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We study numerically the interactions of a kink (K) and an antikink (I~) in a parametrically modified sine-Gordon model 
with potential V(~)= (1 -r)2(! - cos  t#)/(1 + r2+ 2r cos ~b). As the parameter r is varied from from the pure sine-Gordon 
case (r = 0) to values for which the model is not completely integrable (r ~ 0), we find that a rich structure arises in the 
KIZ collisions. For some regions of r(-0.20 ~< r < 0) this structure is very similar to that observed in KI~ interactions in 
the q~4 model, and we show that the theory recently suggested for these collisions also applies quantitatively to the modified 
sine-Gordon model. In other regions of r we observe new scattering phenomena, which we present in detail numerically 
and discuss in a qualitative manner analytically. 

1. Introduction 

The study o f  solitary waves and solitons has 

proved both  stimulating and fruitful in m a n y  areas 

o f  the natural  sciences [1, 2]. In particular,  in 
condensed matter  and particle physics, a wide 

variety o f  quasi-one-dimensional  problems can be 

modeled by Hamil tonians  o f  the form [1-4] 

A m o n g  the specific potentials which have been 
o f  interest are 

(1) the s ine-Gordon model  [1-4, 5], 

V(gb) = 1 -- cos ~b ; (1.3) 

(2) the ~b 4 model  [1-4, 6], 

H =  dx \Ot ] +2\Ox/ I  +v(dp) , (1.1) 

V(q~) = ~(~b 2 -- l) 2 ; 

(3) the double s ine-Gordon model  [1-4, 7], 

(1.4) 

which yield nonlinear  K l e i n - G o r d o n  equat ions for 
the field tk: 

Ol 2 tgX 2 + a - - ~  = 0 .  (1.2) 

V($)  = ( 1 -  cos $ ) +  2 ( 1 -  c o s ~ )  ; (1.5) 

(4) the double quadrat ic  model  [1-4, 8], 

v(¢ )  =  1¢1 - 1) 2, (1.6) 

t Permanent address: Laboratoire d'Optique du R~seau Cri- 
stallin. Facult~ des Sciences, 6 Bd. Gabriel 21100 Dijon, France. 

where I~bl is the absolute value o f  the field ~b; 
(5) higher order  polynomial  models,  with poten- 
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tials of  the generic form [9] 

V(q~) = V(~b, n, m) 

= ~ -  I-[ ( l - g ~ b 2 )  2 
I <~i<_n 

1-I (1 + ~j4 2)2, 
I ~j<_m 

(1.7) 

where gi and 7j are constants; and (6) the para- 
metrically modified sine-Gordon model [10], 

(1 - r)/(1 - cos ~b) 
V(c~)=-VpR(ck;r)= l + & + 2 r c o s ~ b  ' (1.8) 

where r is a parameter in the range - 1 < r < + 1. 

All of  these models admit solitary wave solutions 
- some of  them [7, 9] admit several distinct types 
- which have been used to describe localized 
nonlinear excitations in real materials and model 
field theories. In the case of  the sine-Gordon 
model, eq. (1.3), these solitary waves are "solitons" 
in the mathematical sense: when they interact, they 
are always scattered elastically, preserving asymp- 
totically their shape and experiencing only a 
"phase shift" [1-3, 5]. This exact soliton behavior 
is related to the complete integrability [1-3, 5] of  
the sine-Gordon system. This integrability also 
renders multiple soliton interactions analytically 
tractable [2, 5] and, as a consequence, the sine- 
Gordon  equation has been extensively studied 
[1-3, 5] as an idealized model of  many different 
physical systems. 

Yet, precisely because this exact soliton behavior 
is so delicate, in real physical systems strict solitons 
are unlikely to occur. In some cases, there is a 
physical perturbation - a defect, an impurity, or a 
weak coupling to another system - that destroys 
the complete integrability of  the idealized model. 
In other cases, the basic models - as in eqs. 
(1.4)-(1.8) - are simply not integrable. In all these 
instances, the solitary waves in general no longer 
interact like strict solitons, but in collisions can be 
inelastically scattered, tralSped into quasistable 
bound states, or even completely destroyed. Apart  
from exceptional cases which are small per- 

turbations on an integrable system, these solitary 
wave interactions must be studied numerically. It 
then becomes particularly important  to identify 
qualitative mechanisms underlying the observed 
interactions and then to test whether the mech- 
anisms found in one model apply to others. 

In the immediately preceding article [11] (here- 
after referred to as I), the interactions of  the 
solitary waves - conventionally called "kinks" and 
"antiki~ks" - of  the q~4 potential model [eq. (1.4)] 
were studied extensively, both by numerical simu- 
lations and by analytic techniques. The results of  
I, which builds upon many early studies [9, 12-18] 
indicate that the final state in such interactions is 
very sensitive to the initial relative velocity of the 
two colliding excitations [11, 14, 15, 17, 18]. In par- 
ticular, in the center of  mass frame in which a kink 
with velocity v~ collides with an antikink with 

velocity -v i ,  there is a critical speed Vc 
(=  0.2589.. .)  such that for [vii > vc the K and I4 
reflect (inelastically) from each other and escape to 
infinity. For most [vii < vc, the K and I~ form an 
oscillatory, decaying bound state [11-18]. But in 
well-defined "windows" of [vii below re, the KI~ 
reflect once, escape to finite separation, and then 
return to reflect once more before separating to 
infinity. In I, an explanation of  these "two-bounce 
windows" in terms of  a resonant energy exchange 
between the translational motion of  the K and I~ 
and a localized internal oscillation was proposed. 
The derivation of this "resonant energy exchange" 
theory is presented in I, to which interested readers 
are referred for all details. Here we simply sketch 
intuitively the highlights of  this approach and 
collect the formulae essential for our later dis- 
cussion. 

Simply expressed, the resonant energy exchange 
theory views the interaction of  two solitary waves 
in a non-integrable model as a collision of  two 
deformable particles, having internal modes 
("shape oscillations") of  excitation, and moving 
under the influence of a short-range potential 
between the pair. The phenomenon of  trapping, as 
observed in I for v < v¢, arises from the attractive 
nature of  the potential and from the fact that the 
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internal modes of the particles are excited by the 
collision, thus removing energy from their kinetic 
motion and leading to weak binding. In terms of 
the actual solitary waves, these internal modes 
correspond to any localized eigenfunctions (be- 
yond the ever-present translational mode) that 
exist in the perturbation expansion around a single 
solitary wave. For a freely moving solitary wave, T - n 1 
these modes (in linear theory) move with the wave a x /7 '  
and stay localized around it; in this sense they are 
"internal" to the solitary wave. 

