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We present new numerical and theoretical results concerning kink-antikink collisions in the classical (nonintegrable) q~4 
field model in one-dimensional space. Earlier numerical studies of such collisions revealed that, over a small range of initial 
velocities, intervals of initial relative velocity for which the kink and antikink capture one another alternate with regions for 
which the interaction concludes with escape to infinite separation. We describe the results of a new high-precision computer 
simulation that significantly extends and refines these observations of escape "windows". We also discuss a simple theoretical 
mechanism that appears to account for this structure in a natural way. Our picture attributes the alternation phenomenon 
to a nonlinear resonance between the orbital frequency of the bound kink-antikink pair and the frequency of characteristic 
small oscillations of the field localized at the moving kink and antikink centers. Our numerical simulation also reveals long-lived 
small-scale oscillatory behavior in the time dependence of kink and antikink velocity following those collisions that do not lead 
to capture. We account for this fine structure in terms of the interaction between kink (and antikink) motion and small 
amplitude "radiation" generated during and after the collision. We discuss possible implications of our results for physical 
systems. 

1. Introduction 

Over the past  several years it has become in- 

creasingly apparen t  that  spatially localized, non-  

linear e x c i t a t i o n s - " s o l i t a r y  waves"  - contr ibute  

significantly to the behavior  o f  a wide variety o f  

natural  systems, f rom organic polymers  and bio- 

logical structures th rough  plasmas to quantized 

fields [1]. Yet, despite the clear impor tance  and 

frequent analytic accessibility o f  these solitary 

wave excitations, their interactions, which can 

control  m a n y  features o f  the dynamics  o f  these 

systems, are in general poor ly  unders tood.  

To be sure, in some cases systems can be mod-  

eled by equat ions  in which the solitary waves are 

"sol i tons"  in the strict sense [1, 2]. In  these models,  

an infinite number  o f  conservat ion laws lead to the 

complete integrability o f  the equat ions and so 
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constrain the dynamics  that  these interactions are 

essentially trivial [1, 2]; solitons pass th rough  each 

other with only a "phase  shift" or  " t ime delay"  

[1, 2] and the entire interaction can be described 

analytically. A celebrated example o f  this class o f  

models, and one which we shall later use for  

comparison,  is the s ine-Gordon  equation,  

O:u(x, t) O2u(x, t) 
~t 2 ~X 2 

- -  + sin u(x, t) = 0 ,  (1.1) 

for which the static single kink (S) and anti-kink 

(~) soliton solutions can be written as 

Us = 2re - ug--- 4 tan-l{e(X-x0)} . (1.2) 

More  commonly ,  the underlying models  do not  

contain  strict solitons. Either there is some physical 

p e r t u r b a t i o n - a  defect, an impurity,  or  a weak 
coupl ing to another  s y s t e m - w h i c h  destroys the 

complete integrability, or  the "ba re "  model  itself is 
simply not  integrable [3]. In these cases, interesting 
and highly nontrivial  interactions can occur.  Since 
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here one must typically resort to numerical simu- 
lations, it becomes both challenging and important 
to extract, at least qualitatively, the mechanisms 
underlying the observed interactions. 

In this article we study the interactions of soli- 
tary waves in the non-integrable one-dimensional, 
classical 4~ 4 theory. This model is defined either by 
the Lagrangian density (whence the name q~4) 

do+V_l(O+V <.~(X,l)=2t ~ t ) 2taX) __1(+2__ 1)2, (1.3) 

or by the resulting equation of motion 

a24~ a24~ 
8t 2 8x 2 ~b + q53 = 0. (1.4) 

From either the Lagrangian density or the field 
equation, one can see that the conserved energy of 
the system is 

E = f d x [ ½ ( ~ t )  2+!{0~b~22\ ~x ) + ¼(c~2- 1)2] . (1.5) 

Eq. (1.4) has static single kink (K) and anti-kink 
(I~) solitary wave solutions of the forms 

~bK(~) = + t a n h ( ~ ) ,  (1.6) 

which are qualitatively very similar to the solitons 
of eq. (1.2). Indeed, in mathematical terms, both 
models are just nonlinear Klein-Gordon equations 
defined on the infinite line [4]. It is thus of interest 
to mathematics to understand the similarities and 
differences of these models. 

Apart from this mathematical interest, the ~b 4 
model is of substantial interest in physics, where it 
arises in a number of applications. Historically, the 
first important use of the ~b 4 theory (involving only 
the static limit) was in the Ginzburg-Landau phe- 
nomenological theory of second order phase tran- 
sitions [5]. More recently, the one-dimensional q~4 
theory has been generally applied at a more micro- 
scopic level to structural phase transitions in the 
displacive limit [6-17] and specifically to uniaxial 

ferroelectrics [7-8, 11]. The role of the solitary 
waves in both the thermodynamics [9, 11, 15, 16]- 
where they appear as "fundamental" excitations in 
the partition func t ion -and  the dynamical re- 
sponse [7, 8, 10-17]- where they appear as mobile 
domain walls [10-17], leading to cluster formation 
[13, 14] and possibly explaining observed "central 
peak" phenomenon [8, l l - 1 7 ] - h a s  been exten- 
sively studied. A related but distinct application of 
the one-dimensional q~4 model has been as a phe- 
nomenological theory of the nonlinear excitations 
in linear polymeric chains, such as polyacetylene 
[18, 19]. Here the kinks correspond to the non- 
linear excitations having the celebrated exotic 
spin-charge relations [20]. In quantum field theory, 
the one-dimensional 4) 4 model has been used as an 
example to illustrate the connection between non- 
linear classical excitations and quantum particles 
[21]. Further, when coupled to fermions, it has 
been used as a " toy"  model of nuclear physics [22] 
and as an illustration of the nontrivial effects of 
topology on fermion number [23]. Finally, higher 
dimensional versions of the q~4 theory play a 
central role in the models of the spontaneous 
symmetry breakdown required in the unified the- 
ories of the electromagnetic and weak interactions 
[24]. 

Motivated by this combined mathematical and 
physical interest, a number of researchers 
[10, 25-32] have studied kink-antikink interactions 
in the q~4 model numerically, using digital comput- 
ers. All of them have reported that KIT, collisions 
with certain initial relative velocities end with kink 
and antikink reflecting from one another, while 
with other initial velocities the collisions end with 
KIT, capture into a bound state. Most surprisingly, 
most [10, 28, 29, 31, 32] of these authors have re- 
ported that there is more than one range of initial 
velocities for which the collisions end in reflection, 
and that these reflection regions alternate with 
more than one range of incoming velocities for 
which the collisions end in KITL capture. To the best 
of our knowledge, there is no theoretical expla- 
nation, in the published literature, of this un- 
expected alternation pattern. 
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In this paper we present the results of  a 
new, more extensive numerical study of  KI~ col- 
lisions in the ~b 4 model, and describe a semipheno- 
menological theory of  the structure that we see. 
Numerically we confirm earlier claims, and we also 
observe many more, narrower, alternating regions 
of  capture and reflection than hitherto reported. 
We also observe unanticipated fine structure in 
the time-dependence of  the outgoing velocities of  
kinks and antikinks that leave interactions ending 
with KI~ reflection. Our theory accounts qual- 
itatively for all our observations. 

In section 2, after beginning with some elemen- 
tary remarks contrasting kink interactions in the 
sine-Gordon and ~b 4 theories, we describe in detail 
the most significant results of  our numerical simu- 
lations and the ingredients in, and predictions of, 
our semi-phenomenological theory. In section 3 we 
present the detailed justification of this theory. 
Section 4 describes and explains the fine structure, 
mentioned above, in the outgoing velocity of kinks 
and antikinks leaving interactions. In section 5 we 
conclude with some remarks on both the lim- 
itations and the generality of  our approach and 
indicate briefly possible implications for real phys- 
ical systems. In appendix A we present the details 
of  our numerical scheme and in appendix B we 
include some calculational and conceptual back- 
ground for our analytic results. 

2. Qualitative discussion and overview of results 

Before discussing the more intricate details of q~ 4 
kink collisions, it is useful to begin with a few 
elementary remarks comparing and contrasting 
these interactions with those of  the sine-Gordon 
solitons. In the sine-Gordon theory, the interaction 
of a soliton (S) and anti-soliton (~) is described in 
their center of  mass system by the analytic function 
[2, 33] 

tan- i  ~" s i n h ( v t / x / 1 - v  2) 
Us~ = 4 tv  cosh(x/Ix/i----v-2- v2)j" 

(2.l) 

In fig. 1 we present qualitative sketches of  this 
function at different times. For  large negative time 
(fig. la) t = - T, the S and fl are widely separated 
(Ax ,,~ 2 ( v T  - -  x / 1  - v 2 In v) but approaching each 
other (Vs = - v ,  v~ = +v) .  For  t ~ 0 (figs. lb and 
lc) they interact in a highly nonlinear manner that 
nonetheless permits them to pass through each 
other "unscathed". For  t = + T' (fig. l d) they are 
separating with final velocities equal to their initial 
velocities; the only effect is a small shift in the 
position that they would have reached had there 
been no interaction. 

This "phase shift" or "time delay" can be 
shown, from (2.1), to be 

6x = 2(1 -- v2) 1/2 In(l /v) .  (2.2) 

Note that when the S and ~ pass through each 
other, the region near x --- 0 is left in the "ground 
state" with u = 2n, whereas before the interaction 
it was at u = 0. This is possible because of the 
u ~ u  + 2 r m  symmetry of eq. (1.1). 

I" zxx q 

(o) 

- +27r 

. . . . . . . . .  2 " B "  . . . . . . . . .  

(b) (c) 

+2rr 

2 r  
(d) 

Fig. 1. A schemat ic  depic t ion  of  the in terac t ion  of  a sol i ton (S) 
and  an an t i so l i ton  (S) in the s ine -Gordon  equat ion .  (a) The  
ini t ial  condi t ion ,  a t  t = - T; (b) and  (c) the field conf igura t ions  
at  t = - e  and  t = +E, respect ively (E ~ 0); (d) the final field 
conf igura t ion  at  t = + T'.  N o t e  tha t  when  the S and S pass 
th rough  each other ,  the region near  x = 0 is left in the g round  
s ta te  wi th  u = 2n ins tead o f  u = 0. 
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In the case of q~4 interactions, we have no 
analytic guidance, and hence in fig. 2 we sketch 
(again, qualitatively) several a priori possible re- 
suits of KI~ collisions. Fig. 2a shows the initial 
state, with I~ and K approaching each other in 
their center of mass system. The configuration in 
fig. 2b, in which the 17, and K appear to have 
passed through each other, is in fact impossible on 
energetic grounds alone. Since the region between 

+I 

I 

{o) 

L- - -  L ~I 

+I 

+I 
{b) 

(c) 

- - - - ~  + I  

I 

(d) 

(e) 

+1 

I 

Fig. 2. A schematic depiction of  "'possible" results of  kink (K) 
and antikink (I~) collisions in q5 4 theory. (a) The initial state, 
t = - T ;  (b) a putative final state in which the K and I~ pass 
through each other. This state has energy EocV(dPo)L and 
hence, as argued in the text, L + - ~ ,  and it cannot be an 
asymptotic state of  the system: (c) a final state in which the K 
and K reflect, presumably inelastically (v r #= vi); (d) a putative 
final state in which the K and I~ have annihilated rapidly to 
produce dispersing "radiation"; (e) a "final" state containing a 
spatially localized, time oscilatory motion plus small radiation. 
This state is very long-lived, but decays eventually into radi- 
ation. 

the kinks is at some value q~0 not equal to a 
minimum of the potential, the energy of this 
configuration is E ~ V(c~o)L, and hence L can not 

approach infinity. To reiterate: in the ~b 4 theory, K 
and 1~ can not pass through each other [34]. Fig. 
2c shows a possible final state in which the K and 

have reflected from each other. Anticipating the 
nonintegrable nature of the theory, we have indi- 
cated that uf ~/)i [34]. In fig. 2d we indicate the 
possibility that the 1~ and K "annihilate" almost 
immediately in the collision, sending out dispersing 
"radiation" ("phonons",  in the solid state termi- 
nology). Finally, in fig. 2e we sketch a "final state" 
in which a long-lived, spatially localized, time- 
oscillatory state is formed; this state may decay in 
time by emitting "radiation". 

