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We calculate the electronic compressibility arising from electron-electron interactions for a graphene
bilayer within the Hartree-Fock approximation. We show that, due to the chiral nature of the particles in
this system, the compressibility is rather different from those of either the two-dimensional electron gas or
ordinary semiconductors. We find that an inherent competition between the contributions coming from
intraband exchange interactions (dominant at low densities) and interband interactions (dominant at
moderate densities) leads to a nonmonotonic behavior of the compressibility as a function of carrier
density.
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The recently developed experimental capability of iso-
lating and manipulating an arbitrary number of graphene
layers [1] has attracted considerable attention both for its
impact on basic science [2] and for the tantalizing potential
technological applications. The graphene bilayer is par-
ticularly interesting because of the possibility of open-
ing—and controlling—a gap in the electronic spectrum
by applying an external electric field [3–6]. This is not
possible for the single layer graphene. The bilayer, there-
fore, while inheriting many of the peculiar electronic char-
acteristics of the monolayer due to its chiral Dirac fermion
(though massive) spectrum, has the added virtue of being
capable of acting as an electronic switch. It is thus essential
to obtain a comprehensive characterization of this material.
While some transport experiments are available [7], ther-
modynamic measurements are largely lacking. Among the
thermodynamic quantities to be measured, the electronic
compressibility � stands out as an excellent tool to provide
insight into the many-body interactions present in this
material. � can be obtained from the ground state energy as

 ��1 � n2
e�@

2E=@n2
e�; (1)

where E is the ground state energy per unit area, and ne is
the electronic density. The electronic compressibility of a
single layer graphene has been recently measured [8],
and its behavior, besides being remarkably different from
that of the usual two-dimensional gas (2DEG), seems to
indicate that contributions from Coulomb interactions are
either very weak or cancel out. Hartree-Fock [9] and
Random Phase Approximation (RPA) [10] calculations
predict a correction between 10 and 20% to the free theory
for experimentally realized dopings. This correction in-
creases logarithmically as the doping is lowered. It is
natural then to ask what role interactions play in the
bilayer. In many aspects, the bilayer graphene closely
resembles the 2DEG, as described below. Hence, the bi-
layer system provides an opportunity to isolate the effects
arising from its single layer constituents, from those occur-
ring in an ordinary 2DEG. In particular, the issue of the

chirality, which is so important for weak-localization phys-
ics [11], is the main difference between these two systems,
and as we will show, plays an important role in the many-
body physics of the bilayer. For small doping, the bilayer
can be mapped approximately to a chiral two-dimensional
massive fermionic system with parabolic bands [12,13], in
contrast with the massless, conelike dispersion found in the
monolayer. This limit is useful to compare the behavior of
the bilayer (with its chirality) to that of the ordinary 2DEG,
where experiments have shown that interactions play a
dominant role, making the proper compressibility negative
for small electron densities [14] as opposed to a positive
constant given by the noninteracting model. This behavior
is already present at the Hartree-Fock level. Because of the
aforementioned mapping, a priori, it is reasonable to ex-
pect that the effect of electron-electron interactions would
be observable in the graphene bilayer.

In this Letter, we calculate within the Hartree-Fock
approximation the dependence of the inverse compres-
sibility on the Fermi vector kF using both a full, four-
band (4B) model and the two-band (2B) approximation,
which is valid for very small doping. We show that the
most important qualitative signatures of the compressi-
bility are already present at the 2B model level but that
the 4B calculation, while more cumbersome, reveals finer
features.