The interpretation of  a solitary wave interaction, 
for v ~< vc, is that the initial collision excites the 
internal modes of  each wave, removing enough 
translational kinetic energy from the system that 
the waves are (weakly) bound by their mutual 
potential. Since they are bound only weakly, they 
retain their individual identities as they separate to 
a large distance, but since they are bound, they 
must return to collide again. Throughout  the time 
between the first and second collisions, the energy 
"stored" in the internal modes is (at least roughly) 
conserved. Thus in the second collision, it is possi- 
ble that this energy can be retransferred to the 
translational kinetic energy, allowing the solitary 
waves (with their internal modes de-excited) to 
escape. For  this retransfer of energy to occur, the 
time between the first and second collision must 

T ( v )  = 
satisfy a resonance condition. Assuming a single 
internal mode with frequency ogs, the condition is 
[11] 

coBT = 2mr + 6,  (1.9) 

where T is the time between collisions, n is an 
integer, and fi is an offset phase (chosen by con- 
vention to line between 0 and 2~). Thus this first 
level of  analysis shows that for the observed reso- 
nance windows in I, the times between the first and 
second collisions should be determined by (1.9). 

To transform this result into a prediction about 
the location of resonance windows as a function of  
the initial velocity, v, we must relate T to v. This 
relation can be derived in two steps. First, from 
simple particle mechanics, the time between col- 

lisions can be calculated in terms of  the binding 
energy, E, of the two solitary waves after the first 
collision. Assuming that the solitary wave potential 
falls off exponentially [as it will for all the eqs. 
(1.3)-(1.8)], the leading result for weak binding is 
[ll] 

(1.10) 

where a is the rate of exponential fall-off of  the 
potential between the solitary waves. Note that as 
E ~ 0  (no binding), T ~  or, as one would expect; if 
the waves are not trapped, there is no second 
interaction. Finally, based in part on heuristic 
arguments but primarily on the numerical data [11] 
one can argue that the binding energy, E, as a 
function of initial velocity, v, behaves as 

e(v) = a(v~--  v2), (1.11) 

where cc is an empirically determined constant. 
Since eq. (1.11) is, in part, empirical, the resonant 
energy exchange theory was termed "semi- 
phenomenological" [11]. 

Inserting eq. (1.11) into eq. (1.10) gives 

a x / ~ x / , v 2 _ v ~ = f l  x x /~2 _  v2. (1.12) 

This final equality can be independently checked 
numerically and consequently the constant fl can 
also be derived from the numerical results. With 
expression (1.12) and the resonance conditon (1.9) 
the incoming velocity corresponding to the center 
of the two-bound window of  index n is given by the 
solution to 

t~2o~ 
(re - v,) 2 - (2nn + 3)2, (1.13a) 

which, for v, ~ re, is well approximated by 

v, ~ v¢ -- 2v~n2(2n + 6/x)  2 . (1.13b) 
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In the case of  the ~b 4 theory, the prediction of  eq. 
(1.13) is remarkably well satisfied [11]. Further, 
none of  the above analysis depended on the specific 
character of  the 4 4 potential. It is thus of  consid- 
erable interest to verify that these ideas do apply 
to other non-integrable models of  the form (1.1). 
The modified sine-Gordon model [eq. (1.8)] is 
particularly well-suited for this test. First, one can 
move, in a controlled manner, from an integrable 
model (r -- 0) to strongly nonintegrable models by 
varying r. Second, the number of  modes corre- 
sponding to localized internal oscillations around 
a solitary wave solution varies as a function of  r. 
For r > 0, there are no such localized modes, 
whereas for r < 0, the number of  internal modes 
increases without limit as r - - - , -  1. In view of  the 
central role played by the single internal mode in 
the interpretation of  the ~b 4 results [11], the possi- 
bility of  varying the number of  such modes pro- 
vides a valuable test of  the theoretical analysis. 

Our numerical results show a very rich phenom- 
enology for the kink-antikink collisions in the 
modified sine-Gordon model. "Two-bounce win- 
dows" are indeed observed for certain values of  r, 
and the resonant energy exchange mechanism is 
quantitatively confirmed by the agreement of  its 
predictions with the numerical results. For  other 
values of  r, phenomena more complicated than 
"two-bounce windows" are observed, and thus 
while the resonant energy exchange mechanism 

appears still to be operative, the details of a 
quantitative theory remain to be worked out. In 
this sense our results represent only a first look at 
what promises to be a problem of continuing 
interest. 

The remainder of  the paper is organized into five 
sections. Section 2 is devoted to a description of  the 
modified sine-Gordon model with particular em- 
phasis on the properties of small oscillations about 
the kink waveform. In section 3 we describe the 
results of  numerical simulations of  KI~ collisions 
for small values of  r, so that VpR is "close" to the 
sine-Gordon theory. We interpret these results 
quantitatively in terms of  the resonant energy 
exchange mechanism. In section 4 we investigate 

potentials involving larger values of  r. Here we find 
additional scattering "channels," which involve 
phenomena qualitatively different from the "two- 
bounce windows." We discuss these phenomena 
qualitatively in terms of  the resonant energy ex- 
change mechanism. Finally, in section 5 we discuss 
our general conclusions. 

2. The parametrically modified sine-Gordon model 

The original motivation for constructing the 
modified sine-Gordon potential, eq. (1.8), was to 
model a strictly periodic but non-sinusoidal sub- 
strate potential in quasi-one-dimensional con- 
densed matter systems [10]. The form of this 
potential is plotted for several different values of  r 
in fig. I. As the parameter r varies in the range 
- 1 < r < + l, the amplitude of  the potential re- 
mains constant while its shape changes from sharp 
wells separated by flat tops (r < 0) to wells with flat 
bottoms separated by sharp peaks (r > 0). This 
potential admits the sine-Gordon potential as a 
particular case when the parameter r is zero. 

If we look for solutions of  the corresponding eq. 
(1.2) with permanent profile propagating with a 
velocity v, dp(x - v t )  = ~b (s), they can be expressed 
analytically in an implicit form, s = s(~b). Two 
classes of solutions are obtained, one for positive 

0 

/ /, 
/ 

' ,  0 . 8 , ,  ¸  ̧

\ 

-27r  o 27r 

Fig. 1. Representation of the potential Vpa($; r) for different 
values of the shape parameter r. 
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and one for negative values of  r. If  we define a 
parameter p = (1 - I r l ) / ( 1  + Irl) such that 
0 < p < 1, these solutions are given by: 

O ~ r < l  

, [ s = - -  sgn(x - q~) (1 - p-2)W2 tanh-i  
PY 

(1 - -  p2)1/2 
x 

[1 + p2 tan2(~b/2)]l/2 

, ] 
- tanh-~ [1 + O 2 ta~2(q~/2)] ~/~ ; (2.1a) 

- - l < r ~ 0  

p r-.( 1 _ p2),/2 
s = - s g n ( x  - tk)  L t a n -  l 

(1 - p2)1/2 
X [p2 + tan2(~b/2)]v2 

+ tanh- '  [O 2 + ta~(4#2)]l/~ , ( 2 . 1 b )  

w i t h  ? = (1 - - /32)  1/2. 

Fig. 2 illustrates that these solitary waves have 
a "kink-like" profile. Note that the spatial exten- 
sion of the kinks increases strongly when r ap- 

2rr 
0.8 /'" 

/ ~ -  ~C05- J -  

JJJJ J 
0 ~ " f  i 

s 

Fig. 2. Kink profile q~(s) for various values of  the shape 
parameter r. Note the increase of  the spatial extension of  the 
kink as r increases. 

proaches + 1 while the kinks become very sharp 
when r tends to - 1 .  These solutions are used as 
initial conditions in the numerical simulations of 
KI~ collisions. 

