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Validity of the Tomonaga Luttinger liquid relations for the one-dimensional Holstein model
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For the one-dimensional Holstein model, we show that the relations among the scaling exponents of various
correlation functions of the Tomonaga Luttinger liquid (LL), while valid in the thermodynamic limit, are
significantly modified by finite-size corrections. We obtain analytical expressions for these corrections and
find that they decrease very slowly with increasing system size. The interpretation of numerical data on finite-size
lattices in terms of LL theory must therefore take these corrections into account. As an important example, we
re-examine the proposed metallic phase of the zero-temperature, half-filled one-dimensional Holstein model
without employing the LL relations. In particular, using quantum Monte Carlo calculations, we study the
competition between the singlet pairing and charge ordering. Our results do not support the existence of a

dominant singlet pairing state.
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I. INTRODUCTION

The study of quantum fluctuations arising from dynamical
phonons and their effects on the charge ordering instability
of one-dimensional systems has a long history.! One of the
simplest models to describe a one-dimensional solid under
the influence of the quantum fluctuations is the molecular-
crystal or Holstein model,>* which is given by the following
Hamiltonian:

H = Hy + Hpp, + Hy—pp, (1)
where
Hy=—1Y (c] ciors +He), )
’ pi K,
th=12(m+?qi), (3
He—pp = gep Z qin;. 4)

In this model, the electrons move in a tight-binding band
interacting with the lattice via the coupling between the local
electron density and the local lattice displacement. In the
Hamiltonian, cls (ci.s) creates (annihilates) an electron at site
i with spin s, and n; ; is the electron number operator. The ions
are described by momentum p; and displacement ¢; for site
i. The mass of the ions is M, and K is the harmonic lattice
coupling constant, so that the phonon frequency wg = /K /M.
Following convention, we shall call these dispersionless
optical excitations “Einstein phonons.” The hopping energy
of the electrons between nearest neighbors is 7, and g, is
the electron-phonon coupling energy. In what follows we
will use units such that 1 = M = 1, except where otherwise
specified. For the half-filled band, early work suggested that
the Holstein model displays dimerization and that long-range
charge ordering sets in at any finite phonon frequency.*”’
These conclusions have been challenged by various studies
which find that for small enough electron-phonon coupling
the system has zero charge gap and thus no long-range
order.'0-24
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A recent quantum Monte Carlo study® further suggested
that the dominant power-law ordering is the singlet BCS
superconducting pairing (SS) correlation. This conclusion was
based on data from finite-size simulations which showed
that the Luttinger charge exponent (K,) is larger than 1
(Ref. 26). [t is important to realize at the outset that this is not
an off-diagonal long-range ordering,?’ as breaking the U(1)
gauge invariance’®?’ to generate a mass gap is forbidden in
one dimension.?*32 SS should thus be understood as a charge
gapless, dominant off-diagonal power-law decaying ordering.]
In the (possibly singular) limit of infinite phonon frequency, the
Holstein model becomes equivalent to the attractive Hubbard
model.* For the attractive Hubbard model at half-filling, the
SS and the charge density wave (CDW) order parameters are
degenerate because of the particle-hole symmetry. Moreover,
both order parameters possess continuous symmetry with
respect to the spin rotation.* Therefore, long-range ordering
of either sort is forbidden in this case. However, from the
numerical simulations for finite-size lattices, K, is always
larger than 1 and converges to 1 very slowly with increasing
system size.** The similar behaviors of K, for both the attrac-
tive Hubbard model and the Holstein model at finite phonon
frequency have led to the suggestion that the Holstein model
even at finite phonon frequency may have a charge gapless
metallic phase with degenerate SS and CDW correlations,
even though K, > 1 from finite-size calculations.® We note
that this coexistence was proposed years ago.>*

In the present article we present analytical and numerical
calculations of the Luttinger liquid (LL) relations in the one-
dimensional (1D) Holstein model with finite-size corrections.
Our results extend to Einstein phonons previous studies involv-
ing acoustic phonons**® and complement prior multiscale
functional renormalization group studies of retardation effects
due to Einstein phonons.37 In essence, we seek to answer
three important questions raised by previous studies: (i) Are
the LL scaling relations valid in the 1D Holstein model?
(i) What are the dominant correlations in this model? (iii)
What can be said about the possibility of a charge gapless
metallic phase at half-filling for weak electron-phonon cou-
pling? As we shall see, we are able to provide clear answers
to the first two questions but can only comment on the third.