In principle, the behaviors sketched in figs. 2c-2e 
are all possible. In practice, our numerical simu- 
lations, consistent with earlier results [25-32], show 
that only possibilities of fig. 2c and 2e are ob- 
served. This is perhaps intuitive physically, for it 
indicates that (])4 kinks retain some of the robust- 
ness of their sine-Gordon cousins. Further, by 
analogy to the relation between the sine-Gordon 
breathers and the S and fl solitons, the localized 
oscillatory state in fig. 2e can be thought of as a 
I~ + K bound state [25-28], in which the kinks are 
trapped by their mutual attraction [25, 30, 32]. 
Since the trapped state can be formed only if the 
kinks have time to lose sufficient energy in a 
collision, one expects trapping at low relative 
velocity, and (inelastic) reflection at high v~. 

The full results of our numerical simulations are 
summarized in fig. '3 for the range 0.16 ~< v~ ~< 0.4. 
In this plot, vr = 0 implies that no kinks exist in the 
asymptotic state; instead, a "trapped" oscillatory 
state is formed. As anticipated, at low initial 
velocities (vi < 0.193. . . )  a trapped state is always 
formed, and at high velocities (v i > vc = 0.2598.. .)  
the kinks always reflect inelastically. The striking 
feature of fig. 3 is the sequence of  regions of 
intermediate vi in which trapping and reflection 
alternate. For definiteness, let us call these regions 
below vc in which reflection occurs "reflection 
windows". A catalogue of the "reflection win- 
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Table I 
A tabulation of the range, center, and width in initial velocity of the reflection windows observed in ~b 4 KI{ 
collisions. The last three columns give respectively, the theoretically predicted value of the window center and 
two quantities which our theory predicts to be constant. In the last two columns v = center of window and 
Av = width 

Nw = n - 2 Range of  v Center Width Predicted (v~ - v2)(2n + 1) 2 Av(2n + 1) 3 
Center 

1 0.1926--0.2034 0.1980 0.0109 0.1990 1.39 3.74 
2 0.2241 -- 0.2288 0.2265 0.0048 0.2250 1.31 3.50 
3 0.2372 -- 0.2396 0.2384 0.0025 0.2370 1.29 3.33 
4 0.2440 - 0.2454 0.2447 0.0015 0.2437 1.29 3.30 
5 0.2481 -- 0.2490 0.24855 0.0010 0.2478 1.29 3.38 
6 0.2507--0.2513 0.2510 0.0007 0.2505 1.30 3.44 
7 0.2525 -- 0.2529 0.2527 0.0005 0.2524 1.31 3.4 
8 0.2538 -- 0.2541 0.25395 0.0004 0.2538 1.33 3.7 
9 0.2548 -- 0.2550 0.2549 0.0003 0.2548 1.33 4.3 

dows" observed in our numerical simulations is 
shown in table I*. 

The existence of a threshold above which the 
kink and antikink always reflect has been known 
numerically [10,25-32] and understood semi- 

c~ 

I] .  15 

II 
~ 
[ ~  
: >  o 

~ -  

J ~ 

0% o:~s 0:30 o:3~ 0.40 
INITIRL KINK VELOCITY 

Fig. 3. The (time-averaged- see section 4) kink velocity (solid 
curve) after a KI~ collision as a function of  the initial kink 
velocity. A final velocity of  zero means KI~ capture into a 
bound state. The dashed curve (which is almost indistinguish- 
able from the data) is a fit to the form (constant) x (v 2-/)2)1/2 
for v above and close to v c. 

* A natural reaction to first seeing this table is to wonder 
whether the resonances continue indefinitely, clustering toward 
v c as n---,oo. In its most naive form, the theory we describe 
below would predict this, but as we discuss later there are a 
number of  effects not included in the naive, theory that can 
cause the sequence to terminate. 

quantitatively [30] for some time. Further, the 
lowest three "windows" in the table have been 
observed in earlier work [10, 25, 27-29, 31-32], but 
no explanation of the origin of these "resonance 
windows" has been proposed. In the remainder of 
this article we shall focus on this resonance struc- 
ture, presenting further results of computer calcu- 
lations and formulating a simple, semi- 
phenomenological theory that is in good 
agreement with the numerical observations. We 
begin by describing here the ingredients in our 
theoretical approach and their relation to our 
numerical results. 

The first important ingredient is the observation 
that there is a crucial distinction between KI~ 
reflections above vc and those in the "resonance 
windows" below re. Specifically, as shown in fig. 4, 
above v¢ the K and 1~ collide once and then reflect 
to infinity, whereas in the windows below v¢ the K 
and I{ collide, recede to finite separation, stop, and 

v - o .  2 3 8 4  o 

H . 

0.0 50.0 I00.0 
T I M E  

V ~ O.  d O 0 0  
R 

,o,o 

0.0 50.0 
T I M E  

iO0.O 

Fig. 4. ~b(x = 0, t) versus t for KI{ collisions (a) in a "two 
bounce resonance window" below v c and (b) above v c = 0.2598. 
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then return to collide again before reflecting to 
infinity [28, 32]. Thus we shall henceforth use the 
term "two-bounce windows" to refer to these 
reflection resonances. Before the first collision and 
during most of  the time between the two bounces 
the K and I~ exist as separate entities. Hence it is 
sensible to speak of  a potential energy [25, 30, 32] 
(or force) between them (see appendix B) and of 
the kinetic energy of  the translational motion of  
each kink. The "two bounce" behavior indicates 
(1) that after the first collision the K and 1~ are 
trapped by their attractive potential and hence that 
energy has been removed from their translational 
motion, but also (2) that after the second collision, 
this energy is at least in part restored, allowing the 
kinks to escape. To explain this behavior one 
clearly needs a mechanism for transferring and 
storing energy. In view of  the separation of  the K 
and I~ between bounces, it is natural to look for 
the mechanism in the small oscillations around a 
single kink (or antikink). These small oscillations, 
&b, are determined by the equation 

a2a~ o2a~ 

" 6~t2 OX 2 
~- (3~.(K>- 1)64 = o. (2.3) 

Fourier transforming with respect to time, one can 
convert this to a Schrfdinger equation with poten- 

tial [using (1.6)], 

Vscn(X)5 = (3q~2(~ . )  - 1 )  = 2 - 3 s e c h  2 ( x  - Xo)  

(2.4) 

which corresponds to a well-known solvable (in 
fact, reflectionless) potential [30, 35, 37]. In terms 
of the Fourier transform variable 09, the spectrum 
of (2.3) has a continuum beginning at angular 
frequency 09~ = x/~ and two normalizable modes, 
with angular frequencies 09 = 0 and oJ = 09s = 
x / ~ .  The continuum corresponds physically to 
dispersive travelling waves that propogate to spa- 
tial infinity. The zero frequency mode, whose wave 
function, 6q~0, is proportional to the spatial deriva- 
tive of qSK~¢), corresponds to the translation of  the 

kink (antikink). The mode with 09s = ~ / ~  repre- 
sents a localized deformation around the kink and 
can be considered physically as an internal shape 
mode oscillation of  the kink. The normalized 
eigenfunction of the "shape mode" is 

x - x o x - x o 
~q~S ~ 2--3/4 tanh ~ sech (2.5) 

,/2 

Since it is localized about the kink, this shape 
mode is the natural candidate for the degree of 
freedom in which to store the translation energy of  
the trapped K and I~ in a two-bounce wirdow. 
This hypothesis is fur ther  supported by the anal- 
ysis of  Sugiyama [30], who, assuming that most of  
the kinetic energy lost in the initial K + I2/. collision 
is transferred to the shape mode, estimated the 
critical velocity for the first capture to be Vc ~, 0.25, 
in very good agreement with the actual 
vc = 0 .2598. . .* .  If we adopt this hypothesis, then 
because of the time-reversal invariance ofeq.  (1.4), 
we may also conclude that if the initial state 
consists of  an internally vibrating kink and an 
internally vibrating antikink, and if the amplitudes 
of  vibration are chosen judiciously, and if the 
phases of the initial internal vibrations are syn- 
chronized properly with the time of  impact, then 
the effect of  a collision can be to extinguish all 
shape oscillations, with a concomitant increase in 
KI~ kinetic energy. 

We claim that the second, liberating reflection of 
a kink and antikink whose initial speeds are in a 
two-bounce window is an example of  this reverse 
process. The first reflection sets up shape oscil- 
lations which carry more energyt than the kinetic 
energy of  the original asymptotically separated K 
and I~, so that the kink and antikink after the first 
collision are bound; the second collision extin- 
guishes the shape vibrations, when the timing is 
right, restoring enough of  the lost kinetic energy 

* We will discuss the distribution of energy among the 
various modes in more detail in the later sections. See also fig. 
9. 

t Recall that, because of the attractive potential, as the kinks 
approach each other, they gain kinetic energy. 
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that the KI~ are again unbound. Favorable timing 
in this case means that the occasion of  the second 
impact coincides with the passage of  the internal 
vibration through some phase angle characteristic 
of  shape-mode extinction. Thus, the condition for 
restoration of  KI~ kinetic energy after the second 
bounce ought to be of  the form 

og~T = ~ + 2nn,  (2.6) 

where T is the time between the first and second 
impact, 6 is some offset phase, and n is an integer. 

Fig. 5 shows, in the points marked "X" ,  the time 
between the two bounces of  a kink and antikink 
with initial speed at the center of  a two-bounce 
window, versus the ordinal number of the first nine 
windows (plus two, in order to get 6 between zero 
and 2r0. These correspond to the entries in table 
I, reading downward. This figure also shows a 
straight line that passes through all the nine marks. 
The slope of  the line is 5.2, which compares well 
with the value 2n /o~=  2 r t x / ~  5.13, expected 
from (2.6). From the intercept of  this line, the 
phase 6 is 3.3 ( ~  r0. 

The validity of  the linear relation (2.6) is more 
dramatically illustrated in the sequences of  pictures 
in fig. 6, showing graphs of  ~b(x, t) at x = 0 as a 

function of  time for collisions whose initial KI~ 
speeds are at the centers of  the first eight of our 
nine resolved two-bounce windows. As in fig. 4, the 
two large spikes in each picture correspond to the 
two KI~ reflections, while the bumps between the 
spikes correspond* to the sum of  the tails of  the 
shape oscillation waveforms centered on the kink 
and antikink. According to formula (2.6), one 
expects that each picture in fig. 6 should have one 
more bump in it than in the preceding one, and this 
is indeed what one sees. 

Although we cannot account quantitatively for 
the fact that we see no window corresponding to 
n less than three in (2.6), the existence of some 
nontrivial lower limit on n is not unreasonable. 
Presumably, when the interval between bounces is 
to~-l(5 + 4n) and lower, the kinks do not have time 
to separate far enough to form well-defined shape 
oscillations and therefore resonance cannot occur. 