Since the small oscillations about the kink 
waveform are expected to play an important role 
in the KI~ scattering process, we have computed 
their spectrum in this model. This is done by 
solving numerically the appropriate small oscil- 
lation equation, 

F--T1- Y- at 2 ax 2 a ~  *K(~) 6q~ = O, (2.2) 

with Vp.(~b; r) given by (1.8) and ~bK(g) given by the 
numerical inversion of the implicit solutions in 
(2.1). 

Fig. 3 shows the shape of the potential in (2.2) 

82V 
(2.3) 

for different values of r. The two limiting cases of 
this potential as r--, _ 1 are an attractive 6 function 
(with two smaller repulsive lips) for r ~ + 1 and an 

~ g  

r=O 

\ 
_ r=±0.2 

"L // 

-111 / j  - 
:,il ' /  

~. r = ± 0 . 8  

~ - - -  ~ I F  . . . . .  

Q 
g 

i i 1 
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Fig. 3. Potential v[~bK(s)] for the small amplitude oscillations 
about the kink waveform for different values of  r. 
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infinite square well (with two additional very sharp 
wells) for r ~ -  1. 

Fig. 4 represents the spectrum of  the small 

amplitude excitations as a function of r. The lower 
frequency of  the continuum parts of  the spectrum 
a~ c = (1 - r)/(1 + r) increases from 0 to infinity as 

r varies from + 1 to - 1. No bound states (except 
the translation mode at zero frequency) exist for 
positive values of  r. In contrast, for negative values 
of  r the number  of  bound states increases as r 
decreases. In the limit r tending to - 1  their 
number  tends to infinity and they correspond to all 
integer values, as expected for an infinite square 
well. (For instance we have observed the 18 bound 

states for the value r = - 0 . 9 ,  corresponding to 
oJ~= 19.) 

The numerical method used for the simulation of  
K I (  collisions in this model has been previously 
described [10]. Basically, it consists in solving with 
a fourth order Runge-Kut ta  method the New- 
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Fig. 4. Spectrum of the small amplitude oscillations about the 
kink waveform as a function of r. The shaded area corresponds 
to the continuum (to > toe, non-localized states), circles indicate 
odd localized states and triangles even localized states. 

tonian equations of  motion of  a discrete chain 
whose continuum analog is described by eq. (1.2). 

In such an approach,  great care must be taken to 
avoid any discreteness effects on the kink propaga-  
tion. Typically, the system studied consists of  a 

chain of  600 particles, and the kink width is greater 
than 20 unit cells. 

3. Kink-antikink scattering for small r 

For small values of  r -  say [ r l<0.1  - the 
VpR(4); r) remains quite close in form to the sine- 

Gordon  potential. Nonetheless, our earlier re- 
marks on the delicacy of  the complete integrability 
of  the sine Gordon  system lead us to expect 
interesting, non-trivial KI~ interactions. Further, 

from fig. 4 we see that for small nega t i ve  r there is 
precisely one localized shape mode oscillation of 
the kink, whereas for pos i t i v e  r there is no such 
mode. Thus a comparison of  these two cases can 
test the predicted critical role of  this localized 
mode in the KI~ interaction. 

3.1. r = - 0 . 1  

We start with the case in which a priori the 
" two-bounce"  resonance theory is most  likely to 
apply. The continuous spectrum of  eq. (2.2) begins 
at co~ = (1 - r)/(1 + r) = 1.2222 and the localized 
shape mode occurs at co a = 1.1205. Thus we can 
expect that the properties of  the K I (  collisions in 
this case would be similar to those in the 4)4 model. 
The outgoing velocity of  the kinks as a function of 
their incoming velocity is plotted on fig. 5. The 
insets to this figure show the position 
4)0 = 4)(x = 0, t) of  the middle of  the chain as a 
function of  time for different cases. In the initial 
state this position (4)o = 4g results from the addi- 
tion of  the two values 4)0 K = 2g and 4)~ = 27~ pro- 
vided by the kink and the antikink. When the two 
excitations pass through each other, the final value 
is 4)o = 0. (This can be easily observed on fig. 6a.) 

In addition to the existence of  a critical velocity 
Vc g 0.175 . . . .  fig. 5 shows the presence of  narrow 
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Fig. 5. KI (  outgoing velocities as a function of their incoming 
velocities for r = - 0.1. The bars indicating resonances ofv < v~ 
are only schematic since these resonances are very sharp. The 
plots of the position of the center of the chain [¢(x = 0, t)] as 
a function of t (framed pictures) show the nature of the KI(  
collisions in the different cases. Except for the resonance bars, 
the data points are indicated by crosses (+) .  On the abcissa, 
these appear as hash marks. 

windows for v < vc in which the kinks' outgoing 
velocities are non-zero. (Note however that the 
widths of  the windows that appear in fig. 5 are not 
their actual widths; we discuss this below.) The 
diagrams which represent ~b0(t) (and figs. 6b and c) 
show the exact nature of  the collision in each of  
these windows. For  the six windows with higher 
velocities, the scheme is rather simple: the two 
kinks collide and then pass through each other to 
some finite separation. This is possible here since 
the model is of  the sine-Gordon type model - that 
is, has ~b ~ b  + 27rn symmetry - and not a double 
well model like the qb 4 model. Then, since the K(I~) 
initial velocities are lower than the critical velocity 
so that the K and 1~ are trapped, they stop, come 
back, pass through each other a second time, and 
finally recede to infinity (fig. 6b). Thus the global 
result of the interaction of  the two kinks is a 
reflection of  the two excitations, as in the q~4 model, 
even though the detailed interaction is slightly 
different because the kinks can pass through each 
other. Actually, it is easy to understand this behav- 
ior. Since for small r the model is quantitatively 

j ~ Y  

J 

a 

j ~  
j jJJ 

jjJJJ 

b 

J f j l  

" "  ' ,  . ~ - ~ Z j  
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Fig. 6. KI~. collisions for r = - 0.1. a) v~ > vc - Inelastic trans- 
mission; b) v i < vc - Two bounces; c) v i < vc - Three bounces. In 
all three figures, time runs "into" the projections: that is, t = 0 
is in the foreground and t = Tma~ is in the background. 

close to sine-Gordon, one can anticipate that the 
first collision of the KI~ should not lead to 
reflection. If  the resonant energy exchange mech- 
anism is operative, the collision can for v < vc, lead 
to trapping of  the KI~ with the lost kinetic energy 
primarily "stored" in the shape mode oscillation. 
Since they are trapped, the K and 1~ return to 
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interact again, but heading in the direction op- 
posite their initial velocity. If  the resonance condi- 
tion (1.9) is met, the "stored" energy is re- 
transferred to the translational motion and the 
kinks escape by passing through each other. Thus 
the overall result of  a " two-bounce" interaction is 
quite naturally reflection. 