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.84.165123

KA-MING TAM, S.-W. TSAIL, AND D. K. CAMPBELL

In Sec. II of the paper, we begin our study by describing the
forward scatterings of the Holstein model in terms of bosonic
fields. In Sec. III, we solve analytically the forward scattering
part of the Holstein model to show that electron-phonon
coupling modifies the relations between scaling exponents,
and we calculate these modifications for finite-size systems.
This enables us to answer question (i). In Sec. IV, we employ
quantum Monte Carlo calculations for the full Hamiltonian
[Eqg. (1)] to resolve question (ii) and to gain some insight into
question (iii). In Sec. V, we discuss the reasons why all the
perturbative renormalization group studies obtain long-range
CDW phase and under what circumstances the metallic phase
can be obtained. Section VI contains a brief conclusion.

II. FORWARD SCATTERINGS IN THE
1D HOLSTEIN MODEL

To answer the question about the validity of the LL relations
for the Holstein model in the gapless regime, including
the gapless half-filled case if present, it is sufficient to
diagonalize exactly the forward scatterings (scatterings with
zero momentum transfer, often denoted as g, and g4 in the
“g-ology” terminology)*® of the Hamiltonian. The neglect
of anything beyond forward scatterings is unquestionably an
assumption which cannot be a priori justified in the full
model, but this neglect is the fundamental conjecture in
the description of the gapless one-dimensional system: any
contributions beyond forward scatterings can be incorporated
into the renormalization of the forward scatterings. Therefore,
although we are considering forward scatterings only, our
approach is completely general for the description of any
gapless regime regardless of the filling. In what follows, the
right-hand side of the symbol, =, is understood to include
only those terms in which the forward scatterings exclusively
are retained.

By formulating the one-dimensional problem in the con-
tinuum limit and retaining only the low-energy degrees of
freedom, H,; can be expressed in terms of bosonic fields ¢,
and their corresponding momenta IT, with explicit spin(o)-
charge(p) separation®”*

Hel = Hp + H(Ta
Q)

H, = /dx [uVKvni + %(ax%)z].

For the Holstein model at half-filling, the Fermi points are
at kp = —m /2 and 7 /2. Therefore u, = u, = 2t, and K, =
K, =1 (Refs. 35,36 and 39). The values of these parame-
ters, uy,u,,Ks,K,, can be renormalized by the interactions.
However, as long as the LL description is valid, the scalings
of the various correlation functions are determined solely
by these parameters.>**? In particular, the CDW correlation
and the SS correlation scale as Ocpw(x) o< x Ko =Ko = yacow
and Oss(x) x~ Ko Ko = x%s, respectively. This implies
acpwss = 1, when a spin gap appears, in which case K, = 0.

Consider the electron-phonon coupling. As we include only
forward scatterings, only the phonons with momentum k£ = 0
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are coupled with the electrons. The Hamiltonian for the
phonons with momentum k£ = 0 is

1
Hyp ~ 3 / dx[¢7' T3 + ¢wgds |, (6)

where ¢ is the mass density, dy is the phonon field with
momentum k = 0, and Iy, is the conjugate momentum. The
Hamiltonian for the electron-phonon coupling is

Hiep ™ g0 Y [ druludo) @)

By keeping only the term which is linear in the bosonic field
to express the density operator ¥ /;, we obtain®>-36:3

2
Hupn ™ gep / dx\/;(axsop)do. ®)

The remaining terms will generate the back scatterings and
Umklapp scatterings. They also lead to spin-charge coupling
due to the retardation.*

When only forward scatterings are considered, the electron-
phonon coupling affects only the charge part of the Hamil-
tonian, and we will thus focus on the charge part only in
the following. The spin part is unchanged from the standard
Luttinger model.>>3¢3° The charge part of the Hamiltonian
[Eq. (1)] arising solely from forward scatterings is

u 1
Hiorwara & /dx |:uprl'[f)+K—p(3X%)2:| +5/dx[§_lnﬁo
)

2
+ Cwyds | + 8ep / dx\/;(axwdo. )

Since the phonon fields appear at quadratic order, we can
follow the work by Martin and Loss,*>*® who considered the
case of acoustic phonons (as opposed to the Einstein phonon
case we are considering here) to integrate out the phonon fields
dy, which results in the collective inverse propagator for the
charge field ¢,,

b(kwou p)2

a)z—l—w(z)

