 T 3 T2(v2c - v22) 1/2 6osT2/2'n" n vn2 

0.050 28.84 19.86 3.058 4.434 4 0.0406 
0.0752 33.84 31.53 3.042 5.208 5 0.0762 
0.0900 40.56 36.80 3.045 6.242 6 0.0902 
0.0980 47.09 44.04 3.027 7.248 7 0.0979 
0.1029 54.00 61.80 3.024 8.310 8 0.1026 
0.1060 60.58 50.00 3.028 9.322 9 0.1057 

v c = 0.1647, and for R = 1.8 v c = 0.1577. Simul- 
taneously resonances become harder and harder to 

observe in the numerical simulations. Table IX 

lists the resonances observed for R = 1.4 and R = 

1.6. We have detected only 3 of them for R = 1.4 

and 2 for R = 1.6. In the case R = 1.8 we have 
been unable to observe any resonant scattering. 
The resonances, when they exist, are still well 
explained by the general resonant energy exchange 
mechanism as shown in table IX. A study of the 
widths of the resonances (table X) shows that they 

decrease rapidly when R increases; this indicates 

that the resonance condition is becoming increas- 

ingly difficult to fulfill in the sense that sufficient 

energy for escape is transferred only for a very 

small range of velocities. As previously mentioned, 

this is the case if a significant part of the initial 

kinetic energy is transferred into nonlocalized 

modes rather than into the shape mode: that is, if 
the shape mode-translation mode interactions are 
inelastic. Again only a detailed description of the 
collision process, going beyond the energy ex- 
change mechanism that we consider, can explain 
quantitatively this result. Nevertheless, a strong 
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T a b l e  IX 

A n a l y s i s  of the two-bounce  resonances  in  K K  scat ter ing for R = 1.4 and R = 1.6 

Pos i t ion  F ina l  T ime  be tween 

of  reso- veloci ty ,  the 1st & 2nd /3 = Index  Theoret ical  

nancev,z  2 vf in terac t ions  T 2 T2(v 2 V2) 1/2 ~sT2/2,/r n 2 vn2 

R = 1.4, ~ =  0.1996, Ws = 0.5978 

0.1725 0.1681 23.71 2.381 2.256 2 0.17500 

0.1880 0.1680 35.44 2.376 3.372 3 0.18788 
0.1930 0.1467 46.70 2.377 4.443 4 0.19273 

R = 1.6, % = 0.1647, ~s = 0.5095 

0.1420 0.1231 27.68 2.309 2.245 2 0.14428 

0.1560 0.1215 40.99 2.165 3.324 3 0.15516 

indication that this "inelasticity" does indeed un- 
derlie the observed behavior comes from the study 
of K K  interaction for R = 2.4. 

For  R = 2.4 a new type of quasi-resonance 

appears.  This value of R corresponds to ~ = 14.94, 
and the shape mode has the frequency ~s = 
0.24822. The critical velocity in the K K  interaction 
is found to be quite low, v c = 0.1305. The study of 
the K K  scattering for v < o c gives results 
qualitatively very similar to those observed for 
R = 0.5. Specifically, we detect no resonances, but 
we do observe quasi-resonances, for which the 

time T 3 between the second and third collisions is 
maximal.  These quasi-resonances are listed in table 
XI, and fig. 21 shows the variation of T 2 and T 3 as 
a function of the input velocity in this case. 
The velocities v" corresponding to these quasi- 
resonances are again well described by a formula 

like eq. (3.5) as shown in table XI but with a 

frequency ~o' s = 1.0456 instead of  the frequency 

0.24822 o f  the shape mode. This result suggests 
that, for this large value of R the dominant energy 
exchange is not occurring via the shape mode, 
but  via an excited state of the kinks which lies 

in the continuum. Such a state is not localized 
around the kinks and consequently we observe 
quasi-resonances instead of resonances because the 
energy disperses. Similar quasi-resonances via a 
state lying in the continuum were already observed 
in PC in a case where no shape mode existed. 