Actually, in the case of  this modified sine- 
Gordon equation, the term "two bounce" inter- 
action is perhaps not as appropriate as the term 
"two pass" interaction would be. Nonetheless, for 
consistency with the earlier terminology coming 
from q~a and to stress that the resonance mech- 
anism is the same, we retain this terminology here, 
defining a "bounce"  as the point at which the two 
kinks overlap so that, with our prior conventions 
on the initial state, ~b 0 = 2n. This will be important  
when we discover higher "bounce"  interactions 
later. Note that all interactions involving an odd 
number of  bounces before escape lead to trans- 
mission, whereas those involving an even number 
lead to reflection. 

It is interesting to note that for the window with 
lowest velocity in fig. 5, the process is more compli- 
cated. The two kinks pass through each other, 
come back, pass through each other a second time, 
but instead of  receding to infinity they come back 
again, pass through each other a third time and 
then escape to infinity. In this case in the final state 
each kink has moved from one side of  the system 
to the opposite side and finally 4~0 is equal to zero. 
We shall return to discuss this "three-bounce" 
window after analyzing quantitatively the "two- 
bounce" structures. 

The results of  applying the theoretical analysis 
described in section 1 to our numerical data on the 
"two-bounce" windows are shown in table I. For  
each window we have determined the time Tl 
between the two instants the kinks go through each 
other. A definite position cannot be attributed to 
each kink at these moments but we can extrapolate 
the curves that give their position before and after 
the collision. The point where these curves cross 
each other is taken as the time of  impact. The 
values of T~ x ~ -  v 2 which are computed for 
each window are constant to within 10~, which is 
a reasonable accuracy, at least for determining v, 
theoretically. The mean value of  this product deter- 
mines the "experimental" value of  the cons tant / /  
in eq. (1.12): # = 2.557. Fig. 7 shows the values of  
C%Tl/27r as a function of n where n is an integer 
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/ /  

/ / "  
9z / -  
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5 ~ 5 6 7 8 9 ~C' 11 
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Fig. 7. o~BTJ2n as a function of the window index for 
r = -0 .1 .  

Table I 
Analysis of the two-bounce windows in KI(  scattering for r = -0 .1  

Center of the Theoretical 
window: v,, vf T I T I x ~v~ - v'~ Index Value of  v. 

0.154 0.0951 29.80 2.476 5 0.1538 
0.160 0.0814 35.20 2.495 6 0.1600 
0.164 0.0657 41.47 2.532 7 0.1639 
0.1665 0.0570 47.77 2.573 8 0.1664 
0.168 0.0653 53.40 2.617 9 0.1681 
0.169 0.1156 58.30 2.648 10 0.1694 
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index for each window. The value n = 5 for the 
lowest window has been chosen so that the offset 
phase 6 ofeq.  (1.9) is between 0 and 2rr. A straight 
line with a slope very close to 1 is a good fit for the 

points on fig. 7, in agreement with eq. (1.9), 
although there are small deviations. The value of  

t5 deduced from these data is 6 = 1.6 (~/r~ ~ 0.5). 
Another way to check the index n we attribute to 
each window is to count the number of  oscillations 
that appear in the curves ~b0(t) between the 
bounces. Limitations of  computer  time meant that 
we were able to perform this check only for one 
value of r, which was chosen to be r = -0 .25 .  
Thus we will discuss this below. 

Given the value of /3  and the index n, we can 

compute the theoretical position of  each window 
with eq. (1.13). As shown in table I these values are 
in remarkable agreement with the "experimental" 

values. In fact, this agreement is so good that after 
we determined a few windows (and consequently 
the corresponding values of/3 and n) we were able 
to calculate theoretically the positions of  the other 
ones. The numerical simulation then revealed that 
they were actually very close to the estimated 
values. This way of  finding the windows actually 
saved considerable computat ion time, since the 

windows are quite narrow and consequently very 
difficult to detect. 

The results presented in table I show that the 
theory proposed to explain the " two-bounce" win- 
dows observed in the 4 4 model can also be applied 
to our parametrically modified sine-Gordon 
model. 

Several specific remarks can further illuminate 
our results for r = - 0 . 1 .  First, in the case we study 
here the widths of  the windows are very small and 
we did not at tempt to determine them. According 
to the results on the ~b 4 model, they decrease 
roughly as 1/(2n) 3. In the case of  r = - 0 . 1  the 

lowest " two-bounce" window (n = 5) has a width 
which is less than 0.0006 units of  velocity (recall we 
are working with dimensionless Velocities). This 
explains why we did not make any at tempt to find 
the widths of  the other windows or to detect the 
windows corresponding to n > 10, for this would 

have required extremely long calculations. For the 
case r = - 0 . 2 5  treated in section 4, we will present 
some rough determinations of  window widths. For  

the same reason we did not at tempt to study 
several incoming velocities inside one window. As 
a consequence the outgoing velocity we indicate for 
each window is probably not the maximum out- 
going velocity corresponding to this window. This 
explains the apparent  erratic behavior of  the out- 
going velocities as a function of n (table I) and the 
larger than anticipated - at least on the basis of  
comparable results [11] in q~4 _ inelasticity in the 

windows. Second, the value of  /3 we used to 
determine "theoretically" vf is the "experimental" 
value deduced from the mean value of  
T t × x ~ ¢  2 - -v  2. The constant/3 can also be evalu- 

ated theoretically from eq. (1.12): fl = ~/a  v/~ with 
a = ~o c. The constant ~, determined from the nu- 
merical data for v > vc, is a ~ 0.74, which gives a 
theoretical value fl = 2.337 instead of 2.577. Since 
this theoretical value is deduced from an approxi- 
mation (valid for large separation) to the potential 
between the two kinks, we have calculated numer- 
ically this potential by the method described in I to 
check the range of validity of  this approximation.  
The results show thdt an exponential approxi- 
mation to the potential is valid if the distance 
between the two kinks is greater than 3 times their 
widths. The value of  the constant a [in eq. (1.10)] 

deduced from this calculation is a = 1.268, which 
is close to, but not identical to, the theoretical 
value o9 c = 1.222 [11]. The numerical simulations 
show that, for the smallest value of  n (n = 5), while 
the kinks remain bounded by the potential (before 
they recede to infinity) their maximum relative 
distance is about  6 kink-widths and the time during 
which this distance is smaller than 3 kink-widths is 
about T~/20, where T, is the time between the first 
and second collisions. Thus the assumption, re- 
quired to derive (1.10), that the kinks spend most  
of  the time between their first two interactions in 
the asymptotic region, is valid. For  larger values of  
n, we have found that this assumption is even 
better. 

Finally, as we have indicated previously, the 
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nature of  the K K  collision in the lowest window 

shown in fig. 6 is qualitatively different from the 
others: namely, as shown in the inset to fig. 6, it is 

a " three-bounce" window. Interestingly, this reso- 
nance occurs quite near to the predicted n = 4 
" two-bounce"  window location. Specifically, for 
this window the numerically observed parameters  

are vn = 0.144, vf=  0.0852, and T~ = 24.85, where 
Tj is the time between thef irs t  two bounces shown 
in the inset to fig. 6. Thus if we calculate 

2 T 1 × x / V e c - - V n ,  we find it equals 2.471, in good 

agreement with the corresponding quantity for the 
" two-bounce"  windows showin in table I. Further, 
if we assign n = 4 to the window, the theoretical 

value of  velocity at its center is v, =0.1427,  in 
reasonable agreement with the numerical result. 