D,(k,w) = |:(a)2 + k%) } . (10)

pUp
where b =2K pggp /mu pw(%. The first part of the inverse
propagator is the contribution from the bosonized electrons,
and the second part comes from the electron-phonon coupling.
The crucial difference between Einstein phonons and acoustic
phonons is that the coupling between the two bosonic modes
(¢, and dp) is symmetric for acoustic phonons (9,¢,0.do)
(Refs. 35 and 36), but asymmetric for Einstein phonons
(0x¢,dp). As aresult, the dispersion relations for the collective
modes are linear for acoustic phonons but nonlinear for
Einstein phonons. Therefore, the acoustic phonon case can
be solved exactly, but the Einstein phonon case, in general,
cannot be solved exactly.

III. MODIFICATIONS OF SCALING EXPONENTS

It is generally believed that the spin part of the half-
filled Holstein model is always gapped due to the back
scatterings.*>>* (The spin-gapped but charge-gapless LL is
often referred as Luther-Emery liquid.*') As a consequence,
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the Luttinger spin exponent K, renormalizes to zero. We
take this as an assumption and will not elaborate on it here.
Therefore, the boundary of the transition between the charge
ordering and the singlet pairing is determined by the points
where the Luttinger charge exponent crosses the value one,
providing that the Luttinger liquid description survives.

It has previously been shown that the LL scaling relations
are modified by the coupling with acoustic phonons.*>*® The
analogous exact relations cannot be obtained for the Holstein
model, which has Einstein phonons. Nevertheless, we can
still extract the power-law decaying terms asymptotically (i.e.,
long-distance, low-energy limit, x — 00,k — 0). We find

u
dcpw = ——pr, (11)

1 -0, (12)

Up
v_K,

oss = —

to the lowest order in the momentum. At this order, the velocity
of the lower branch v_ is u,~/1 —b. Hence the relation
acpwass = 1is preserved.*? We reiterate that these asymptotic
results are strictly correct only at long distance, even apart from
any oscillatory contributions. In addition, the power-law decay
of the correlations is also valid at long distances only.

The exact results for the charge density Ocpw and the
singlet pairing Ogg correlation functions can be expressed in
terms of two series:

-1 uk w2 — w?
In[Ocpw(b,x)] = . (1 e — )

2 — - w> — wy
X [1 — cos(kx) exp(—w_1)], (13)
-1 u _(l—b)w(z)—wij|
In[Oss(b,x)] = pr Sy [l R
X [1 — cos(kx) exp(—w-_t)], (14)
where
Vo Gk £ \/ [02 — (u,k)?]” + 4b(wou k)2
wi (k)= .

2
5)

We have omitted oscillatory contributions. In addition, the
upper branch of the collective modes is ignored due to the gap
with magnitude wy; this differs from the acoustic case*>*° in
which both branches are gapless and must be included.

To investigate the validity of the relation acpwass = 1 at
finite distance we take the continuum limit, which amounts to
replacing the summation over the momentum by an integral;
and we have to introduce the low momentum cutoff € (Refs. 35
and 36) and the high momentum cutoff is set to 2u,. For
the following numerical calculations, we fix the phonon
frequency wo = 1. The asymptotic results indicate that the
relation acpwass = 1 is valid independent of any parameter.
In particular, it is valid independent of the electron-phonon
coupling, which enters via the parameter b. Therefore, the ratio
of the product of the singlet pairing and the charge ordering
correlations at b £ 0 and b = 0,

In[Ocpw (b,x)]In[ Oss(b,x)]

R(b,.x) = ]n[OCDW(O’X)]]n[OSs(O,-x)] '

(16)
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R(b,x)

FIG. 1. (Color
In[Ocpw (b.X)]In[Oss (b, x)]
In[Ocpw (0.x)]In[ Oss(0,x)]

R(b,x) =

online) Plot of the ratio
versus the scaled electron-phonon coupling b at
various distances x for ¢t — 0%,

should be equal to 1 when x — oo, that is,

acpw(b # 0)ass(b # 0) _
acpw(b = 0)ass(b = 0)