Tab le  X 

W i d t h s  of some resonances  for two different values  of R 

R = 1 . 2  R = 1.6 

n = 2  A v = 4 . 2 5 × 1 0 - 3  A v = 2 . 2 5 × 1 0  3 

n = 3 Av = 1.50 × 10 -3 At) = 0.80 × 10 -3 
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Table XI 
Analysis of the quasi-resonances in Kg. scattering for R = 2.4 

Position 
of quasi- 

resonance Time Time f l=  Index Theoretical 
Un T2 T3 ~ -  2 2 . 1 / 2  wsT2/2~r 

0.050 34.10 31.50 4.110 5.567 5 0.0635 
0.085 38.07 35.70 3.769 6.335 6 0.0884 
0.104 43.32 34.38 3.419 7.209 7 0.1007 
0.110 49.80 37.90 3.464 8.287 8 0.1082 
0.1135 56.35 50.26 3.629 9.377 9 0.1130 
0.1165 62.21 66.91 3.658 10.353 10 0.1165 
0.1190 67.86 37.90 3.634 11.293 11 0.1189 
0.1205 74.03 36.30 3.709 12.320 12 0.1208 
0.1215 79.16 56.71 3.742 13.173 13 0.1223 
0.1230 86.22 43.50 3.759 14.348 14 0.1234 
0.1240 91.35 32.21 3.715 15.202 15 0.1243 
0.1251 101.50 37.90 3.479 16.891 16 0.1251 
0.1255 105.60 50.4 3.778 17.573 17 0.1257 
0.1262 111.70 41.00 3.612 18.588 18 0.1262 
0.1267 118.80 35.20 3.721 19.770 19 0.1266 
0.1270 124.70 49.70 3.743 20.752 20 0.1270 
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At present, we have no quantitative explanation 
for this result, but several qualitative observations 
are worth making. First, similar quasi-resonances 
apparently involving a state in the continuum were 
observed in PC, albeit in a case in which no shape 
mode existed. Second, the apparent lack of 
excitation of the shape mode in this case is 
consistent with the increasing inelasticity of shape 
mode-translation mode collisions which we have 
postulated as the mechanism for the disappearance 
of the resonance structure for R _.< 1.8. Third, 
although one might naively expect that with the 
shape mode so clearly isolated from the continuum, 
resonances would be stronger, from the very close 
agreement (shown in fig. 16) between C0s(R ) and 
~s(R) (see (5.11)) for R = 2.4, it is clear that the 
"shape"  mode is in fact very well described by the 
antisymmetric combination of the Goldstone 
modes for the two subkinks. Thus the subkinks are 
beginning to assert their independent existence, 
and the KK. collision process is approaching a 
sequence of subkink interactions. Since the 
individual subkinks are sine-Gordon-like (i.e., have 
no shape modes), it is not at all surprising that the 
elasticity of the shape mode-translational mode 

interaction falls rapidly. Finally, it is important to 
state clearly that, as in PC, we have no explanation 
for the apparent  selection of a particular 

continuum mode; this remains an open problem. 
In addition to the disappearance of resonances 

and the presence of quasi-resonance structures, for 
R > 1.4, a qualitatively new feature appears in KK 
scattering. To understand this new feature, let us 
first describe the features which are not novel. For 
v < v c in the region R > 0, the two-bounce resonant 
scatterings occur as shown in fig. 22; the kinks 
pass through each other twice, escaping to 
infinity after the second interaction. Non-resonant 
scattering leads to the formation of an oscillatory, 
breather-like state, as shown in fig. 23. These 
processes are familiar from our previous studies. 
Here, however, in essence because of the subkink 
structure of the DSG for R > 0 ,  we find an 
additional process. For example, in fig. 24, we 
illustrate a final state in which two counter- 

propagating breathers are formed! Note that the 
initial condition here (v = 0.154) is quite similar to 
that (v = 0.156) in fig. 22, and yet the final state is 
dramatically different. A qualitative understanding 
of this "breather  pair" formation comes, as hinted 
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R - 1 . 6 0  v 0 . 1 5 6  

Fig. 22. A perspective plot of the system (~,(x)) at different times during a K K  collision for R = 1.60 for an input velocity 
corresponding to a resonance. (In this and all subsequent perspective plots, the initial state is at the top of the figure.) 