Throughout this Letter, we will refer (loosely) to the
quantity ~��1 � @�=@ne as the ‘‘inverse compressibility.’’
Here, � stands for the chemical potential of the system. ~�
differs by a factor of n2

e from � in (1). This is appropriate
since ~��1 is usually the actual experimentally measured
quantity. The density of electrons is given by ne �
gSgvk

2
F=�4��, with gs � 2, gv � 2 being the spin and

valley degeneracy, respectively. In the following, we will
consider the case of small doping but outside the range of
ferromagnetic instability that is found at extremely low
doping [13]. At the Hartree-Fock level, the ground state
energy is given by E � K � Eex, where K stands for the
kinetic energy and Eex is the exchange energy per unit of
area.
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A graphene bilayer consists of two planes of graphene
stacked as shown in Fig. 1. The kinetic term of the Hamil-
tonian can be written, in the nearest neighbor tight binding
approximation [15], by expanding around the K, K0 points
of the Brillouin zone, as H kin�

P
Q 

y
QK�p� Q with

 yQ � �c
y
p;A1;�;a

; cyp;B1;�;a
; cyp;B2;�;a

; cyp;A2;�;a
� where a labels

the valley, � the spin, and Ai, Bi denotes the sublattice in
the plane i � 1, 2.

P
Q represents the sum over all the

indices. The kinetic energy matrix is given by (we use units
such that @ � 1)

 K �p� �

0 pei��p� �t? 0
pe�i��p� 0 0 0
�t? 0 0 pe�i��p�

0 0 pei��p� 0

0BBB@
1CCCA;

(2)

where tan��p��py=px, t? � 0:35 eV is the interlayer
hopping energy, and we have set vF�3ta=2 (�6:6 eV �A)
to unity (t is the intralayer hopping energy and a the in-
plane carbon-carbon distance). The interaction is given by
the 2D Fourier transform of the 3D Coulomb potential,
which is Vip�k� � 2�e2

�0

1
k for the interaction among elec-

trons within the same plane and Vop�k� � 2�e2

�0

e�kd
k other-

wise, being d � 3:35 �A the interplane distance.
The kinetic energy matrix (2) can be diagonalized by a

unitary transformation Sy�p�. The resulting dispersion
bands (see Fig. 1) are: E1�p� � �~t� E�p�, E2�p� � ~t�
E�p�, E3�p� � ~t� E�p�, and E4�p� � �~t� E�p�; being

E�p� �
����������������
~t2 � p2

p
and ~t � t?=2. It is convenient to work

with the symmetric and antisymmetric combinations of
the layer densities, �� � �1 � �2, which can be expressed
in the diagonal basis as ���q� �

P
p�y�p� q�	��p�

q;p���p� with ��p� � Sy�p� �p� and � � �. The
4� 4 matrices 	� contain the information of the overlap

due to the change of basis. Then, the interaction
Hamiltonian takes the form H I�	1=�2A�


P
q�0�P

����q�V��q����q�, and the exchange energy per unit
area A can be written in the continuum as

 Eex � �gsgv
1

2

Z d2p
�2��2

�
d2q
�2��2

X
�;i;j

	�ij�q;p�	
�
ji�p;q�ni�q�nj�p�V��q� p�;

(3)

where i; j � 1; . . . 4; ni�q� � h�
y
i �q��i�q�i, and V��k� �

1
2 	Vip�k� � Vop�k�
. The occupation factors are given by
n1�q� � ��kF � q� [n1�q� � 0], n2�q� � 1 [n2�q� � 1�
��kF � q�], n3�q� � 0, and n4�q� � 1 in the case of elec-
tron [hole] doping. This model however requires a cutoff �
of the order of the inverse of the lattice parameter.

Being simpler to work with, and widely used as a start-
ing point for calculations in the graphene bilayer, we start
our analysis with the approximate 2B model that can be
constructed at low energies by performing degenerate per-
turbation theory [12,13]. This results in an effective kinetic
Hamiltonian:

 H kin �
X
Q

p2

2~t
~ yQ

0 e�2i��p�

e2i��p� 0

 !
~ Q; (4)

with ~ yQ � �c
y
p;B1;�;a

; cyp;A2;�;a
�. The result of the approxi-

mation is an effective model with opposite parabolic dis-
persion bands of energy Ea � p2=�2~t�, Eb � �p2=�2~t� as
shown in Fig. 1. The effective kinetic energy per unit area
then is given by K��k4

F��4�=�4�~t� giving a kinetic con-
tribution to the inverse compressibility of ~��1

K � �=�2~t�.
In this reduced Hilbert space, Eq. (3) is still valid, but

this time the 	��p;q� are 2� 2 matrices. Combining all
the contributions and reinserting the units, we find the total
inverse compressibility ~��1 in the 2Bmodel to be given by
the expression
 