While Eq. (17) is exact in the asymptotic limit, using the ana-
lytical expressions we obtained for Ogs(b,x) and Ocpw(b,x),
we find that R(b,x) deviates from 1 for nonzero scaled
electron-phonon couplings b; even at rather long distances
x. This is shown in detail in Fig. 1. Importantly, this deviation
depends not only on the distance but also on the value of
the electron-phonon coupling. The ratio is clearly larger than
1 and seems to converge to the asymptotic value, 1, very
slowly and at distances that are likely beyond the reach of
existing numerical calculations, which typically study systems
up to a few hundred sites. This behavior is also likely to
preclude a reliable scaling estimate of its asymptotic value.
Our results suggest that the product of the exponents of
the singlet pairing and of the charge ordering is larger than
one at finite distance for nonzero electron-phonon coupling.
Consequently, observing a charge exponent larger than 1 does
not automatically imply that the singlet pairing correlation is
the dominant instability. Thus although acpwoss = 1 in the
asymptotic limit, in a finite-size system the value of acpwss
not only depends on the system size but also on the forward
scatterings strengths.

The deviation from 1 is enhanced by the scaled electron-
phonon coupling b, and suppressed by the distance x. These
results are consistent with the charge exponent obtained in a
quantum Monte Carlo study,? in which the charge exponent is
larger than 1 and increases with electron-phonon coupling. In
addition, the quantum Monte Carlo calculations also found that
the charge exponents decrease with increasing system size.>?

Our results show that even if all the nonlinear operators,
which are always present and especially important in the
half-filling case, are irrelevant and renormalized to zero and
the Holstein model is in the gapless regime which can be
described in terms of LL, the charge exponent alone at finite
distance cannot resolve the competition between the charge
ordering and the singlet superconducting pairing. In fact,

lim R(b,x) = 1. a7
X—>00
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the “two-cutoff” renormalization group®** calculations

have shown that the charge gap is always opened by the
Umklapp scatterings.*® (One should note that this method
may give defective results for phonon energy larger than the
Fermi energy.®) Similarly, multiscale renormalization group
approaches which systematically renormalize the frequency
dependences of the couplings*’*° have also ruled out the
existence of dominant singlet pairing due to the contribution
from the dynamical Umklapp scatterings at high energy.’’
Further, a recent study once again confirmed the CDW phase
and further discussed the quantum-classical crossover.>”
From the results of the correlation functions for the forward
scatterings of Eq. (1), it is quite clear that using the relation
acpwass = 1 to decide the dominating correlations in the
gapless phase of the half-filled Holstein model can lead to mis-
leading results. The violation of this relation for finite-size sys-
tems arises because of the nonlinear collective modes from the
asymmetric coupling between the bosonized electrons and the
dynamical phonons [see Eq. (8) and the discussion in Sec. II].
This result is not due to the oscillating phase factor from the
normal-ordering procedure for the correlation functions.*®

IV. MONTE CARLO CALCULATIONS OF THE
CORRELATION FUNCTIONS

Our previous results make clear that we cannot rely on
the LL relations for the thermodynamic limit to determine
the correlation exponents from finite-size simulations of
the Holstein model. Hence we turn instead to a numerical
study of the full model [Eq. (1)]. The stochastic series
expansion used in the previous studies,>>*3-! while highly
efficient, faces considerable challenges in measuring the
pairing correlation for the Holstein model.**? Therefore,
we use instead the projector determinantal Monte Carlo>3-°
(DQMC) to determine the “ground state” and its correlation
functions of finite-size systems. The “ground state” (|GS)) is
obtained by projecting the free fermion trial state (|Wt)) as
|GS) = limg_, cexp(—BH)|W¥r); in practice B is set between
10-20. Since the Green functions are directly accessible in
the DQMC, the pairing correlation can be readily calculated
using Wick’s theorem.>* However, the Monte Carlo sampling
of the projection operator requires the manipulations of the
Slater determinant which scales as the third power of the
system size and thus only relatively small system sizes can
be studied. We use the |GS) to calculate the pairing correlation
Oss, and the charge ordering correlation Ocpw, in the real
space directly

N
0PV = | i — 1), (1)
i=1

N
1
0% = > el iel civnycivey +He)|. (19)

i=1

where N is the number of lattice sites. In the Monte Carlo
calculation, we set t = 1, M = 1/2, and wy = 1, so that the
gep defined in Eq. (1) is the same as the electron-phonon
coupling g defined in Ref. 25. We show the correlation
functions at different electron-phonon couplings in Fig. 2. At
zero electron-phonon coupling, the Holstein model is a free
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FIG. 2. (Color online) Singlet pairing correlations (open circles)
and charge ordering correlations (open squares) functions as a
function of real space distance for g., = 0.0 (the first row), g, = 0.2
(the second row), g., = 0.4 (the third row), g, = 0.6 (the fourth
row), g, = 0.8 (the fifth row), and g., = 1.0 (the sixth row). The left
and right columns are for the lattices of N = 22 sites and N = 46
sites, respectively.