The second ingredient in our theory is a relation 
between the observed time between bounces and 
the initial velocity of  the kinks. In section 3 we 
shall present heuristic arguments suggesting that 
for KI~ initial speeds v just below v~, the time 
between the first two impacts of  the kink and 
antikink should satisfy 

T ( v  )oc  (v~ - vZ) - ' /2  . (2.7) 

o 

c )  

o 

a2o 
c~ 

~o 

H 
S o -  

o 
cz  

2.0 3'.0 

x 

~ x ~  j 

4'.0 5'.0 6'.0 71.0 8'.0 91.0 1{~.0 11,0 12.0 

N[NOON NUHBER IP_US 2] 

Although we can not rigorously prove this 
resu l t -hence  the "semi-phenomonological" na- 
ture of  our theory - it is in excellent agreement with 
our numerical results (fig. 7), except that the 
naively predicted proportionality constant, ( ~ 2.4) 
is lower than the value ( ~  3.0) found from the 
numerical results. Using the number from the 
simulation (3.0), eq. (2.7) then implies that the 
window centers are located at 

1.37 1.37 v~ 2 ~ 2 (2.8) 
=vc  (2 n +6 / r c )  2 ~ v c  ( 2 n + 1 )  2. 

Fig. 5. The time between the first and second KI( impacts for 
incoming speeds at the centers of the two-bounce windows as 
a function of the window number (points marked "X"). The 
straight line is a linear fit. 

* We provide a more explicit discussion of this is section 3. 
Here we note simply that the structure has the correct period, 
2n/to s .~ 5.1. 
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2 dashed curve is a fit to (constant)/x/v c - v-. 

Eq. (2.8) shows that (v 2 -  v,2)(2n + 1) 2 =  1.37, a 
constant for all n. This compares well with the 
figures in the sixth column of  table I, which are 
the different values o f  (v 2 - vZ)(2n + 1) 2, as deter- 

mined directly from the numerical data figures in 
the first and third columns. 

Our resonance picture also enables us to under- 
stand, in a semiquantitative way, the window 
widths. In particular, since the resonance condit ion 
(2.6) indicates that the process o f  transfer o f  
shape-mode energy back to KI< kinetic energy is 
largely independent o f  how many shape oscil- 
lations have preceded the second KI< impact, we 
expect that the window width in velocity is deter- 
mined by an angular width in shape-mode phase: 
that is, 

e)sAT = 0 ,  (2.9) 

with some constant (i.e., n-independent) 0. Setting 
A T = ( O T / 8 v ) A v ,  and using (2.7) with propor- 
tionality constant 3.0 gives 

Av, ~ (1.7)0/(2n + 1) 3 . (2.1 o) 
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Comparing with the seventh column in table I, we 
see that (2.10) is in reasonable agreement with the 
numerical results provided 0 ~ 2.0. This is consis- 
tent with a theoretical estimate 0 ~< 2, which we 
shall derive in section 3. 

Before turning to the detailed derivations of  our 
central results, we pause to discuss some obvious 
points raised by this qualitative discussion. First, 
there is no reason a priori that n-bounce windows 
(n > 2), corresponding to initial speeds for which 
the "instant" of the nth KI~ collision coincides 
with the passage of  the shape oscillation through 
the proper phase, should not exist. Since this was 
not observed in the data summarized in table I, we 
shall not discuss here the (obvious but technically 
complicated) generalization of  our resonance ap- 
proach to this case [37]. Second, the version of  the 
resonance theory* sketched here implies the exis- 
tence of  an infinite sequence of  increasingly narrow 
windows as v--*vc from below. In fact, this version 
ignores entirely the effects of the continuum 
modes - "radiat ion" - in the expansion around the 
K and 1~. These modes are excited at some level 
both at the "instants" of  collision and as the 
translating and oscillating kinks move back a n d  

forth between collisions. Since this radiation dis- 
perses to infinity, for very long intercollision 
t imes - tha t  is, by (2.7), for the putative windows 
with very large n - the radiation would be expected 
to degrade the shape mode to the point that there 
is not enough energy available at the time of  the 
second impact to unbind the KI~ pair. Thus there 
should be an upper limit on the n observed in 
two-bounce windows, although we shall not esti- 
mate it here. 

That  the radiation, although small, can play an 
important role in the KI~ interaction is also shown 
by some fine structure effects that we have ob- 
served both in the outgoing kink speed and in the 

* A natural reaction to first seeing this table is to wonder 
whether the resonances continue indefinitely, clustering toward 
vc as n--,oo. In its most naive form, the theory we describe 
below would predict this, but as we discuss later there are a 
number of  effects not included in the naive theory that can 
cause the sequence to terminate. 

behavior of  ~b(0, t) versus time. These effects, 
which are discussed in detail in section 4, can only 
be explained by careful consideration of  the 
coupling to radiation. 

3.  Q u a n t i t a t i v e  t h e o r y  o f  the  " t w o  b o u n c e "  

r e s o n a n c e  w i n d o w s  

3.1. Time  be tween  the two k i n k - a n t i k i n k  in ter-  

act ions 

The solitary, "particle-like" nature of  the ~b 4 
kinks has led a number of  authors [25, 30, 32] to 
propose a phenomenological potential to describe 
nonrelativistic, elastic, KI~ interactions. This po- 
tential, V(xo),  which is a function of the 
kink-antikink separation, is obtained by substi- 
tuting the Ansatz function ~A 

CA = q~K(X -- X0) + ~bg,(x + x0) + 1 (3.1) 

into the energy integral (1.5). Thus the potential 
represents the energy of  a field configuration con- 
sisting, at least for large )Co, of a clearly defined, 
static, kink-antikink pair at separation 2x0. To 
describe motion in the system, it is natural (see also 
appendix B) to allow )Co in (3.1) to become time 
dependent and to insert this time-dependent An- 
satz into (1.5) to obtain an effective Hamiltonian 

for Xo(t). The result is 

H = M2Zo + I(xo)2~ + V(xo ) ,  (3.2) 

where M is the kink rest mass and the explicit 
forms of  I(xo)  and V(xo) [30, 32] are, for com- 
pleteness, given in appendix B. For  large positive 
x0, I ( x o ) ~ O t  and V(xo) takes the form, when the 
constant V (~ )  = 2M is subtracted, 

~'(Xo) = V(xo) - 2 M  ~ - 12M exp( -- 2x/~x0). 

(3.3) 

tSince l(xo), like V(xo), falls off exponentially, it might 
appear that we should include its effect in the asymptotic energy 
balance equation determining T(~). This effect is small, how- 
ever, since the leading coefficient of 2~ is the constant M, and 
thus we can ignore this inessential complication. 
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As might have been expected, this is a static 
Yukawa potential. Recalling that the KI~ sepa- 
ration is 2x0, we see that the range of  this potential 
is given by one over the "mass" of the travelling 
wave continuum, m = co c = x/2. 

To describe the motion of the bound KI~ pair 
between the two bounces, we shall assume, as a first 
approximation, that the energy expression in (3.2) 
is conserved and, since this system is weakly 
bound, that the total energy is -ME,  where E ~ 1. 
We shall use this to determine T(E), the time 
between bounces as a function of E. When this is 
done, we shall relate E to the initial kink and 
antikink velocities so that we will finally have T(v). 

Before presenting this determination, let us com- 
ment on several aspects of this effective Ham- 
iltonian approach. First, the decomposition (3.1) is 
simplistic at small x0, where the kink and antikink 
overlap and lose their identity. This is not a big 
problem for determining T(E) because for v near vc 
the KI~ configuration formed after the first impact 
is very weakly bound, so that the kink and antikink 
spend most of the time between their "collisions" 
at large x0, near the outside orbital turning points. 
This means that the small-x0 behavior of the 
potential does not contribute to the leading behav- 
ior of T(O and also that the term involving I(xo) 
can be neglected.* Second, when the shape modes 
are excited, one expects them to induce an addi- 
tional KK interaction with range determined by 
the shape eigenfunction (2.5). Even if the shape 
mode amplitudes are small, this induced inter- 
action might not be negligible, compared to the 
effects of V(x0), because the range of 6~b, which is 
x/~, is longer by a factor of two than the range of 
V(xo) (in terms of 2Xo), which is 1/x/~. Third, the 
nonlinear nature of the equation leads to coupling 
among all the modes- t ransla t ion,  shape, and 
radia t ion-which invalidates assumption of con- 
servative translational motion. However, for small 

* Since l(x0) , like V(xo) falls off exponentially, it might 
appear that  we should include its effect in the asymptotic energy 
balance equation determining T(,) .  This effect is small, how- 
ever, since the leading coefficient of  ~0 2 is the constant  M, and 
thus we can ignore this inessential complication. 

shape mode amplitudes and weak binding, this 
effect should be small. 

Let us now proceed to estimate the leading 
behavior of T(E), for small E, from eq. (3.2). Setting 
the total energy in (3.2) equally to 2 M -  Me and 
neglecting the (nonleading) term involving I(xo)* 
yields 

M.icg + V(xo) = 2M - Me. (3.4) 

Solving for the time between bounces in the usual 
way gives 

T(E) = 2 ~ dx 
,/ d - E - -  M - 1 V ( x o )  

(3.5) 

where the suppressed lower and upper limits on the 
integral correspond to the inner and outer turning 
points of the orbit. The outer turning point de- 
pends sensitively on e for E small, because IT(x0) 
goes to zero for large x0. In contrast the inner 
turning point is relatively insensitive to small E. 
Thus, for E ,~ 1, we may approximate (3.5) by 

( - l / 2 x / 2 ) l o g ( G 1 2 )  

f , (3.6) 
dxo 

T(t) ,~ T o + 2 / 1  ° 
e-2,/2x0 

x/ "- ¢ 
(X0)min 

where (x0),~o and To are E-independent constants. 
The integral in (3.6) is elementary, with the result 

T(t).~ T°+¢tan-~C2e-2"/~¢x°)=°E 

+ 0('°)" 

1 )1/2 

(3.7) 

We next need to relate the amount by which the 
kinks are bound, -ME,  to their common initial 
velocity, v, in the region in which v is slightly less 
than vc. We shall first present a heuristic argument 
suggesting the analytic form of the relation and 
then show that the resulting form for T(v) is 
remarkably consistent with our data. Since we can 
not rigorously derive the form of T(v), we shall 
refer to our theory as "semi-phenomenological". 
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In the initial kink-antikink collision, energy is 
lost from the kinetic energy of the kinks both to the 
shape mode oscillations and to radiation modes. 
Let use call the total energy in these modes f iE(v) .  