t 

Fig. 23. A perspective plot of the system at different times during a K K  collision which produces a trapping of the two DSG kinks 
(breather-like state) (R = 1.40, t, = 0.180). 
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Fig. 24. A perspective plot of the system at different times during a KK collision at R = 1.60, v = 0.154. The collision produces two 
breathers, which escape from the collision point, 

' ( 0 3  

/ -  

~-- (c) 

j 

rIME 

Fig. 25. A schematic plot of the positions of the subkinks in different types of KK collisions observed for R = 1.40 and 1.60 (figs. 22 
to 24). Each subkink is represented by a particular type of line so that its trajectory can be followed in the different collisions. The 
variations of the velocities of the subkinks due to their different interactions are, for reasons of clarity, not indicated in this figure. 
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Fig. 26. Plots of a K K  collision for R = 2.4 at different times 
of the collision. The two kinks pass through each other. 

above, from considering the subkink structure of 
the DSG kinks. In fig. 25 we have plotted 
schematically the variation versus time of the 
positions of the subkinks in KK collisions of the 
DSG model for the three types of final states 
previously mentioned: a) breather like final state 
(fig. 23); b) resonant scattering (fig. 22); and c) 
formation of two breathers escaping to infinity 
(fig. 24). The two-first cases are simple and very 
similar to that observed in ~4 (CSW) or modified 
SG (PC) because the two subkinks which constitute 
a DSG kink remain bound to each other when the 
DSG kinks pass through each other. This is no 
longer true in c): the two DSG kinks pass through 
each other twice without being separated into their 
subkinks, but  on their third collision only o n e  of 
the two subkinks of each DSG interchanges while 
the second one does not. That such a mechanism 
in terms of subkinks is reasonable is indicated in 

-¢  

R= 0.00 
I I 

R= 0.50 
i i 7 

R 1.60 
i i ] i 

~ / ~  R= 2.40 
i i w i i i 

- 3 0 . 0  - 2 0 . 0  - 1 0 . 0  0 . 0  10.0  2 ,0 3 .0 

distance 

Fig. 27. The effective KK interaction potential in the DSG 
model for various values of R. For small R the potential well 
corresponds to the usual KK attraction in the SG theory. At 
large R the interaction between individual subkinks appears as 
additional wells. 

fig. 26, which shows the details of a KK collision 
for R = 2.4. There are clearly four steps in the 

collision shown in fig. 26: 
1) the DSG K and K approach each other. The 

order of the individual subkinks can be denoted 
by $1S '1 :S '2S2 where Si (Si) represents a sub- 
kink of kink (antikink) i; 

2) the two central subkinks pass through each 
other. The order is now $1 S'2 S'1 $2; 

3) the subkinks in the two lateral pairs SS pass 
through each other to give S'2S1 $2S'1; 

4) the two subkinks in the central pair SS pass 
through each other to complete the collision pro- 
cess, yielding give S'2 $2 $1 S'1. 

The K K  collision which produces the two 
breathers escaping to infinity shown in fig. 24 
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Fig. 28. A perspective plot of the KK collision for 

involves the same three first steps. However, after 
step three, the S'2S1 and $2S'1 subkink/anti-  
subkink pairs remain trapped, thus producing the 
two counterpropagating breathers observed in fig. 
23; a schematic view of this process is shown in 
fig. 25c. That  such a process can occur is motivated 
qualitatively both by our numerical observations 
and by analytic results [43] that for a perturbed 
sine-Gordon system, KK collisions can lead to 
breather formation. In essence, the process in fig. 
24 can be viewed as two sine-Gordon systems, 
each perturbing the other just enough to allow the 
K K  to trap. Of course, for such a picture to be 
even qualitatively valid, the separate subkinks must 
exhibit considerable individuality. Although fig. 26 
provides a visual indication of this individuality, 
to obtain a more quantitative estimate we have 
evaluated numerically the KK interaction poten- 
tial [30, 31] for the DSG model. As previously [30, 
31], this potential can be estimated as a function 
of the KK separation, 2y, by inserting into the 
DSG Hamiltonian the Ansatz 

4~A(X,2y)----eOK(x+y)+q'~(x--y). (5.16) 

R = 1.4, v = 1.70 showing the system at different times. 