We have as yet no explanation of  this result but 
are currently investigating several features related 
to it, including whether one can observe nearby 

" three-bounce" windows with the same T~, but 

different values of  the time between the second and 
third bounce (7"2) corresponding to different multi- 

ples of  the shape mode period. For  reasons detailed 
in the context of  higher bounce windows in the ~b 4 

theory [11], these putative windows are expected to 

be very delicate, and we have been unable to 
observe them. Similarly, we have been unable to 

observe any " two-bounce"  windows - or indeed, 
any other resonances for smaller v - for n < 4. 
Since the quantitative aspects of  the resonant 

energy exchange theory are expected to work only 
for a limited range of  resonances [11] - 

t/mi n < n < nma x - these results are perhaps not 
surprising. 

To summarize the results for r = - 0 . 1 ,  we can 
say that for the observed " two-bounce"  windows 
the resonant energy exchange theory works re- 
markably  well quantitatively and indeed was used 
to locate some of  the very narrow, high n windows. 
Near  the expected location of  the n = 4 " two-  
bounce" window, we found a " three-bounce" res- 
onance, whose existence and form are qualitatively 
as expected from the general resonant energy ex- 
change mechanism, but which is not yet under- 
stood in detail. 

3.2. Small  positive r 

For small positive r, there is no localized shape 
mode for the kink or antikink, and hence a rigid 

application of the resonant energy exchange theory 
would suggest that no resonance windows should 

be seen below the capture threshold, v~. On the 
other hand, one might be tempted to suggest an 

alternative possibility that, although there are 
strictly no modes which stay localized around the 
K and 1~, in the initial collision a wave packet  of 

continuum modes could be excited in such a way 

that, between the time of  the first and second 
bounce, it did not disperse "very much"  and was 

thus "available" at the time of  the second bounce 
to retransfer its energy into kink kinetic energy. 
Our numerical results for small positive r will 

provide a first test to distinguish between the two 
possibilities. 

3.2.1. r - -  4-0.1 

For purposes of  direct comparison with our 
previous results, we start our study of  positive r 

with r = 4- 0.1. In this case the kinks have slightly 
larger spatial extension that those of  the sine- 
Gordon  theory and thus they interact at larger 
distances. The limiting frequency of  the small 

non-localized oscillations about  the kink waveform 
is ~o c = (1 - r)/(1 + r) = 0.8182 and, importantly,  

no localized oscillation exists. 
Fig. 8 represents the outgoing velocity of  the 

kinks as a function of  their incoming velocities. 

As expected we found a critical velocity 
vc(vc -- 0.234. . . )  such that two kinks colliding with 
initial velocities v < vc do not separate from each 
other but rather form a bound KI~ pair. This state 
is unstable, and decays quickly into nonlocalized 
radiation which spreads over the whole system as 
shown on fig. 9. For  v < v~ we did not find any 
value of  the initial velocity for which the kinks 
escape from this bound state and recede to infinity. 
This result is consistent with the resonant energy 
exchange theory explaining the "windows" in the 
~b 4 model, since there is no localized state in the 
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Fig. 8. KI~ outgoing velocities (vt) after their collision as a 
function of  their incoming velocities (vi) for r = +0.1 .  The 
small figure in the inset is the plot of  the position on the center 
of  the chain as a function of  time. 
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Fig. 9. KI~ collision for r = + 0.1 and v i < /)e(l)i = 0.1). Note the 
quick spread of  the energy over the whole system after the 
interaction due to the absence of  localized states in the small 
oscillations. 

deviations about  the kink waveform which can 
"s tore"  lost KI~ kinetic energy. 

Although no resonance windows are observed, it 
is nonetheless possible to check some of the as- 
sumptions made in the resonant energy exchange 
analysis. Thus, for example, the assumptions re- 
lating (for v < vc) the time interval, T1, between the 
first and second KI~ collisions first to E, the binding 
energy and then to v do not depend on the existence 
of  a localized mode and thus should be valid also 
in this case. These assuml2tions imply the result 
shown in (1.12): namely, Tl(v) x x /~¢--  v2 = fl, 

where fl is a constant. Table II summarizes the 
numerical data testing this result for r = 0.1. 

The results in table II show that the product  
Tl(v ) x ~ - - v  2 remains constant to good accu- 

racy. From the data for v > v~ we can compute the 
value of  the parameter  at of  eq. (1.11) which enables 

us to deduce the binding energy of  the two kinks. 
We obtain ~ ~ 0.84 so that the theoretical value of  

fl deduced from eq. (1.12) is fl =4.18,  which is 
about  20% higher than the "experimental" value. 

Table II 
The time, T~, between the first two 
KI~ collisions as a function of  their 
incoming velocity for r = + 0.1 

2 2 vi Ti Ti × 

0.10 16.0 3.384 
0.15 18.975 3.407 
0.18 22.825 3.412 
0.20 28.05 3.407 

3.2.2. r = + 0.05 
As a further and perhaps more demanding test 

of  the role of  the localized shape oscillations, we 
next choose r = + 0.05; for this case the continuum 

begins at ~o c = (1 - r)/(1 + r)  = 0.9048. For  this 
very small value of r the potential is very close to 
that of  the sine-Gordon model and consequently 
the non-integrable effects in the K- I~  collisions 
should be very weak. This is reflected in the small 
value of  the critical velocity, vc = 0.112, below 
which kinks capture each other. 

Despite a careful search (variation of the initial 

velocities of  the kinks v i by steps between 0.002 and 
0.0002), we did not find any window of  vi for which 
the two excitations separate from each other for 
vi < v¢. The result is in agreement with the theory 
relating these resonances to the existence of  a 
bound state in the small oscillations about  the kink 
waveform. In contrast to the case with r = + 0.1, 
we observed here that the two kinks form a 
relatively stable oscillating bound state, in agree- 
ment with recent analytic calculations [19], which 
suggest that such stable "breathers"  exist for 
r < 0.1 for the modified sine-Gordon model. 
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Let us discuss these oscillating states, and in 
particular, their initial formation in more detail. 
For  vi < vc we denote by Tl the time between the 
first two collisions of  the kinks and by T 2 the time 
between the second and the third collision. The 

dependence of  7"1 and T2 upon/3 i is plotted in fig. 
10. The dependence of  T~(v) is well described by 
the familiar form, Tl(v) x x/~c--v2=fl,  with 

fl = 3.1. The quality of  the fit is shown in table III.  
Since the interaction between the kinks is rather 

small, they reach a rather large separation during 
their oscillations (typically 8 times their width) and 
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thus the assumptions yielding the relation between 
7"1 and v should be valid here to a good approxi- 
mation. The theoretical value of  t ,  f rom eq. (1.12) 

is fl = r~/(ax/~ ) with a = O9c. The study of  vf as a 
function of  v i for vi > vc yields ct = 1.0 and con- 

sequently the theoretical value of  fl is fl = 3.47, 
compared to the fitted value of  3.1. 