We shall assume that for v near v,, this energy and 
consequently the energy lost are smooth, slowly° 
varying functions of  the available kinetic energy 
(ocv2). For v < vc, the energy lost determines the 
binding energy according to 

velocity, v, for v > v~. For v close to vc, this curve 
is well described by the form 

v~ = ot(v z - v~) , (3.11) 

with ~ ~ 0.84, indicating that b / M  = 0.16. Using 
(3.10a) this means 

E ~ ~(v~-  v2), with ct = 0.84 (3.12) 

f E ( v ) -  M v  2 = M E ,  v < v¢, (3.8a) for v < vs and therefore, by (3.7) 

whereas for v > v¢, the energy lost determines the 
outgoing kink speed (vf) according to 

S E ( v ) -  M y  2 = - M v ~ ,  v > v¢. (3.8b) 

The assumption of smooth variation of SE implies 
a smooth continuation between the binding energy 
(for v < v~) and the outgoing kink speed for v > v¢. 
We shall use this later to check our heuristic 
results. Since E = 0 at v ----v~, 

6E(vc) = M v  2 (3.9a) 

and thus, for v near v~, we expect 

r E ( v )  = M v  2 + b ( v  2 - v 2) + - . ' .  (3.9b) 

We expect b > O, since for smaller v (and hence 
smaller available energy) we expect overall a 
smaller transfer of  energy. Substituting (3.9b) into 
(3.8a) yields 

E = (1 - b / M ) ( v  2 - v2), 

- -  v 2 ) ,  

forv <vc 

(3.10a) 

with ~t = 1 - b / M ,  whereas substituting into (3.8b) 
yields 

v ~ = ~ ( v 2 - v 2 ) ,  f o r v > v c .  (3.10b) 

As a first check, we can compare eq. (3.10b) to 
our numerical data. Fig. 3 shows the outgoing kink 
velocity (vf) as a function of the incoming kink 

2.4 
T ( v )  (3.13) 

v 2) - v 2 

As indicated in section 2, this agrees in shape with 
the results of  the numerical simulation shown in 
fig. 7, although the numerical data favors the 
proportionality constant 3.0. This 20% agreement 
is encouraging, for it indicates that we can under- 
stand semi-quantitatively the observed dependence 
of T on the initial velocity. Note that for the 
resonance theory we must use the actual  time 
between collisions, and hence we take the form of  
(3.13) with the empirical constant 3.0. This leads to 
the remarkable quantitative agreement of theory 
and experiment shown in table I. 

Before proceeding to our theory of 0, let us show 
how to use the notions introduced in this sub- 
section to account in a rough way for the size of 
the oscillations bounded by the spikes in the 
pictures of fig. 6. 

We shall try to estimate the amplitude of these 
oscillations by first estimating the amplitude of 
shape oscillations and then multiplying twice this 
amplitude (for the contributions of  both kink and 
antikink) by the normalized wavefunction of  (2.5), 
evaluated for x equal the maximum distance from 
kink to origin during the corresponding bound Kl~ 
orbit. This choice is motivated by recalling that, as 
we remarked previously, the kink and antikink 
spend most of  the time between collisions near this 
maximum separation. This maximum distance will 
be determined by the outer turning point of  (3.5), 
with E given by (3.12). 
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First, to estimate shape-mode amplitudes, we 
define the shape-mode amplitude S by writing the 
shape-oscillation as (Se ~'~' + S* e-~')6~bs . With 
this normalization, the energy in the kink's shape 
oscillation is 21SI2co2s and the total of  that in the 
shape oscillations of both kink and antikink is 
41S[209~, since all collisions studied numerically are 
symmetric under spatial reflection and hence give 
rise to an outgoing kink and antikink that vibrate 
as mirror images. Since, to a first approximation 
(see next subsection), most of the initial KI(  kinetic 
energy ( ~ Mv~ for v near vc) is transferred, on first 
impact, to shape oscillation, we may set 

41S12~ ~ M y  2 , (3.14) 

This gives IS] ~0.1.  The maximum value of the 
coordinate x0 for a bound KI(  orbit of binding 
energy ME satisfies, according to (3.2) and (3.3), 

exp( - 2x/~x0) = ~/12. (3.15) 

Thus, according to (2.5) the value of  6q5 s evaluated 
at this coordinate is approximately 

~bs(y ) ~ 2 TM e-XO/~ 

(@2)  I/4 ( 6 )  1/4 = 21/4 ~ (/2 2 -- U2) 1/4 . (3.16) 

To make the estimate, we use the result ~ ,~ 0.84 
and find that (3.16) is between about 0.3 (for 
v = 0.198) and about 0.1 (for v = 0.254). 

Thus the combined total of the two shape-mode 
tails at x = 0 is estimated roughly to be 

2 x 0.2 x 0.2 x cos(phase + ~ost) 
,~ (0.1) cos(O~st + phase),  (3.17) 

two KI~ reflections, as a function of the time 
between the bounces. We shall make the sim- 
plifying assumptions that no radiation is emitted in 
the process, and that the effect of  a Ki~ collision 
on the shape oscillations occurs completely and 
instantaneously, at the moment of  impact (to the 
extent that such a moment can be defined). The 
second assumption allows us to neglect the time- 
dependence of  the energy in shape oscillations 
between collisions, and the first assumption allows 
us to determine the window bounda r i e s - and  
therefore window w i d t h s - b y  setting the shape 
mode energy, after two bounces, equal to the initial 
KI( kinetic energy. This signifies that after the 
second bounce, the kink and antikink are just 
barely unbound. 

Since the shape mode amplitudes are small in 
this context, we shall also suppose in what follows 
that there is an approximately linear relation be- 
tween the amplitudes of internal vibration of the 
KI( leaving a collision and the amplitudes of 
internal vibration of the incoming kink and anti- 
kink. In particular, let S represent the complex 
amplitude of kink shape oscillation before a col- 
lision (assumed to take place at t = 0). Thus, as in 
the preceding subsection, before the collision the 
kink shape oscillation is (S e i'os' + S* e-~'os')bqhs . We 
stress again that it is not necessary to introduce a 
separate notation for shape oscillation of an anti- 
kink, since in the spatially symmetric collisions 
that we simulate numerically, kink and antikink 
vibrate as mirror images. Let S '  represent the 
complex shape mode amplitude after the collision. 
Then we suppose there are complex parameters a, 
~, and p such that 

S'  ~ aS + gtS* + p .  (3.18a) 

in all pictures, which is what one. observes. 

3.2. The energy in the shape modes and the width of  

the resonance windows 

We first derive in this subsection an approximate 
expression for the energy in shape oscillation after 

Observe that if the collision takes place at time T 
instead of  at time zero, (3.18a) is modified to read 

S'  "~ aS + ~S* e-2i~°sT nt- p e i,,~T. (3.18b) 

A priori, a, ~i, and p can depend on the kink 
velocity (or initial KI~ binding energy) preceding 
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the collision. However, inasmuch as the window 
phenomenon occurs in a small region of  v, in which 
the velocities and binding energies are both small, 
we shall, in what follows, neglect the dependence 
of  a, ~, and p on pre- (or post-) collision condi- 
tions. 

Since the initial conditions of  our simulated KI~ 
collisions never have any shape oscillation excited, 
our numerical results give as direct information 
about  p. In particular, energetics (i.e., the fact that 
shape-mode formation extinguishes kink and anti- 
kink translational motion at v = vc) implies that (as 
already argued in the preceding subsection) 

gv~ ,~ 4(o~[p [ 2 , (3.19) 

so that [p [ ~ 0.1. Also, the timing of  the crests and 
troughs in the pictures of  fig. 6 gives 

Arg p ~ - re/2. (3.20) 

The coefficients a and ~ cannot be determined 
from our data in a similarly direct way. We 
describe below an indirect way of  constraining 
these parameters. When this is done we will be able 
to compute the amplitude of  shape oscillation after 
two KI~ impacts by successively applying trans- 
formations (3.18a) and (3.18b), with Tequal  to the 
time between impacts. 

To obtain information about  a and ~, we exploit 
the time-reversal invariance of  the original equa- 
tion of  motion (1.4). Time reversal interchanges the 
amplitudes S and S'*. Thus, if (3.18a) is to be an 
acceptable condensation of  the time-symmetric 
(1.4), we should have, for all S, 

S *  = (S '* ) '  = a S ' *  + 6 S '  + p 

= ([a[ 2 + (~)2S* + (ati* + a ~ ) S  + ap*  

+ ( ~ +  1)p. (3.21) 

This represents three parametric constraints 

[a[ 2 + (~Y = 1,  

a(,~* + &) = 0,  

ap*  + (~ + 1)p = 0 .  

(3.22a) 

(3.22b) 

(3.22e) 

Eq. (3.22c) expresses a in terms of  p and 8. Eq. 
(3.22b) implies that t~ is pure imaginary. Eq. (3.22a) 
is redundant. Eq. (3.18a), simplified in accordance 
with (3.22), becomes 

S'  = - ~ P  (1 + i/~)S + i/~S* + p (3.23) p* 

where the real parameter p - - i 8 .  We defer dis- 
cussing how to estimate /~ until the end of  this 
analysis. 

Consider now the effect of  two KI~ reflections, 
one at time zero and the other at time T, on the 
kink and antikink shape modes, when the initial 
state has no shape oscillation at all. Since the initial 
amplitude S is zero, the amplitude after the first 
impact, according to (3.23), is p. The amplitude 
after the second impact, according to (3.23) 
[modified according to (3.18b)], is then 

S" = - /9 (1 + ifl) + ipp * e -2j°'~r + p e-~°"r (3.24) p* 

Thus the energy in shape oscillation after two 
impacts is 

41S,,]2to2 = 16~o~[p[ 2 cosZ cosT 
2 

x 1 - 2fl e -i~'~r/2 sin co~T 2. 
z 

(3.25) 

We have used eq. (3.20) in deriving (3.25). 
Eq. (3.25) implies that no energy is in the shape 

oscillations - i.e., the kink speed is unchanged after 
two col l is ions-for  ogsT = (2n + 1)rr, which is pre- 
cisely the condition (2.6) that characterizes the 
window centers (recall & = 3.3 ~ rr). 

To obtain the angular width, 0, of  the windows, 
one then solves the equation obtained from (3.25) 
by replacing ogT in the right-hand side by 
(2n + 1)p _+ 0/2, and replacing the left-hand side 
by M v  2 ~ M y  2 = 409~1p12; the result is 

1 = 4 sin2-04 1 + 2i/~ e-+i°/4 cos OI 2 . (3.26) 
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Expanding the r ight-hand side o f  (3.26) in powers 

o f  0 and retaining only the leading order,  one 

obtains 

0 ~ 2 /x f l  + 4//2 . (3.27) 

The desired estimate, 0 ~< 2, follows immedi- 

ately, and f rom the empirical fact that  0 appears  to 

saturate the bound,  one concludes that/3 ,~ 1. With 

/3 = 0, it is apparen t  that  (3.26) has 0 = 2g/3 ~ 2.1 

as its only solution between zero and g. Thus  the 

theory accounts  for the observed result that  there 

is only one smooth  " t wo-bounc e "  window for each 

integer n. 

Finally, we refer the reader to fig. 8 for a more  

direct check o f  the crucial assumpt ion of  nearly 

conservative transfer o f  energy between the shape 

and translational  modes.  The horizontal  axis in 

this figure represents incoming kink speed; the 

vertical axis represents the ratio o f  ou tgoing  to 

incoming speeds, for those initial speeds that  do 

not  lead to the KI~ capture.  The approximat ion  o f  

conservative transfer relied on in this subsection 

implies that  each peak to the left o f  v = vc has a 

max imum value close to unity, as can be seen to be 

the case. 

7 

0 . 1 5  

J / 

o.2o o.as o~30 o~3s o.4o 

INITIRL KINK VELOCITY 

Fig. 8. The ratio of the (time-averaged- see section 4) kink 
speed after a KI~ collision to the initial speed, as a function of 
the initial velocity. Note the relatively elastic nature of the 
reflections below v c. 

4. Fine structure in ~b(O, t) and vf 

4.1. B a c k g r o u n d  

In the preceding sections we have focussed pri- 

marily on the resonance windows and in part icular  

on the critical role o f  the shape mode  oscillations 

in determining these resonances. With  few excep- 

tions, we have neglected the role o f  the " rad ia t ion"  

emitted by the collisions, and we have treated the 

final kink velocity, vf, as if it were a constant  in 

time. In this section, we will correct  these omissions 

by discussing in detail the role o f  radiat ion in K ~  

collisions and by describing some interesting "fine 

s t ructure"  in the time dependence o f  the final 

velocity. We shall see that  these effects are related. 