This potential, evaluated numerically, is shown in 
fig. 27 as a function of the separation 2y  for 
various values of R. When R is very small, 
we recover the familiar single potential well 
corresponding to the usual attractive K K  
interaction in the sine-Gordon theory, but when R 
increases, two additional side wells appear. Finally, 
the potential splits into three separate wells, the 
central one being twice as deep as the lateral ones. 
These simply correspond to the two separate 
interactions of the subkinks (lateral wells) and to 
the complete interaction involving simultaneously 

the two subkinks (central well). Thus, the individu- 
ality of the two subkinks which compose the DSG 
solution does appear to be sufficiently established, 
for R >_ 1.4, to be responsible for the feature in 
which the initial DSG kink can be broken into two 
parts. 

At the risk of moving from physics to zoology, 
let us mention one additional, related process, as 
illustrated in fig. 28. This case was observed for 
R = 1.4, v = 1.70. At a first glance, fig. 28a which 
shows the state of the system at different times 
looks very similar to fig. 24 apart from a more 
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Fig. 29. Schematic plot of the motion of the subkinks in the collision of fig. 28. The two DSG kinks collide twice and produce two 
breathers which collide again before escaping to infinity. 

complicated interaction before the two breathers 
are formed. Figure 29b 'decodes' the details of the 
interaction: it appears that, as in the case presented 
in fig. 24, two breathers are formed after the third 
K K  collision but are unable to escape to infinity. 
So they come back, collide again and only then 
escape to infinity! This case points out the 
possibility of resonant structures in breather 

collisions. To study such a possibility quantitatively 
would require having a (non-integrable) theory in 
which breather solutions were accurately known. 
Further, in view of the "natural"  oscillation 
frequency of the breathers, the resonance con- 
dition, if it existed, would presumably be quite 
involved. We are thus quite happy, at present, to 
leave these as open problems. 

Finally, as the above discussions and figs. 15 
and 27 suggest, at very large R the subkinks 
behave increasingly like SG solitons; they exhibit 
weaker and weaker interactions (as indicated by 
small vc's ) and the DSG kinks are able to pass 
through each other completely for all but the 
smallest velocities. 

6. Summary and conclusions 

Given the several different topological forms of 
the double sine-Gordon potential as a function of 
~/, it is perhaps not surprising that the interactions 
of the kinks and anti-kinks in this theory exhibit a 
wide range of interesting phenomena. Indeed, al- 

though we have focussed solely on the resonance 
structure in K K  scat ter ing-and,  for 77 < - ¼, on 
"small"  kinks o n l y -  we have nonetheless observed 
several different types of behavior. In nearly all 
cases, the "resonant  energy exchange" mechanism 
provides an explanation of this behavior; in most 
cases, it also provides a detailed, quantitative fit. 
For  two values of 7/< - ¼, for example, we studied 
the now familiar [30, 31] "two-bounce" resonances 
in considerable detail. In this region, the DSG 
theory is like the ~4 model [30] in that the kinks, if 
they escape, reflect from each other. In the case of 
7/= -0 .50 ,  we were able to study systematically 
resonances involving higher bounces for the first 
time. Here again the resonant energy exchange 
mechanism provided a quantitative fit and, in ad- 
dition, gave a natural explanation for the occur- 
rence of the (n + 1)-bounce resonances at the edge 
of the n-bounce resonances and for the great dif- 
ference in "scale factors" - c~ and /~ - between the 
two- and three-bounce resonances. The observed 
"resonance upon resonance" structure is some- 
what reminiscent of self-similar behavior observed 
in certain chaotic dynamical systems. One must be 
careful, however, in carrying this analogy too far. 
Most importantly, it must be recognized that, by 
assuming conservative energy exchange between 
the shape and translation modes, the resonant 
energy exchange mechanism neglects all coupling 
to the small oscil lat ions-the " rad ia t ion"-which  
also exist in the full equation. This coupling, which 
is responsible for much of the inelasticity observed 
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in K K  collisions above the first trapping velocity, 
leads to the eventual breakdown of the assumption 
of conservative energy exchange and thus to the 
extinction of the very high order resonances. 