The curve T2(v) is even more interesting. Note 
that if some resonances were present (as in the case 
for negative values of  r), for some definite veloci- 

ties this time should tend to infinity. This is, of  
course, not the case here, since as we have already 
indicated, no resonances are observed. However, 
the plot of  T2(v) in fig. 10 does show well-defined 
maxima. These maxima correspond to particular 
values of  v~ for which the two excitations go rather 
far from each other after their second collision but 
do not actually separate to infinity. An example of  
this behavior is shown in fig. 11. Thus for 
r = + 0.05 we observe "quasi-resonances" and the 

corresponding initial velocities vi = vn are listed in 
the table. It  is interesting to note that a formula of  

the type 

A 
vn = vc (2n + 3/n)  2'  (3.1) 

Fig. 10. The time (TI, full line) between the first two KIt, 
collisions and the time (7"2, dashed line) between their second 
and third collisions as functions of  their initial velocity. Both 
curves are smooth  interpolations of  the numerical data. The 
actual data  points have been suppressed for clarity. 

Table III 
Values of  Tj and the product  
T l x ~ - v i  2 for a r a n g e o f v  i 

2 2 v i T I T l x ~ - -  V i 

0.02 28.1 3.097 
0.03 28.8 3.107 
0.04 29.7 3.107 
0.05 31.1 3.116 
0.06 32.8 3.106 
0.07 35.6 3.112 
0.08 39.7 3.115 
0.09 46.3 3.089 
0.10 59.9 3.021 

with A = 5.84 and 6/n = 1 gives a very good fit of  
the velocities of  the "quasi-resonances" as listed 

in table IV. 
It is natural to at tempt to interpret the observed 

success of  eq. (3.1) by arguing that an energy 
exchange mechanism similar to that that underlies 
the resonance window phenomena is also oper- 
ating here. But instead of  transferring energy to 
localized internal oscillations of  the individual 
kinks, the first KIZ collision transfers it to a 
"definite" frequency, o9~, in the continuum of 
extended states. Actually, of  course, states in a 
range of  around to~ are excited; this is just the wave 
packet of  continuum modes discussed earlier in 
this subsection. Since this wave packet does not 
correspond to a permanently localized state, dur- 
ing the time between the first and second collisions 
a substantial part  of  its energy spreads out away 
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Fig. 11. The value of ~b(x = 0, t) versus t for different initial 
velocities near the "quasi-resonance" at v =0.062 for 
r = + 0.05. 

Table IV 
The initial velocities, v,, of the "quasi-resonances" ob- 
served for r = + 0.05 and the theoretical values of these 

/)n 

v. Index, n Theoretical value of v. 

0.042 4 0.0399 
0.062 5 0.0637 
0.076 6 0.0774 
0.085 7 0.0860 
0.092 8 0.0918 
0.096 9 0.0958 
0.100 10 0.0987 
0.101 11 0.1009 
0.1025 12 0.1026 
0.1035 13 0.1039 
0.1045 14 0.1050 
0.106 15 0.1059 

from the collision center, and hence the kinks 
cannot recover enough energy to separate after 
their second collision, even though the resonance 
condition is satisfied. If  one, by comparing (3.1) 
with (1.13), calculates the value of  to'c, one finds 

p 
to¢= 1.159. 

This "explanation" of  the "quasi-resonances" 
raises as many questions as it answers. For  exam- 
ple, one would want to know what parameters 
determine o~, and whether it really is [as the 
success of  (3.1) suggests] independent of  the initial 
velocity. We are currently studying these and other 
questiohs related to the "privileged" role of  local- 
ized internal oscillations. 

4. Kink-antikink scattering for larger r 

When the deviation of  the potential VpR(~b; r) 
from the cosine form increases, new channels for 
KI~ scattering appear. The study of  the positive 
values of the shape parameter r does not bring any 
qualitatively new results because no "windows" for 
v < v¢ are observed in this case, consistent with the 
theoretical expectation, since no bound state exists 
in the small amplitude oscillations about the kink 
waveform. The behavior for negative values of  r is 
thus more interesting. To give some indication of  
the range o f  the observed phenomena, we consider 
two cases. In the first case (r = -0 .25)  only one 
bound state exists in the spectrum of  the small 
amplitude oscillations and hence the situation par- 
allels that for r = - 0 . 1  and for the ~b 4 theory. In 
the second case (r = -0 .5 ) ,  three such states exist 
and consequently one might anticipate somewhat 
different behavior. 

4.1. r = - 0 . 2 5  

In this case the continuum spectrum of  the small 
amplitude oscillations begins at t o e = ( 1 - r ) /  
(1 + r ) =  1.6666 and one localized state exists for 
roB= 1.1675. The main difference from the case 
r = - 0.1 is that the ratio to¢/~oB, which is 1.090 for 
r = -  0.1, is 1.427 and thus the energy may be 
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expected to be shared differently between the local- 
ized and non-localized modes  in the two cases. Fig. 
12 shows the outgoing velocities of  the kinks as a 
function of  their incoming velocities for this case 
r = - 0 . 2 5 .  As in the case r = - 0 . 1  this figure 
shows very sharp peaks for v < v~ corresponding to 
narrow windows o f  v~ in which Vr is different from 
zero. The critical velocity is now v¢ = 0.2925. It is 
not surprising to find a higher critical velocity than 
in the case r = - 0 . 1  because we are now further 
from the s ine-Gordon case (which may be consid- 
ered formally as having a zero critical velocity) 
and the non-integrable part o f  KI~ interaction is 
correspondingly stronger. 

As indicated on the insets to fig. 12, o f  the seven 
resonance windows observed, six show the familiar 

two-bounce structure. For these one expects the 
resonant energy exchange theory to apply quan- 
titatively, and thus we shall discuss these first. In 
table V we summarize the results o f  the numerical 
simulations and compare them with the theoretical 
value o f  the window centers. 

To  determine the theoretical value of  the win- 
dow center in table V, one needs the value of  the 
offset phase, 5, in eq. (1.13). As usual, we deter- 
mine this by plotting ogBT~/2n versus n and evalu- 
ating the intercept. The plot is shown in fig. 13. The 
observed values of  ~BT~/2rC do yield, as predicted 
by (1.9), a relatively good straight line with slope 
I. From fig. 13 and this straight line fit, one finds 
J = 1.7, so that as for r = - 0 . 1 ,  6/~z is close to 0.5. 
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Fig. 12, KI~ outgoing velocities as a function of  their incoming 
velocities for r = - 0 . 2 5 .  
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Fig. 13. ~oBTi/2n as a function of  the window index for 
r = - 0.25. Note the existence of  a window corresponding to a 
non-integer value o f  n. 