With regard to the resonance phenomenon ,  radi- 

at ion plays the impor tan t  role o f  an energy "s ink" ,  

essentially removing energy from the K K  trans- 

lation and shape modes  in a manner  that  precludes 

the retransfer to the bound  KI~ pair. As we have 

argued previously, this provides a natural  limit to 

the total number  o f  observable windows of  a given 

bounce number.  In fig. 9 we show how, at a time 

T = 95 units after the first KI~ collision, the initial 

K K  kinetic energy is distributed a m o n g  the KI~ 

kinetic energy, shape mode  energy, and radiation.* 

We see that, except for the highest velocities, the 

shape mode  does absorb  most  o f  the lost kinetic 

energy. Nonetheless,  the radiat ion modes  clearly 

are excited in the collisions. 
Before discussing this radiat ion in detail, let us 

first describe the (related) "fine s t ructure"  in the 

final kink velocity, yr. This "fine s tructure" is 

* Since the different modes among which the energy is 
distributed represent linear modes around a single kink, there 
is clearly some ambiguity in extracting the energy sharing from 
the numerical solution to the full nonlinear equation. As we are 
only interested in the rough partitioning of energy, it is sufficient 
for us to adopt the following prescription: (1) the kinetic energy 
of the K and I( is Mvf 2, where vf is the average final velocity; 
(2) the energy in the region beyond 5 units from the kink is 
called radiation; and (3) the remaining energy is taken to be in 
the shape mode. This slightly overestimates the energy in the 
shape mode because it includes a small amount of decay 
radiation in the immediate vicinity of the wobbling kinks. 
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Fig. 9. The partitioning of the initial KI~ kinetic energy into 
final kinetic energy, shape mode energy, and radiation energy, 
plotted as a function of  the initial KK speed for v > v¢. 

shown in fig. 10, which plots v~t) versus t for six 
values of  the initial velocity greater than v¢. Note 
that vr does not quickly approach an asymptotic 

value but instead oscillates rapidly about a mean. 
These oscillations, which range from roughly 15~  
of  the mean for the lowest initial velocity shown to 
roughly 5~o for the highest, are the "fine struc- 
ture". In our previous discussion and figures, 
where a single asymptotic kink velocity was men- 
tioned and plotted, we used the mean value of  vf as 
determined by averaging over a time Tar = 20.0, 
which was chosen to be longer than any oscillation 
period observed in the numerical data. Although 
one might initially question this averaging when 
the velocity undergoes such sizable and rapid 
oscillations, we feel that the explanation presented 
in this section answers any questions on this point• 
A relevant remark on this matter is that the "fine 
structure" is not limited to the behavior of  v~t) but 
is also observed in ~b (x=0 ,  t). Fig. 11 shows 
tk(x = 0, t) versus t for six values of  initial velocity. 
The rapid small oscillations are similar (but not 
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identical to) those seen in vf(t), as illustrated in fig. 
10. To simplify the interpretation of  figs. 10 and 11, 
we have calculated the power spectra of  the fast 
Fourier transforms of these data in figs. 12 and 14, 
respectively. Fig. 13 shows parts of  fig. 12 but 
with an expanded horizontal scale. Note that the 
horizontal scale represents periods of  oscillation 
rather than angular frequency, which would be 
21r/(period). From these power spectra it is clear 
that the fluctuations in figs. 10 and 11 are domi- 
nated by a few discrete frequency components. In 
the remainder of this section we shall argue that 
these frequencies can be understood qualitatively 
in terms of  radiation and its coupling to other 
modes. 

Both from the energy partition graph of  fig. 9 
and from the success of our arguments in the 
preceding sections, we expect that the radiation 
amplitudes are small. Thus, at least in the regions 

away from the K and I~, we expect that to good 
approximation they can be treated by simple linear 
superposition. Near the kinks - and thus for quan- 
tities like vr(t) which are related to the kink 
m o t i o n - t h e  effects of radiation may be compli- 
cated by small but nonzero coupling to the kink 
shape oscillation. These expectations are consistent 
with figs. 12-14, which show that ~b(x = 0, t) con- 
tains just two dominant frequencies for all incom- 
ing kink speeds, whereas the spectra of v~(t) show 
considerably more structure. 

4.2. Quantitative results and f ine structures in 
(~(x = O, t) 

To clarify the role of  the radiation in both these 
structures, it is important to distinguish two dis- 
tinct components. The first c o m p o n e n t -  which we 
shall henceforth call "prompt"  radiation - is gener- 
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ated at the "instants" of  KI~ impact• The second 
componen t -wh ich  we shall call "decay radi- 
a t i o n " -  arises from the decay of  the shape oscil- 
lations of  the kink and antikink. Specifically, since 
a "wobbling", translating kink is no t  an exact 
solution to the full non l inear  equations*, the shape 
mode will decay in second order in the expansion 
of  eq. (1.4) around the K or ~ .  

To model the effects of the prompt radiation 
(away from the kink and antikink centers), we 
consider the solution P to the l inearized- that is, 
small ampl i tude-vers ion of eq. (1.4) with a 6 

* Note that a purely translating kink (with the appropriate 
Lorentz contract ion)/s  an exact solution of  the full nonlinear 
equation. This emphasizes the distinction between a "true" 
collective coordinate (corresponding to an invariance of  the 
solution) and in "approximate" collective coordinate, as dis- 
cussed in appendix B. 

function source, 

O~P - t32xP + 2 P  = c 6 ( x ) f ( t ) ,  (4•1) 

with P ( x ,  t) = 0 for t < 0. We shall not attempt to 
determine the proportionality constant, ¢. Eq. (4.1) 
represents the production of  freely propagating 
relativistic waves of mass x/~ (the continuum 
threshold for small oscillations about K or I~) by 
an instantaneous source• The instantaneous source 
idealizes the KI~ impact; t here is time from 
impact. 

The solution to (4.1) is 

t 
P ( x ,  t )  = c Jd o d k  {ei('°t+kx)/(o92 - k 2 - 2)} 

= cO(t  - I x l ) J o ( x / 2 ( t  2 -  x:) ) ,  (4.2) 
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where the causal boundary condition on P has 
determined how one integrates around the poles. J0 
is the usual Bessel furmtion, and 0 is the Heaviside 
step function• For x/2(t 2 -- x 2) >~ 1, we may use an 
asymptotic form for J0, replacing (4.2) by 

cos~/2(t 2 - x 2) 
P(x, t) cO(, -Ixl) • (4.3) 

This result enables us to understand half of  the 
dominant structure in fig. 14. According to (4.3), 
P(x  = 0) is approximately proportional to 
t-1/2 costx//~ for t >> 0. From this we conclude that 
the Fourier spectra in fig. 14 should all display a 
peak at the fixed period 2rc/W/2,~ 4.4, which is 
indeed the case. We shall indicate some signatures 
of  the 1/v/t envelope at the end of  this section• 

For future reference, we note here that in the 
Lorentz frame of  and near a kink moving out from 

the collision at velocity v 0 > O - t h a t  is, for 
Ix - rot[ ,~ tVo* - t h e  radiation from the solution in 
(4.3) has the approximate form 

P(x, t) ~ c(1 - VZo)-ll4t-1/2 

XVox/~ 
(4.4) 

Apart from the 1/x//t envelope, this is simply a 
plane wave of  frequency x /~ /x /1-v02,  and dis- 
persion relation 09 2 - k 2 = 2 [as required by (4.1)]. 
The presence of  the kink locally deforms such 
plane waves (see, for example, eq. (2.9) of  [8]), but 

* Here and elsewhere in this section we ignore constants in 
the equation (x 0 = rot + Co) describing the outgoing kink aver- 
age position. The value of c o is important mainly for the phases 
of  the oscillations, whereas our principal concern here is with 
the frequencies. 
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Fig. 14. The power spectrum of ~b(x = 0, t) versus oscillation period (= 2n/angular frequency). This figure was generated by a fast 
Fourier transform of the numerical data in fig. 11. 

we shall not need to take this deformation into 
account below. 

The field perturbation due to the "decay" radi- 
ation from the kink (antikink) shape mode is 
presumably dominated (in the K(lZ) rest frame) by 
the second order term in an expansion about ~bK(~), 
whose first order term is the shape oscillation itself. 
The truncation of eq. (1.4) that describes how a 
second-order disturbance (~b2) is determined by a 
first order one (~kl) is 

(O, 2 - 0 2 + 3 ~ 2 ~ ) -  1)~b2 = -3~bK(g)~ • (4.5) 

It follows from (4.5) that if q~t is shape oscillation 
at co =~os= x/~/x/~, then ~b2 a priori contains 
components of angular frequencies zero and 
209s = x/~. However, since the continuum for 

linear-order propagation is 09 = x/~, the response 
at zero frequency does not extend to large dis- 
tances, and one is left with only 09 = x/~ available 
for long-range effects. 

Thus we model radiation due to kink (antikink) 
shape mode decay in the kink (antikink) rest frame, 
by a field perturbation proportional (far from the 
source) to cos(x//-6t - 2Ix l) (up to phase), cut off at 
Ixl This represents a plane wave of fre- 
quency V/-6, propagating (with dispersion law 
t o : - k 2 = 2 )  away from the kink (antikink)* 
source at the origin of the coordinate system. The 

* One also expects a slow exponential damping factor. How-  
ever, the decay time appears to be too long for such a 
modulation to be conspicuous in our data, and so we choose 
not to include it in our Ansatz. 
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wavefront moving outward at the group speed 
v / ~  IS required since the shape mode begins 

"broadcast ing" only at t ~ 0 when it is formed in 
the K I (  collision. As in the case of  p rompt  radi- 
ation, we shall not need detailed information about  

the way that the kink (antikink) deforms the 
waveform of the radiation emitted in the course of  
antikink (kink) shape-mode decay. 

In the " laboratory  f rame" - that is, the frame of  

our computer  simulation - the radiation emitted by 
the shape mode of  the kink (antikink) that leaves 

the collision region at (average) velocity +v0, as 
seen to the left (right) of  the kink (antikink), is 
described by a field perturbation proport ional  to 

- 
(4.6) 

up to phase. The fronts of  these wavetrains move 
at speed 

( ~  - v0)/(1 - V 0 . v / ~ ) .  (4.7) 

These are consequences of  Lorentz invariance. 
These results enable us to understand the re- 

maining half of  the dominant  structure in fig. 14. 
It follows from (4.6) that decay radiation from 
both kink and antikink contributes signals of  the 
same angular frequency (w/6 - 2v0)/(1-  V2) 1/2 to 

qS(X = 0). The third column of  table II displays the 

period associated with this angular frequency for 

Table II 
A tabulation of the expected frequencies in ~b(x = 0, t) for 
different initial velocities (v) and observed averaged final veloc- 
ity (v0). The third column represents the period of the shape 
mode "decay radiation", whereas that in the fourth column is 
the period corresponding to the beating of this frequency with 
the "prompt" radiation 

v v 0 2n 1 ~ -  v 02/(~6 - 2v0) -= 2rt f~ ' 2n(f~ - .~f2)- ' 

0.3 0.14 2.9 8.1 
0.4 0.28 3.2 11.3 
0.5 0.39 3.4 15.8 
0.6 0.50 3.7 23.6 
0.7 0.60 4.0 42.5 
0.8 0.71 4.3 136.6 

each incoming speed represented in the sequence of  
pictures in fig. 14. The average outgoing speeds v0 
in the second column are taken from the pictures 
in fig. 10. These periods compare well with the 
periods corresponding to the left of  the two peaks 

in the spectra of  fig. 14. For  an incoming speed 
v = 0.8 this peak is too close to that corresponding 
to p rompt  radiation (2rGV/2) to be distinguished 

clearly in the Fourier spectrum. We have, accord- 
ingly, listed in the last column of  table II the period 
of  beating between these two theoretical fre- 
quencies, for direct comparison with the time- 
domain data in fig. 10. 