~��1 �
vF@
�

�
�
2~t
�

g
4kF

Z �

0
d


Z 1

0
pdp

@
@kF

�

�
kF

r�p; 1; 
�
	1� cos�2
�e�dkFr�p;1;
�


�
1

r�p; kF; 
�
	�1� cos�2
�e�dr�p;kF;
�


��
: (5)

Here, we have defined r�p; q; 
� �
������������������������������������������
p2 � q2 � 2pq cos


p
,

~t, kF, and 1=d are in units of �, and g � e2=�vF�0� is the
graphene coupling strength. The � indicates the expres-
sion for electrons (�) or holes (�). The differing term
however is roughly a constant and can be neglected for
small doping. Therefore, in what follows, we will use the
results for electron doping.

Figure 2 shows a plot of (5) as a function of kF for
~t=� � 0:026, and d� � 3:7 (� � 1:06 � 1 �A�1). As can

FIG. 1 (color online). Graphene bilayer lattice showing the
two underlying sublattices A (dark) and B (light). Inset: 4B
dispersion (continuous line) and 2B approximation (dashed
line) as a function of momentum k. Momentum is in units of
the cutoff �, measured from the K point.
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be seen, for very small doping, the compressibility changes
sign, becoming negative and divergent. This behavior, as
mentioned previously, is also observed in the 2DEG. It is
instructive to discriminate between inter and intraband
contributions. Figure 2 also depicts the inverse compressi-
bility when only the intraband transitions are considered
(as well as the kinetic term, of course). From the difference
with the curve for the total inverse compressibility, we can
conclude that the interband contribution tends to move the
negative region to smaller densities. The overall effect of
the interband transitions then is to enhance ~��1, therefore
reducing the compressibility. This can be seen clearly from
the inset in Fig. 2, where the contribution from intraband
transitions is negative while that from interband transitions
is positive. Apart from the sign, both present a similar
behavior and are comparable in magnitude. In the 2B
approximation, the kinetic contribution, as in the 2DEG
case, is independent of the electronic density and is also
plotted in Fig. 2 for reference. Therefore, the resulting total
compressibility will be given by a competition of the two
contributions. This difference in sign between inter and
intraband contributions is analogous to the one present in
monolayer graphene [8] and, within the 2B approximation,
it can be interpreted in terms of the chirality of the quasi-
particles. Intra (inter)-band exchange corresponds to inter-
actions between particles of the same (opposite) chirality.
Remarkably though, while for the monolayer the total
exchange contribution is positive, for the bilayer, it is
negative.

We can also compare with the usual result for the 2DEG.
For this, we start from the expression for the chemical
potential (see for example [16]) � � @	n��n�
=@n, where
n � k2

F=� is the electronic density (taking into account
spin and valley degeneracy) and � is the ground state

energy per electron. If we consider only kinetic and ex-
change energy, � � �0 � �ex and for the 2DEG �0 �
k2
F=�4m�, �ex � �4e2kF=�3��. Therefore, ~��1

2DEG �
��=m� 2e2=kF�=2. To compare with our case, we identify
~t � m and write ~��1

2DEG � vF=�2����=~t� 2g=kF�. The
corresponding plot is also depicted in Fig. 2. Within the
2B approximation, the bilayer compressibility behaves
qualitatively similar to that of the 2DEG, although because
of the chiral nature of the bilayer system, the region of
negative values is shifted to smaller values of the Fermi
vector and therefore smaller densities.