Table V 
Two-bounce resonance windows in KI~ scattering for r = - 0 . 2 5 .  The 
detailed explanation of  the data in each column is given in the text 

Center of  the Theoretical 
2 2 Index, n wind6w: v n T 1 T t x ~ - v n value of  v, 

2 0.2644 12.45 1.557 0.2709(0.2720) 
3 0.2824 18.62 1.419 0.2821 (0.2826) 
4 0.2870 24.15 1.363 0.2864(0.2867) 
5 0.2890 29.37 1.325 0.2885(0.2887) 
6 0.2901 34.72 1.298 0.2897(0.2898) 
7 0.2908 40.57 1.278 0.2904(0.2905) 
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For  the data in table V we have an independent 
determination of  the index of  the window, which 
should correspond to the number of  periods of  the 
shape mode oscillation between the two collisions. 
In fig. 14 we show the behavior of  (])(x = 0, t) for 
the different resonances listed in table V. One 
clearly sees the correspondence of  the window 
index with the number of  small oscillations of  
(~(x = 0, t). It is interesting to observe that for 

r = - 0 . 2 5  the index of  the lowest two-bounce 
window is n = 2, whereas for r = - 0 . 1 ,  it was 
n = 5. A possible explanation lies in the variation 
of  the kink waveform as a function of  r, as shown 
in fig. 2. For  r = - 0 . 2 5  the kinks are significantly 
sharper than in the case r = - 0. l, so that we might 
expect their interaction to be more abrupt. A 
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Fig.  14. T h e  b e h a v i o r  o f  ~b(x = 0, t )  ve rsus  t fo r  d i f ferent  ini t ia l  

veloci t ies  a t  the  cen te r s  o f  the  w i n d o w s  o f  i ndex  n, as  s h o w n ,  

fo r  r = - 0.25.  

possible consequence is that the shape modes are 
excited more abruptly and thus that well-defined 
resonances can continue to smaller Tl and have 
lower n. 

The final factor is determining the theoretical 
value of  the velocity at the window centers is the 

(supposed) constant fl - T l x x / ~  2 - 132. As we see 
from table V, the product ranges from 1.557 to 
1.277 over the six windows and hence is constant 
only to roughly 20~. If one nonetheless defines a 

mean value for all six wondows of  fl - r6 = 1.373, 
one obtains for velocities at the window centers the 
value listed in the sixth column of  table V. 

The observed variation in fl must reflect the 
inadequacy of  some of  the assumptions underlying 
the resonant energy exchange theory. If one notices 
that the variation of  fl among the last five windows 
is considerably smaller (~- 10~) than the variation 
( -  20~) over all six, one is naturally led to look for 
an explanation that focusses on this lowest win- 
dow. For  this window, the time between KI~ 
collision is shortest and the kinks spend the least 
time in the region where the asymptotic form of  
their interaction potential is valid. Hence both the 
general asymptotic estimate of  the time between 
collisions and, in particular, the very weak binding 
limit in (1.10) are quite likely to be inadequate. 
Thus it is not surprising that one sees a deviation 

from the assumed constancy of  ft. Note that if one 
uses only the last five two-bounce windows to 
determine r ,  one finds fl - r5 = 1.337, which leads 
to the theoretical values of  the velocities at the 
window centers shown in parentheses in table V. 

In the discussion thus far of  the case r = - 0 . 2 5  
we have used two "experimental" values of  r ,  as 
determined by averaging the value of  
T 1 x x / ~ E - v  2 observed numerically. It is very 

interesting to compare either of  these values 
(f15 = 1.337 or r6 = 1.373) to the theoretically pre- 
dicted value, based on eq. (1.12). A fit o f  velocity 
data for v > vc yields ~t = 0.514, which given that 
a in (1.12) should satisfy a -  (oc = 1.66, yields a 
theoretical value of  fl o f  fl = 2.629. Consequently, 
the agreement between the theoretical and "experi- 
mental" values is now quite bad. To test possible 
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origins of  this discrepancy, we first calculated 
numerically the KI~ potential and found good 
agreement with the expected exponential asymp- 

totic form, 

Ufy) "~ c e -2atyl , (4.1) 

where 21Y I is the separation between the kinks and 
c is a constant, provided that 21y I is greater than 
three times the kink width. The numerical value of  

a was aexp = 1.683, in good agreement with the 
theoretical value athy = 1.666. In the worst case 
(n = 2), the maximum KI~ separation between 

bounce is 2y~ax = 4.5, and thus, as discussed above, 
the asymptotic estimates should at best be only 
marginal. But for higher n, these estimates should 
become more accurate, whereas the discrepancy 
between the theoretical and "experimental"  values 

of  fl remains. We have been unable to identify the 

source of  this discrepancy but the structure of  eq. 
(1.12) suggests that it must  come from one o f -  or 
perhaps a combinat ion o f -  two sources. First, the 

semi-phenonenological relation between the bind- 
ing energy e (for v < vc) and the final velocity (for 
v > vc) may be less accurate than in the previous 
cases. Second, U(y)  as determined by substituting 

the Ansatz solution ~b = tkK(x - y ) +  ~bg.(x + y)  
into the Hamiltonian,  may in fact be a poor  

description of  the actual "potent ia l"  involved in 

the KI~ interaction. We are currently studying 

these possibilities further. Note  that despite this 
worrying discrepancy in the theoretical value of  fl, 
the resonant energy exchange mechanism for these 
two-bounce collisions seems clearly established (re- 

call fig. 14) and, if fl is determined phenom- 

enologically, the detailed theory works fairly well 
quantitatively. 

To this point we have said nothing about  the 
widths of  the two-bounce resonance windows. 
Since the resonant energy exchange theory predicts 
these should be proport ional  to 1/n 3, where n is the 

index of  the window, it is clear that the current case 
of  r = - 0 . 2 5 ,  in which the lowest observed win- 

dow has n = 2, is much better suited to test this 
prediction than the previous case of  r = - 0 . 1 ,  for 

whicn nmi n = 5. In table VI we list our approximate  
determinations of  the widths of  the lowest three 
two-bounce windows for r = -0 .25 .  

To within the (considerable) numerical uncer- 
tainties, the window widths are consistent with the 

anticipated scaling with n. 
Our final comments  on the data for r = - 0 . 2 5  

concern the one window (at v = 0.2752) in fig. 12 

which is not a two-bounce window. This is shown 
clearly on the inset to fig. 12 and is reflected in the 
non-integer index, n = 2.33 (see fig. 13), that arises 

if one at tempts to fit this to the two-bounce 
resonance theory. The inset to fig. 12 shows that 
this window is in fact a " four-bounce"  window, in 

that the kinks escape to infinity only after f our  

collisions. Note  that the final result of  this collision 

is reflection, as for the two-bounce windows. Inter- 

estingly, the time, Tt between the first two bounces 
satisfies the relation T 1 × ~ c  2 -  t) 2 =  1.474 with 

roughly the same value of  fl as for the two-bounce 

windows. The times T 2 and T 3 between the other 
bounces (2-3 and 3--4, respectively) are 
significantly smaller than T~ and in fact are roughly 
equal to the initial periods seen in the (permanently 
captured) KI~ bound states formed for initial 

Table VI 
Rough determination of window width for the lowest three resonance 
windows for r = -0.25 

Width of window, W 
Index, n in velocity Product, W x n 3 

2 0.0029 + 0.004 0.0200 < W × n 3 < 0.0264 
3 0.0010 _ 0.0002 0.0216 < W × n 3 < 0.0324 
4 0.0006 _ 0.0002 0.0256 < W x n 3 < 0.0512 
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velocities just outside the window. Note also that 
the data in fig. 12 suggest that this four-bounce 
collision is considerably less elastic than the two- 
bounce windows. Since each collision is to some 
extent inelastic, this result is intuitively appealing. 