Note that according to (4.7), the wavefronts of  
decay radiation cannot reach the origin for 
v0 > x / ~  ~ 0.82, and so decay radiation can make 
no contribution to ~b (x = 0) in this case. None of  
the speeds in the second column of table II exceed 
this threshold. Note,  however, that the critical 
outgoing speed beyond which the wavefront of  
kink (antikink) decay radiation cannot reach the 
receding an t i k ink  ( k i n k ) i s  ½ ( V / g - v / 2 ) ~ 0 . 5 2 ,  
which is the physical solution of the equation 

. o  = (4.8) 

Beyond this threshold, decay radiation should 
make no contribution to the fine structure in the 
time-dependence of kink or antikink speed. Two 

outgoing speeds in table II  do pass this point, and 
a third comes close. There are clear signatures for 
this in the fine structure in vr(t), as we shall point 
out shortly. 

4.3. Fine s t ruc ture  in vf(t)  

The computer  program that generated the veloc- 
ity data shown in fig. 10 defines "kink posit ion" as 
the largest positive value of x at which the field 
crosses zero. Writing 

 49> 
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for the field configuration near the kink in its 
(average) rest frame, we see that the zero crossing 
is 

x o ~ - - x / / 2 6 4 ) ( x ,  t)l~= 0 (4.10) 

to first order in 64). An observer in the laboratory 
frame sees this as* 

X o ~  rot -- x / / 2x /1  --  v~64) (x ,  t x / 1  -- v02)l,=0 . (4.11) 

(4) a remainder, r, representing the (presumably) 
small effects of  the nonlinear coupling of  d, p, and 
S. 

Recalling the discussion of  shape mode decay in 
the preceding subsection, we suppose that the 
dominant contribution of r comes from the second 
order term in an expansion of 4) whose first order 
term is d + p  + s. Thus, a priori, according to 
(4.11), we expect the dominant terms in ~0 to have 
angular frequencies 

The rest frame of the kink is useful for our 
purposes because, in view of the time- 
independence of  the linear-order equation (2.3), it 
permits a convenient frequency analysis of  per- 
turbations like 64). In the kink rest frame, the field 
configuration (4.4) of nearby prompt radiation 
becomes 

(constant) x (t  + VoX) -1/2 cos tx /~ ,  (4.12) 

and the field configuration (4.6) of nearby radi- 
ation from antikink shape-mode decay becomes 

(constant) x cos{(1 - Uo2)-l[t(%//6(l + v 2) - 4Vo) 

- x ( 2 ( 1  + v~) - 2x/~vo)l}. (4.13) 

These are consequences of the Lorentz invariance 
of eq. (1.4). 

In the present instance, 64) is a sum of four 
terms, representing four distinct effects: (1) a 
shape-mode solution, s, to the linearized equation 
(2.4); (2) a continuum eigenmode, d, of  (2.4) ap- 
proaching the decay radiation form (4.13) at large 
(~> 1/x/~ ) distances from the kink center; (3) an- 
other continuum eigenmode, p, of (2.4) ap- 
proaching the prompt radiation form (4,12)I"; and 

* Here and elsewhere in this section we ignore constants in 
the equation (x 0 = rot + co) describing the outgoing kink aver- 
age position. The value of  c o is important  mainly for the phases 
of  the oscillations, whereas our principal concern here is with 
the frequencies. 

t W e  shall regard the envelope (t +VoX) -1/2 as a slow ad- 
iabatic effect that can be treated as a constant  when analyzing 
the rapid oscillations of  the kink. 

f / a -  [x/~(l + v 2) - 4V](1 - Uo2) -1/2 , 

12p - x/~(1 - v~) '/2, O~ =- x / ~ ( l  - v~) '/2 
(4.14) 

(i.e., x/1 - v02 times the frequencies of d, p, and s, 
respectively), and also all sums and differences of  
the frequencies in (4.14), taken two at a time. 

However, not all the frequencies that are a priori 
available will correspond to significant effects in 
64). Components with frequency f~s or fl, __+ fls can 
play no role. They arise from the coupling of  the 
spatially antisymmetric shape mode to the spatially 
antisymmetric kink; and since the field equation 
(1.4) is invariant under x * - ~ - x ,  this can only 
produce spatially antisymmetric contributions to 
64). In particular, such terms in 64) must vanish 
identically at x = 0. 

Components with frequencies f~d + lid, tip + f~p, 
and l id+ f~p are also expected to be relatively 
unimportant. They correspond to terms in 64) that 
are tp(d2), (9(p2), and t~(pd), respectively. In view of 
the small amount of energy in radiation (as com- 
pared with shape modes) such contributions 
should be insignificant next to terms in 64) that 
involve only one power of d and/or p. 

Thus we conclude from our radiation model that 
components with the following angular frequencies 
should dominate the Fourier spectra of ~0, shown 
in figs. 12 and 13: 

fla, Op, ~a-k~s,  f~p-l-f~s. (4.15) 

These correspond to terms in 64) that are d~(d), 
(.9(p), tg(ds), and ~(ps), respectively. 
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The periods associated with the angular fre- 
quencies listed in (4.15) are catalogued in table III, 
for all the values of v corresponding to the data 
shown in figs. 12 and 13. These periods compare 
well with the periods corresponding to the peaks in 
the spectra of figs. 12 and 13. 

For v = 0.5 and 0.6 the periods involving f~p are 
too close to those involving f~a to be distinguished 
clearly in the Fourier spectra. As in table II, we 
have listed in the last column of table III the period 
of beating between these two sets of theoretical 
frequencies. The patterns visible in fig. 10 are 
consistent with the figures listed in this column. 

Note that for v = 0.7 and 0.8, table III contains 
no entries in columns listing periods involving f~d. 
As indicated at the end of the preceding subsection, 
for these speeds antikink decay radiation cannot 
contribute to kink velocity because the antikink 
decay radiation wavefront travels more slowly 
than the outgoing kink. In particular there should 
be no beats visible in the pictures corresponding to 
these speeds in fig. 10, and this is indeed the case. 

We are now in a position to comment on 
experimental signatures of the 1/x/~ modulation in 
p. It follows from the foregoing discussion that for 
v --0.7 and 0.8 all the dominant contributions to 
~0 come from contributions to 6q~ that are of first 
order in p. Thus we expect the oscillations in the 
last two pictures in fig. 10 to be under an envelope 
approximately proportional to 1/x/~, which is in- 
deed so. 

The 1/x/~ envelope is also apparent in fig. 15, 
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which shows oscillations in outgoing kink speed 
when the incoming speed is equal to 0.2, which is 
the midpoint of the largest two-bounce window. 
To understand this figure, recall from section 3 
that for such a value of v, the energy in shape 
oscillation- and therefore also in "decay" 
radia t ion- is  minimal. Therefore, of the six fre- 
quencies listed in (4.15), only that corresponding to 
the "prompt" radiation-f~p is expected to appear 
in the vibrations shown in fig. 15. Since the term 
is 3~b with frequency f~p is p itself, the l/x/~ 
modulation must appear. Note that this argument 
is somewhat oversimplified, since for v = 0 .2-  as 
for all incoming speeds below vc for which the K 

Table  I I I  
A t abu l a t i on  of  the different per iods  expected to occur  in vr(t) for different ini t ial  velocit ies (v). 

The  average  final veloci ty  is v 0 

/3 0 

2n 2n 2n 2rt 2n 2n 2rt 

0.3 0.14 2.0 2.4 3.2 4.5 8.4 33.4 11.2 
0.4 0.28 2.3 2.5 4.0 4.6 15.4 34.5 27.7 
0.5 0.39 2.5 2.6 4.6 4.8 25.9 36.1 91.1 
0.6 0.50 2.7 2.7 5.1 5.1 37.6 38.1 3141.6 
0.7 0.60 - -  3.0 - -  5.6 - -  41.3 - -  
0.8 0.71 3.4 - -  6.3 - -  47.2 - -  
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and 1~ escape to infinity- there are two KI~ "im- 
pacts" and hence two sources (differing in the time 
of their emission) of "prompt" radiation. None- 
theless, both of these should, for t large compared 
to both collision times, fall off like 1/x/~ and hence 
the envelope seen in fig. 15 is still anticipated by 
our arguments. 

5. Concluding remarks 

When the details are stripped away, the central 
idea underlying our mechanism for the structure in 
kink/antikink collisions is a resonant energy ex- 
change between the translat ional-"center  of 
m a s s " - m o t i o n  of  the two kinks and an isolated 
(in frequency) shape mode oscillation internal to 
each kink. Clearly this mechanism is not restricted 
to the ~b 4 theory, and thus from a mathematical 
standpoint, the phenomenon of parametric win- 
dows of escape that alternate with regions of 
capture should not be regarded as exceptional. 
Indeed, this phenomenon has been observed pre- 
viously [38] in what initially seems an entirely 
different context: namely, in time-dependent 
Hartree--Fock (TDHF) calculations of nuclear col- 
lisions in a (quasi)-one-dimensional geometry. 
From a mathematical perspective, the TDHF- 
equations can be viewed as a set of coupled, 
nonintegrable nonlinear Schr6dinger equations 
[2, 38], and it is thus not terribly surprising that 
they could illustrate the resonance phenomena. 
Interestingly, in TDHF the individual "solitary 
waves" -which  are just the individual nucle i -do  
have (at least) two isolated, internal shape mode 
oscillations [38]. As a function of relative velocity, 
the collisions of these "nuclei" show two clear 
escape ("scattering") windows below the first cap- 
ture ("fusion") threshold. It is possible that more 
extensive numerical study would reveal further 
windows, but it is also possible that the existence 
of two competing internal modes destroys the fine 
details of the resonance mechanism. 

Very recently, a numerical study [39] of a para- 
metrically modified sine-Gordon-like model [10], 

in which the familiar potential V(u) = (1 - cos u) 
is replaced by 

V(u) = (1 - r) 2 (1 - cos u) 
(1 + r 2 + 2r cos u ) '  (5.1) 

has revealed similar window structure. For values 
of r such that there exists one isolated internal 
shape mode (0 > r >~ -0.2) ,  the two-bounce win- 
dow theory provides excellent agreement with the 
data. For values of r such that there are many 
internal shape modes, some windows remain but 
the fine detail of the two-bounce predictions is 
washed out. This is qualitatively consistent with 
the TDHF results [38]. 

A crucial question requiring further in- 
vestigation is whether the requirement of an inter- 
nal oscillation, localized about the solitary wave, is 
absolutely essential to the resonance phenomenon. 
Intuitively, one might initially expect that a "wave 
packet" of continuum modes, centered about some 
specific frequency, CO~a k, could be set up by the 
initial collision and later resonantly "return" its 
energy to the translation mode. For kink inter- 
actions in more general models -  in particular, for 
collisions in which the kink and antikink never 
clearly separate as they do between the two 
bounces in ~b4-we certainly can not exclude this 
possibility. Nonetheless, the observations that (1) 
continuum modes disperse, rather than remaining 
localized with the kinks and (2) the existence of (a 
continuum of) other modes near copcak should lead 
to a "washing out" of detailed resonance structure 
suggest that this possibility is unlikely. Inter- 
estingly, results [39] on the model described by eq. 
(5.1) suggest that, for those values of r for which 
there are no kink shape modes (r > 0), there is also 
no resonance structure in KI~ collisions. To answer 
this question properly will require making a rig- 
orous distinction, at least in perturbation theory, 
between the localized and continuum modes 
around a single kink [41]. 