The region - ] < 7/< 0 provided a different test 
of the theory, in that in this region there is no 
shape mode associated with the kink and thus, we 
predict no resonances. Although "null result" 
physical experiments can only really be discussed 
in terms of confidence levels, we did not  observe 
any resonances. Interestingly, we did discover a 
substantial difference between the nature of the 
trapped oscillatory state formed below the criti- 
cal velocity for ~ / = - 0 . 1 5  and ~ / = - 0 . 0 5 .  We 
explained this behavior in terms of the exist- 
ence/non-exis tence of a "breather" oscillation; 
for 7/> - ~ ,  asymptotic perturbation theory pre- 
dicts such a breather, whereas for 71 < - ~ ,  no 
small-amplitude breather exists. 

For 7/> 0, by introducing a parameter R such 
that 7/= 1 sinh 2 R, we showed that the individual 
DSG kinks could, loosely speaking, be thought of 
as two bound sine-Gordon kinks separated by a 
distance 2R. This interpretation led naturally to 
an explanation of the shape oscillation of the DSG 
kink as the "optical" (or counter-motion) mode of 
the two bound subkinks. For a wide range of R, 
this explanation provided a quantitative fit. 

In general, in this region the KK interactions 
were "sine-Gordon-like",  in the sense that above 
the critical velocity the kinks pass through each 
other, rather than reflecting. Consistent with previ- 
ous results [31], this meant that the KK interac- 
tions were in general weaker than for ~/< 0; for 
example, the maximum value of vc for ~q > 0 is 
--- 0.24 . . . .  much less than that for, say, 71 = -0 .50  
(v~ = 0 .345. . . )  or a7 = -1 .00  (v~= 0.359.. .) .  For 
R = 1.2 (~/= 0.567. . . )  we observed two-bounce 
resonances in quantitative agreement with the the- 
ory. Higher bounce resonances were not observed, 
probably because of their extreme narrowness (if 
they exist). For  very small R (=  0.5, so that ~/= 
0.136) we did not observe actual resonances, al- 
though "quasi - resonances"- that  is, values of v 
for which the time between interaction exhibited 

sharp p e a k s -  were observed. In our view the ab- 
sence of true resonances is explained by the small- 
ness of the energy transfer to the shape mode, 
which allows other, from our perspective, "inelas- 
tic" processes (eg., coupling to radiation) to drain 
off sufficient energy to prevent the resonant res- 
toration of energy to the translation mode. 

For  increasing R (>  1.4), we observe the grad- 
ual disappearance of the resonances, consistent 
again with the observed decrease in v c and overall 
weakening of the interaction. We also observed 
several new features, for which we have at best 
qualitative explanations. For R = 2.4, we found 
quasi-resonances apparently involving states in the 
continuum. For  R in the range 1.4-1.6, we ob- 
served very complicated interactions (involving the 
subkinks), including the production of counter- 
propagating breathers as a final state! 

Although in any of the several physical contexts 
of the DSG we would expect the fine details of our 
numerical results to be washed out, the central 
idea that one can envision the DSG k in k s -be  
they domain walls, optical pulses, or twists in 
polymeric cha ins -a s  deformable particles, capa- 
ble of storing energy in their internal structure, 
should remain valid. In particular, as discussed in 
CSW, the use of collective coordinates- the  two 
describing the shape and translation modes, for 
e x a m p l e - t o  approximate the behavior of the full 
(infinite degree of freedom) partial differential 
equation deserves further investigation. We stress 
that this reduction to a few "effective" modes is 
directly related to similar mode reductions seen in 
pattern selection and long-time asymptotics stud- 
ies. These collective coordinate approaches to KK 
scattering, as well as the issue of a more rigorous 
mathematical understanding of the entire resonant 
energy exchange theory, remain important open 
problems. 
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