Comparing the data for r = - 0 . 1  and 
r = - 0 . 2 5 ,  one is struck by the existence in each 

case of  an isolated "anomalous"  resonance among 
the (by now familiar) two-bounce windows. Al- 
though the narrowness of  any of the windows 
implies that other "anomalous"  resonances could 
easily have been missed by our simulations, it is 
nonetheless clearly of  interest to follow the evo- 
alution of  the known resonance patterns as r is 
varied from r = - 0 . 1  to r = - 0 . 2 5 .  At present, 
limitations of  computer  time have prevented us 
from carrying out the investigation. We plan to 
study this point in future simulations. 

4.2. r = - 0 . 5  

To investigate the effects of  multiple localized 
internal modes of  the kinks, we have studied the 
case r = - 0 . 5 ,  for which we see from fig. 4 that 
three such modes exist. For  r = - 0 . 5  the con- 
tinuum begins at co c = (1 - r)/(1 + r) = 3.000 and 
the three localized states occur at tOal= 1.1404 
(odd spatial symmetry), c%2 = 2.0667 (even spatial 

symmetry), and coB3 = 2.7982 (odd spatial sym- 
metry). Fig. 15 shows the final kink velocity as a 
function of  the initial velocity. The critical velocity 

is vc = 0.337. 
The results in fig. 15 are quite different from 

those observed for r = - 0 . 1  or - 0 . 25 .  There are 
two sharp peaks at vi = 0.315 and v~ = 0.317, but as 
the insets show, neither corresponds to a two- 
bounce resonance. But the most striking feature of  
fig. 15 is the broad band in the region 
0.176 < vi < 0.278 in which apparently for all ini- 
tial velocities the final velocities are non-zero. Of  
course, given the finite resolution of  our set of  
initial velocities (indicated by the crosses on fig. 
15), it is possible that this broad band consists of  
several separate smaller windows. This possibility 
is rendered somewhat unlikely by the observation 

~. r = - 0 . 5  

" - , .  
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Fig. 15. KI~ outgoing velocities as a function of their incoming 
velocities for r = - 0.5. 

that the collision mechanism, as indicated by inset 
to fig. 15, is the same for all velocities measured in 
this window. This mechanism involves three 
bounces and hence leads to transmission of  K and 
1~ through each other. Although it involves three 
bounces, this broad window is clearly different in 
structure from the three-bounce window seen for 
r = - 0 . 1  In particular, the time between the 
bounces is relatively short - Ti varies from 7.12 for 
vi=0.180 to 9.5 for v i = 0.317 - and the kinks 
never separate to "asymptot ic"  distances between 
collisions. For example, for v~ = 0.275, the max- 
imum value of  y between KI~ collisions is only 

twice the kink width, and for all lower v i inside the 
broad band, the maximum y is even less. 

The collision mechanisms for the two higher 
windows also involve short intercollision times and 
small KI~ separations. These are presumably sensi- 
tive to the short range part  of  the KI~ interaction, 
and in any case the asymptotic estimates of  the 
two-bounce theory are simply not valid. None- 
theless, comparing the two windows - the lower 
involving four bounces and the upper six - cer- 
tainly suggests that a resonance mechanism is 
operating. We have searched in the vicinity of  the 
windows for eight-bounce and two-bounce 
reflections - as well as for odd-bounce transmission 
windows - without success. In the absence of  
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further ,  more  de ta i led  in fo rmat ion ,  and  in the face 

o f  the wide range  o f  a pr ior i  resonances  involv ing  

the three local ized modes ,  we have no t  a t t e m p t e d  

a theore t ica l  in te rp re ta t ion .  This  clear ly remains  an 

interest ing open p rob lem.  One final in t r iguing  

po in t  arises by c o m p a r i n g  the fou r -bounce  w i n d o w  

for r = - 0 . 5  wi th  the (related?) fou r -bounce  win- 

dow observed  at  vi = 0.2752 in the case r = - 0.25. 

Despi te  differences, the resemblance  - inc luding  

the relat ively low elast ici ty - is s tr iking.  Obvious ly ,  

one again  needs sys temat ic  s tudies  o f  the evo lu t ion  

with r o f  the resonance  pa t t e rns  to unravel  the 

mechan i sms  beyond  the two-bounce  resonance  

theory.  

on s i n e - G o r d o n  p e r t u r b a t i o n  theory  for  small  r 

and  more  specifically un i fo rm es t imates  for  the 

cri t ical  velocity,  vc, as a func t ion  o f  r. I t  appea r s  

tha t  we have only  scra tched the surface o f  the 

fasc ina t ing  and  complex  subject  o f  in te rac t ion  o f  

non l inea r  exci ta t ions  in non- in tegrab le  theories.  
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5. Discussion and conclusions 

Since each o f  the preceding  subsect ions  has  

con ta ined  subs tan t ia l  d iscuss ion and  analysis ,  in 

this sect ion we shall  s imply summar ize  briefly the 

ma in  qual i ta t ive  conclus ions  and  indicate  a num-  

ber  o f  d i rec t ions  for  fu ture  work.  

In  the cases where the two-bounce  resonan t  

energy exchange  theory  is appl icable ,  it  seems to 

work  r e m a r k a b l y  well, a t  least  a t  the p h e n o m -  

enologica l  level in which the crucial  cons tan t s  are 

de te rmined  empir ical ly .  The  absence o f  resonance  

s t ructure  for  posi t ive  r corre la tes  s t r ik ingly  with 

the absence o f  a local ized shape  osci l la t ions  for  the 

k inks  in this regime. This  result  d e m a n d s  more  

r igorous  inves t iga t ion  [20]. The  two-bounce  theo-  

ry, however ,  by  no means  expla ins  all the observed  

phenomena ,  and  f rom the results  for  r = - 0 . 2 5  

and  r = - 0 . 5  one sees tha t  a poss ib ly  different  

mechanism,  involving pe rhaps  the more  detai led,  

shor t  range pa r t  o f  the KI~ in terac t ion ,  m a y  be at  

work.  In  any  event,  there is c lear ly a need for 

subs tant ia l  fur ther  numer ica l  work ,  inc luding sys- 

temat ic  studies o f  the evolu t ion  o f  the resonance  

pa t t e rn  as a funct ion  o f  r. O f  pa r t i cu la r  interest  will 

be the changes  as the n u m b e r  o f  local ized modes  

varies f rom one to two to three. 

Theore t ica l ly ,  there are  a n u m b e r  o f  obvious  

open prob lems ,  inc luding analyt ic  es t imates  based  
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