Let us now turn to the potential physical impli- 
cations of  our analysis. Quite generally, the phe- 
nomenon of resonant capture/escape alternation 
should be observable in interactions of many types 
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of  extended objects (not necessarily restricted to 
one dimension) that support isolated modes of  
internal vibration that do not damp out too 
rapidly*. At a more specific level, one can look for 
direct applications of  the one dimensional ~b a the- 
ory in quasi-one-dimensional solid state systems 
[6-20]. The possibility that these resonance effects 
might arise in the equilibrium thermodynamics of 
these systems [11, 12, 16, 17] as, say, clear 
modifications of  independent kink motion, seems 
remote, for the velocity range spanned by the 
resonance is very small, and the bulk behavior of  
these materials involves many kinks and antikinks, 
with the shape modes of  each excited by differing 
amounts. However, the more general effect that ~b 4 
kinks capture at low relative velocity and reflect at 
high may be of  consequence to some thermo- 
dynamic quantities. 

In the time-dependent dynamics [7, 8, 10-17] of 
these systems, however, the effects of  this reso- 
nance structure may prove more interesting. It may 
effect, for example, cluster formation [13, 14] and 
consequently the behavior of dynamic correlation 
functions. Further, if one considers the mechanism 
underlying the resonances - tha t  is, the exchange 
of  energy between translation and shape 
osc i l la t ion-a  number of  questions for further 
study arise. If, for example, kink-antikink bound 
states are responsible for characteristic enhance- 
ments away from zero frequency in certain dy- 
namic correlation functions, it is possible that this 
exchange could lead to broadening of  these en- 
hancements because it makes the K K  binding 
ene rgy-  and therefore the bound orbital 
per iod- less  well-defined. Of  course, for closely- 
bound I~K pairs, it becomes hard to make sense 
out of  the notion of  well-defined shape modes for 
the individual kinks. Indeed, this is precisely the 
reason given in section 2 for the absence of  the 

* Even in macroscopic bodies one can imagine such effects. 
The problem is to identify objects with a small number of 
isolated internal modes which are not strongly damped. For 
most potential examples- such as close encounters of stars 
whose seismic vibrations can be excited by tidal forces-there 
are either too many modes or too much damping for the 
resonance phenomenon to be expected. 

windows corresponding to the lowest integers 
(n = 0, 1, 2). Nonetheless, this application seems to 
merit further study. 

Finally, an interesting potential application of 
the shape mode-translation coupling has been sug- 
gested [19,42] in the context of a phenom- 
enological (~4 model of polyacetylene [(CH)x] 
[18, 19]. The hope is to excite the shape modes of 
charged kinks in (CH) x by illumination with light 
of the appropriate frequency. If the shape mode- 
translation coupling is strong enough, this could 
result in an increase in the effective soliton tem- 
perature sufficient to decrease perceptibly the elec- 
trical conductivity. In this context, it is important 
to note that this shape mode is apparently not an 
artifact of the 4 4 model, as calculations [43] in 
more microscopic models of  (CH)x reveal the same 
sort of  shape mode. 
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Appendix A 

The numerical method 

The numerical scheme used to solve eq. (1.4) was 
a simple finite difference technique. The field vari- 



D.K. Campbell et aL/Resonance structure in kink-antikink interactions in dp 4 theory 25 

able $(x,  t) is discretized in space and time and is 
represented by q~7 where i is the spatial index and 
n is the temporal index. The numerical step sizes 
are denoted by Ax and At. Then to second order 

eq. (1.4) becomes 

At  2 A x  2 c~ 7 

+ (q~)3 = 0.  (A.1) 

This is easily solved for ~b7 +1 in terms of  previously 

calculated quantities. 
This method is stable for At < Ax (Courant 

condition). We found that the results converged 
for step sizes ,~ 0.01 and for most of  the numerical 
work the step sizes were Ax =0.01,  At = 0.009. 
Further discussions of  numerical accuracy can be 

found in ref. 28. 
The starting function needed for this work is a 

widely separated kink and antikink moving to- 
wards each other with velocity v. This supplied 
~b(x, t = 0) and ~b(x, t = At), i.e., the first two rows 
needed for eq. (A.1). The precise definition of  the 
starting function is 

~b0(x, t) = tanh , ~  (x + vt - Xo) 

- tanh - ~  (x - vt + Xo) + 1, 
~ t  

- 1 / , / 1  - (A.2) 

For this work the initial distance from the origin 
(x0) was set at 7.0. Discussions of  variations in x0 
can be found in ref. 28. 

One difficulty with solving the ~b 4 equation nu- 
merically is that energy given off during the KI~ 
interaction will propagate to the edge of  the nu- 
merical grid, be reflected and eventually reach the 
center again. Given the delicate interplay between 
shape mode oscillations and translational motion, 
even small amounts of  reflected energy could alter 
the results. Some thought was given to schemes for 
damping the oscillations at the grid boundaries 

thus eliminating reflections. Such schemes, how- 
ever, seemed to be only partially effective and were 
discarded. The method used in this work to elimi- 
nate reflections was simply to make the grid large 
enough so that during the times of  interest 
reflections could not get back to the center. The 
price for this was a large increase in computational 
time and memory. (A factor of  2 can be gained by 
shrinking the grid with the light cone as time 

advances.) 
Since table I is the main numerical result in this 

work, the numerics leading to its generation should 
be discussed in more detail. As indicated above, the 
step sizes used were Ax = 0.01 and At = 0.009 with 
an initial kink distance from the center of  x0 = 7. 
The runs were made for a time T = 300 after the 
first KI(  collision. This is a critical parameter since 
for some initial velocities a KIZ capture can be 
mistaken for a bounce followed by escape if T is 
too short. A larger T would have been desirable 
but because of the boundary conditions the com- 
putational time and memory requirements go as 
T 2, thus making larger times with the above Ax 
and At impractical. Great  care was taken to make 
certain that no reflection windows were missed in 
the velocity range studied (v < 0.2555). For  low v 
where the windows are fairly large Av = 0.001 was 
used to scan for the windows while Av = 0.0001 
was used to determine more precisely the window 
boundaries. At higher v the scan was made with 
Av = 0.0001. In total the calculations for table I 
used about 20 hours of  Cray-1 CPU time. The 
critical velocity vc ( = 0.2598) was determined with 
these same numerical parameters and Av = 0.0001. 

The velocity region 0.2555 < v < vc has been 
largely ignored in this work. In order to resolve the 
very narrow windows in this region velocity scans 
with Av = 10 -5 and smaller would have to be used. 
While possible this would, however, consume large 
quantities of  computer time. It would be inter- 
esting to determine if the windows continue 
indefinitely or stop at some well-defined point that 
is not an artifact of  the numerical scheme and/or  
computer time limitations. 
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Appendix B 

The kink/anti-kink potential and collective coordinates 

In section 3 we introduced an effective potential, V(xo), for the interaction between kink and antikink 
as a function of  their separation, 2x0. We also described the relative motion of  the bound KI~ pair by 
considering x0 as a function of  time and integrating explicitly the large separation form of the equations 
of  motion for x0. The fundamental approximation involved in this calculation is the replacement of  the 
(infinitely) many degrees of  freedom of a kink in the continuum field theory by a single "collective 
coordinate," x0, which describes the gross features of the kink motion. In this appendix we discuss first 
the background technical details for the calculations of  section 3 and then the more general problems 
involved in using collective coordinates to describe kink motions. 

Following previous calculations [25, 30, 32] we define the KI~ potential as the total energy of a static field 
configuration of  the form in (3.1). Explicitly, we shall consider the ,4nsatz function 

{#A(X; X0, Y0)--F 1 - tanh YO (X + X0) + tanh Yo (X--Xo)], 
L ,/2 _1 

(B.1) 

where for purposes of  our later discussion we have slightly generalized the form in (3.1) to allow for a change 
of  scale (Y0) for the kink and antikink. Only the special case Y0 = 1 is of  direct relevance to section 3. 

The energy in this static field configurat ion- which, of  course, is not a solution to the full field equation 
(1.4) except for Y0 = 1 and in the limit x 0 - - , ~ -  can be evaluated as a function of  x0 and Y0 by performing 
the integration indicated in (1.5). 

One finds, for x 0 and Y0 considered as time-independent parameters, 

f ] V(xo, Yo)- dx +~(dPZA - I )  2 ~ Vl(Xo, Yo) Dr V2(xo, Yo), (B.2) 

with 

Vl(X°'Y°)=- f dx I (O~pA~2 -2 \ ~ X  J 

y2 [ "  I- 4 Yo Xo)+sech 4 ~ ( x  = ~- /c tx/sech ---m (x + - xo) 
°,J I x/2 ,,/2 

Y0 (x + x0) seth 2 Y0 x0)] - soch   
J 

(B.3a) 

and 

V (xo, Yo)- f dx l) 
tanhx/~yoXo 

.t yo (x - Xo) - ~ _ d x  sechZ ~2  (x + x°) sech2- ~ 

{ tanhx/~Y°X° Xo)sech2Y-~°~(x Xo)} x 1 sech 2 ~ ( x +  _ 2. 
2 sech,/ yo o ,/2 ,/2 

(B.3b) 
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In deriving (B.3b) we have used the identity 

Yo (x + Xo) - tanh Yo (x - Xo)] sechw/2yoX o t a n h ~  

Yo (x + Xo) sech Yo (x - xo). = tanhV/2yoxosech, ~ (B.4) 

The integrals in (B.3) can be expressed as the k = 0 limit of  Fourier transforms which can be evaluated 
by contour integration. We skip the details and simply quote the results that 

and 

Vl(xo, Yo)=/~yo[~ 2 sech2~/2y°x° ~- ~- -1 (x /2y°x°-  tanh~/2yox0)J 

4 
V2(xo, Yo) = -~o Ltanh~yoXo (x/~y°x° - tanhx/~Y°X°) 

4 
tanh2x/~yoX ° {(3 - tanh2x/~yoXo)x/~yoXo- 3 tanhv/2yoXo} 

2 4 tanh3 //-~yox ° _ 5 tanh /-~yoXo}] + tanh3w/~yoX ° {(5 - 3 tanh2v/-2yoXo)w/2yoXo + ~ 

(B.5a) 

(B.5b) 

These results are in agreement with the previous calculations in the literature [30, 32]. From (B.3) and 
(B.4) one can evaluate the asymptotic form of V(xo) for x o ~ .  For arbitrary Yo, one finds 

V(xo, Yo)x~o W/~(~(yo+ 1 ) +  8 e_2,/~yo~oI(yo_ 2 ) _  ~/'2yoXo(Yo-1)1 ) , (B.6a) 

so that for the undeformed static kink/antikink pair, Yo = 1, 

v, o, 8 e (B.6b) 

Recalling that the kink mass, M, in our (dimensionless) units is M = 2V/2/3, we see that V(~ ,  1) -- 2M, 
so that IT(x0) defined in the text is indeed given by (3.3). 