As mentioned above, the total compressibility of the
bilayer is a product of the competition between inter and
intraband contributions to exchange. However, from the
inset in Fig. 2, it transpires that this is a very tight com-
petition and small changes may alter the result. We there-
fore proceed to analyze the full 4B model. Because of the
symmetries of the 	 matrices, expression (3) is greatly
simplified. The exchange contribution to the compressibil-
ity then is given by

 ~��1
ex � �

1

8�kF

X
�

@
@kF
�D�
�� �D

�
���

being

 D�
�� �

Z 2�

0
d


Z kF

0
pdpV��jkF � pj�j	�11�kF;p�j2;

D�
�� �

Z 2�

0
d


Z �

0
pdpV��jkF � pj��j	�12�kF;p�j2

� j	�14�kF;p�j2�;

where 
 is the angle between kF, p. As the notation
suggests,D�

�� corresponds to exchange within the positive
conduction band 1 while D�

�� measures the exchange
between the negative filled sea and the conduction band.
The calculation for hole doping is completely analogous,
with the overlap elements to be considered for that case
being j	�22�kF;p�j2 and j	�24�kF;p�j2. Since the compressi-
bility involves only occupied states, its behavior is not
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FIG. 2 (color online). Inverse compressibility vs Fermi wave
vector in the 2-band approximation. Total: solid line, intraband
plus kinetic contribution: dashed line, kinetic: dash/dot line,
2DEG: dotted line (black). The inset depicts the contribution
of intraband exchange (solid line) and interband exchange
(dashed line).

FIG. 3 (color online). Inverse compressibility as a function of
the Fermi wave vector as calculated from the 4B model.
Negative values of the Fermi vector indicate the result for hole
doping.
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symmetric with respect to particle-hole exchange.
Nonetheless, the explicit calculation shows that the differ-
ence is negligible for small doping, being the same as in the
2B case. On the other hand, the kinetic contribution to the
inverse compressibility is independent of the type of car-
rier, and it is easily calculated to be ~��1

K � �=	2E�p�
. The
final results for the four-band calculation, by summing all
the contributions, is shown in Fig. 3.

We see that the full model confirms the major qualitative
features found within the 2B approximation. The com-
pressibility is negative for small electronic density, diverg-
ing in the limit of kF ! 0, and the interband exchange
contributes to the incompressibility of the system (see
Fig. 4). The difference observed at larger values of the
Fermi momentum is simply due to the difference in the
kinetic term, since it is a constant in the two-band case
while in the 4Bmodel, it is�1=kF for large kF. However, a
more detailed comparison reveals a peak in the inverse
compressibility that is not captured in the 2B model.
Overall, the 4B calculation predicts a more incompressible
system in the range for which ~� > 0, up to approximately 3
times larger than the prediction of the 2B model at the
position of the peak. As seen from Fig. 4, the bulk of the
difference between the 2B result and the 4B one comes
from the interband exchange.

The 4B model seems to predict a behavior that is a
hybrid between the one of a 2DEG, where the total con-
tribution to the compressibility from exchange is negative,
and the graphene monolayer, where it is positive.

In conclusion, we have studied the electronic compressi-
bility of a graphene bilayer within the Hartree-Fock ap-
proximation and have found a behavior that is remarkably
different from the two-dimensional electron gas due to the
presence of interband transitions, and also from graphene
monolayer. We have shown that the inverse compressibility
is not a monotonic function of the electronic density and
that the effective 2B model gives a good description of the
problem only at very low densities. At intermediate den-

sities, the four bands are important to explain the behavior
of the compressibility. The nonmonotonic behavior of the
compressibility obtained with the 4B model is highly un-
usual. Generally, nonmonotonicity is associated with some
external factor, such as confinement or applied magnetic
fields. However, here it is due solely to intrinsic electronic
interactions. The implications of this remain to be under-
stood. On the other hand, the negativity of the compressi-
bility is understood once it is realized that the one involved
is not the total compressibility but only that of the elec-
tronic gas. The total compressibility will comprise also the
positive ionic background, which stabilizes the system.
Nonetheless, the negative divergence of the inverse com-
pressibility, present in both models for low enough elec-
tronic densities, could signal the eventual onset of Wigner
crystallization [17]. These results, as in the case of the
single layer graphene [8] can be studied via single electron
transistor (SET) measurements. Our results indicate that
the compressibility turns negative at density values of
approximately ne � 1011=cm2, which borders the current
available precision [8]. However, being a Hartree-Fock
calculation, this can act just as a very rough estimate. We
have also neglected the trigonal warping term, which might
be of importance at very low densities [12].
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