If we allow Xo a n d - a g a i n  for purposes of our later discussion-y0 to be functions of time, then (1.5) 
leads to an effective Hamiltonian describing the (coupled) motion of the now time-dependent parameters 
xo(t ) and yo(t). The potential energy term in the effective Hamiltonian is just that given by (B.2)-(B.4). The 
kinetic energy term is defined by 

T(xo, Yo) = - J a x  ~ ~---~-) , (B.7a) 

where 

O~bA O•A 0~bA (B.Vb) 
~3t - c3xo k0 + By0 J~0. 
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One finds 

m3 ml(xo, Yo) 22 + m2(Xo, yo)2o)) ° + 2 -  (Xo, yo)Yo 2 , T(xo, Yo) =- 2 (B.7) 

where 

m (xo i dx(sech'3 o(X +Xo,+sech4, yo(X-Xo, 

+ 2 sech2x/~yo(x + Xo) sechZx/~yo(x - Xo)) 

2 [ 4  8 sech2v/2yoXo 1 = ,Ayo/  (x/~yoXo- tanhx/~yoXo)_], 
tanh3x/2yoXo I . -  

O(3 

sech2x/~yo(X + Xo) sech2x/~yo(x - Xo) 
XoYo 

m2(xo, Yo) = - ~  dx 2 
d 

/g~ 1-4 sech2x/~yoXo , ~ ] 
= x/ZXo L t ~ t x / z y o x o -  tanhx/~yoXo) , 

(B.8a) 

(B.8b) 

and 

t" 
m3(xo, Yo) = ½ / d x [ (  x + Xo) 2 sechav/2yo( x + Xo) + (x - Xo) 2 sechav/2yo(x - X0) 

- 2(x 2 - xo z) sech2x/~yo(x + Xo) sech2x/2yo(x - Xo)] 

__ 2x/~ 1' ~ sech2v/2yoXo 
3yo3 { 2 ( - ~ -  ] (rc2(x//2yoXo-tanhx/~yoXo)-4x/~yoXo)}. 

tanh3x/~yoXo 
(B.8c) 

The integrals in (B.8c) can be evaluated by taking derivatives with respect to k (at k = 0) of  the same Fourier  
t ransforms which were used to evaluate (B.3). 

In section 3, only the form of  the kinetic energy for Yo = 1 (and constant  in time) in required, and thus 
only ml(xo, 1) is relevant. Recalling M = 2 x / ~ ,  we see that 

ml(Xo, 1) = 2 M  + 2I(xo),  (B.9a) 

where 

. ~  sech 2 2Xo . ~  I(xo) = ~4~/z sech2x/r2~ x° ix/ZXo - tanhx/~Xo) • 
tanh3x/2xo - -  

(B.9b) 

Hence the kinetic energy term appropria te  for the discussion of  section 3 is, as indicated in (3.2), 

T = MJc~ + I(xo)2~, 

where I(xo) vanishes exponentially as Xo---}~, as asserted in the text. 
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With these technical details established, we turn next to our general discussion of the use of collective 
coordinates to describe kink motion [19, 25, 30, 32, 42]. For simplicity, let us start at an intuitive level by 
recalling that our whole approach to the resonance phenomenon rested on isolating two (of the infinitely 
many) degrees of freedom for each of the antikink/kink pair: namely, the rigid translational motion and 
the shape oscillation. Clearly these are coordinates being used to describe collective motions and are thus, 
at a practical level, "collective coordinates" for the kink and antikink. To understand these collective 
coordinates in more detail, we can start by focussing on the case of a single kink and recalling (see section 
2) that in the small oscillations around the kink solution there are two discrete modes which correspond 
directly to our two coordinates. One, with characteristic frequency ~o = 0, corresponds to the infinitesimal 
translations of the kink. The second, with co = x / ~ ,  represents a localized deformation of the kink shape. 
Although we have argued that both can be thought of as collective coordinates, there is a very important 
distinction between them. Since the ~b' equation in (1.4) is translationally invariant in space, the energy of 
a single k i n k -  obtained by inserting (1.6) into (1.5)- is independent of the location of the kink [x0 in (1.6)]. 
As a consequence of this invariance, in the expansion around the kink one finds a mode with o~ = 0; in 
particle physics language, this is the "Goldstone mode" arising from the breaking of the translational 
invariance of the theory that occurs by placing the kink at a definite location [44, 45]. Because it is related 
to a symmetry of the equation, the collective coordinate corresponding to this mode is a "strict" collective 
coordinate in the sense that it can not be treated simply by linearly superposing the corresponding 
eigenfunction (which is the spatial derivative of the kink) with the kink itself. In classical perturbation 
theory, this would lead to a "secular" term: that is, a perturbation whose effect increases (in this case 
linearly) in time. In quantum fluctuation theory, this would lead to unbounded (i.e., infinite) fluctuations. 
The correct way to account [44, 45] for the translational degree of freedom of the kink is to do precisely 
what we did with only a heuristic motivation above: namely, allow the location of the kink, x0, to become 
a time-dependent coordinate and determine its motion so as to eliminate secular perturbations or 
unbounded fluctuations. Thus, for the translational motion of a single kink, our heuristic collective 
coordinate approach can be made rigorous [44-47]. 

In the case of the shape mode at ~os = x / ~ ,  there is no associated symmetry, and hence it can be termed 
an "approximate" collective coordinate. Isolating it from among all the other degrees of freedom is based 
on the physical and intuitive arguments given in the text. It remains an interesting, open problem to 
understand rigorously the role of this discrete mode in full, nonlinear perturbation theory around the kink 
[46]. 

All of the above remarks on collective coordinates have appled to the case of a single kink. In our 
application to KI(  scattering, the effective replacement of the kink and antikink by their translational and 
shape deformation degrees of freedom is always an approximation. In particular, the coordinate 2x0 in (3.1) 
or (B.1), which represents the separation between the kink and antikink, does not correspond to any 
underlying symmetry of the equation; an easy way to see this is to note that the energy corresponding to 
the field configuration in (3.1) or (B.1) is a strong function of x0. 

The reason our approximate approach works so well for KI~ scattering appears to be, as indicated in 
the text, the existence of  a long interval between the first and second K ~  collisions during which the kinks 
are effectively separated and acting only as perturbations on each other. 

To conclude this discussion of collective coordinates we should mention a recent alternative formulation 
[19, 42, 48, 49] in which the effects of the shape mode oscillation, rather than being linearly superposed as 
in our approach, are incorporated parametrically directly in the kink waveform. This approach has been 
used to describe the coupling of shape oscillations and translations of  solitons, perturbed by external 
radiation, in a model of polyacetylene [19, 42]. In our discussion at the beginning of this appendix, this 
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method is illustrated by the introduction of Yo in (B.1). To distinguish these two approaches, let us refer 
to the first as the "linear eigenfunction collective coordinate" (LECC) approach and the second as the 
"parametric collective coordinate" (PCC) approach. 

To understand the general features of the PCC approach, as well as its relation to the LECC method, 
it is useful to start with the case of a single kink, for which the PCC Ansatz including translational and 
shape degrees of freedom is 

~A(X; Xo(t), yo(t)) = tanh 
yo(t)(x --Xo(t)) 

( B . 1 0 )  

Clearly, by substituting this expression into (1.5) and using (B.6b) to evaluate the time derivative, one can 
obtain an effective Hamiltonian for the collective coordinates x 0 and Y0. Before doing this, let us first observe 
the relation between the PCC and LECC that follows by considering the form of (B.10) for static x0 and 
Y0 and for Y0 near its value for a true solution to (1.4), Y0 = 1 + ~. Expanding in powers of ~, one sees 

~bA(x; x0, Y0 = 1 + E) = tanh + f / ~  (x - x0) sech 2 (x-x/2 °)---F x ~- (9(E2). (B. 11) 

Thus, at this level, the PCC approach amounts to approximating the true linear eigenfunction correspond- 
ing to the shape mode, 

by 

6q~soc sech (x - x0) (x - x0) (B. 12) ~ tanh - - - - ~  

. - 

(6C~s)AOC(X -- Xo)Secn ~ - - ) .  (B.13) 

Clearly, these functions are qualitatively similar for x -~ x0 but differ quantitatively, particularly in their 
rate of exponential falloff as x -  x0--*~. Note that this comparison, apart from showing the qualitative 
similarity, also shows that the PCC Ansatz, unlike the LECC form, is not exact to (9(E 1). This makes any 
direct attempt to put this approach on more rigorous footing difficult [46]. 

If one nonetheless pursues the PCC approach, one finds that it leads to an interesting, closed coupled 
system of equations for Xo(t) and yo(t). These can be derived from the effective Hamiltonian obtained by 
substituting (B.11) into (1.5). Alternatively, one can simply take the x 0 ~  limit of the expressions in 
(B.2)-(B.8), and divide by two since they refer to the kink plus antikink configuration (B.1). Either way, 
one finds [19, 42, 48, 49] 

x/~ .2 x//2t"n2 l'~fio2+x//2// + 1 )  
H~(xo, Yo)=-~-yoXo+~ - ~ -  Yo Yo" (B. 14) 

From this effective Hamiltonian one obtains the equations 

d 
dt (2oYo) = O, so 2oYo = constant - ~ (B. 15a) 
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and 

f l I ~  3~2-1 1/1 (1 .+__7:2)'~ = 0 ,  
2yo4J + 2 ~, Y0 / 

(B. 15b) 

where fl - i r 2 / 6 -  1. 
It is easy to see that these PCC equations admit the solution ~0 = v, Y0 = (1 -/)2)-1/2, which corresponds 

to the rigidly translating, Lorentz-contracted kink which is an exact solution to the full equation (1.4). With 
a bit more analysis, one can show that eq. (B. 15) admits an exact time-dependent solution, in which [48, 49] 

Yo = ct/-~o (B. 16a) 

and 

x 0 -  ~ ( ~  + ~ - 1  sincot), (B.16b) 

with o9 2 = (1 + o~2)/fl. 
In terms of the full equation, this solution would correspond to a "wobbling" and translating isolated 

kink. Of course, one can show directly that using this solution in the Ansatz (B.10) does not produce an 
exact solution to the full field equation (1.4). Nonetheless, it does raise an interesting question concerning 
the possible existence of a wobbling kink solution to ~b 4. Clearly, this deserves further investigation. 

An important aspect of this question, particularly from the perspective of comparing the PCC and LECC 
approaches, is that the PCC Ansatz would lead to no natural distinction between the ~b 4 and sine-Gordon 
equations. Specifically, if one took for a sine-Gordon kink an Ansatz comparable to (B.10), 

UA(X; Xo(t), yo(t)) = 4 tan- 1 ey0t,×x-x0o)), (a.17) 

one would obtain coupled equations for x0 and Y0 of precisely the same form as (B. 15), with slightly different 
constants. Yet in the LECC approach, one finds immediately that in the small oscillations around the 
sine-Gordon kink, the only localized mode is the translation mode at 09 - 0 ;  there is no discrete mode 
corresponding to a shape oscillation. In essence, the PCC approach implies that modes from the continuum 
can play the role of the shape oscillation and, just as in ~b 4, lead to a wobbling kink. Although much further 
study is needed in this context as well, there are several potential problems with this result. First, at a 
rigorous level, using perturbation theory with inverse scattering techniques (which can be applied because 
the unperturbed sine-Gordon equation is integrable), one can show that the asymptotic form of perturbed 
sine-Gordon kink can not wobble [50]. Second, at a phenomenological level, the calculations, of KI~ 
collisions in the modified sine-Gordon equation [39] show that there does appear to be a striking distinction 
between the cases in which a discrete shape mode is present and those in which it is not; in the former one 
finds resonances in the scattering, in the latter one doesn't. Thus it seems important to pursue the 
comparative study of the PCC and LECC approaches to clarify this and related questions. 
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