fermion theory, and the singlet pairing and charge ordering are
degenerate (the first row in Fig. 2). When the electron-phonon
coupling is turned on, the charge ordering tends to decay
more slowly, while the singlet pairing tends to decay faster
than in the free fermion case. The difference between them

165123-4



VALIDITY OF THE TOMONAGA LUTTINGER LIQUID ...

1.05
1
0.95

re® 0.85]
0.8]
0.75H
0.7

Eep

FIG. 3. (Color online) The Luttinger charge exponents K, and
spin exponents K, for different electron-phonon couplings. N is the
number of lattice sites.

is expectedly small, possibly due to the exponentially small
charge gap with respect to the electron-phonon coupling.*
Turning to larger electron-phonon couplings, the difference
between the two different orderings becomes more obvious.
As we are using systems of modest sizes (22 and 46 sites
with periodic boundary conditions) only, it is difficult to
determine whether the charge ordering is long-range or decays
as a power law, but the data clearly show that the charge
ordering is enhanced and the singlet pairing is suppressed
as the electron-phonon coupling is increased. For fairly large
electron-phonon couplings [e.g., g, = 1.0 (the sixth row in
Fig. 2)], our data show a clearer signal that the charge ordering
tends to become long range, as the charge correlation changes
only very slowly beyond a few lattice sites.

We also calculate the Luttinger charge exponent by the
same method used previously for the Holstein model,?> which
found K, > 1. Using the set of data obtained in the same run
for the correlation functions presented in Fig. 2, we reproduce
the result that the Luttinger charge exponent is clearly above 1
atleast for go, < 0.6 (see Fig. 3). Using the LL relations would
imply the dominant singlet pairing state for the model in this
region; however, from the correlation functions we know that
the singlet pairing decays faster than the charge ordering and
is thus not dominant. The K, > 1 obtained from finite-size
calculations is not incompatible with the CDW correlation
decaying slower than that of the SS.

From our Monte Carlo data, we can conclude that singlet
pairing is not the dominant instability for any range of electron-
phonon coupling (although, strictly speaking, numerical data
can hardly provide a conclusive answer for ge, — 07). This
provides a reasonably convincing answer to question (ii). The
most prominent open question is whether the long-range CDW
ordering or equivalently the charge gap can be destroyed by
the quantum fluctuations from the dynamical phonons as the
electron-phonon coupling is decreased below a certain value.

V. DISCUSSION

Perturbative renormalization group approaches have con-
sistently shown that the charge part is gapped and thus the

PHYSICAL REVIEW B 84, 165123 (2011)

CDW is long range, at least for the cases where the phonon
energy is not larger than the Fermi energy.”*374+4%-50 This is
ultimately related to the fact that the continuous spin rotation
symmetry is broken by any finite phonon frequency which
leads to a relevant Umklapp scattering. This result already
appears in the perturbative renormalization group approaches
within a second-order perturbation approximation. For a
metallic phase to be obtained in a perturbative renormalization
group approach for the Holstein model, in particular for a
degenerate CDW and SS phase to be obtained, the summation
of all the higher-order terms in the perturbation series
would have to cancel exactly the second-order contribution
to restore the spin rotation symmetry. This is an unlikely
scenario, and there is no convincing argument for why this
should happen.

On the other hand, to determine precisely the nature of
the ground state from numerical calculations for very weak
couplings is challenging, as the charge gap is exponentially
small with respect to the electron-phonon coupling, even
within the mean field approximation [A, ~ exp(—1/ gezp)].
Quantum fluctuations from the dynamical phonons will fur-
ther suppress it, especially at large phonon frequency.*’
Nonetheless, recent density matrix renormalization group
studies did argue for the metallic phase, and further claimed
that there are two types of metallic phases in both Holstein
and Holstein-Hubbard model.?">> One of the metallic phases
is gapless in both the spin and charge sectors, which normally
implies that either triplet superconducting pairing or spin
density wave ordering is the dominant power-law decaying
ordering,** even though spin fluctuations are completely
absent in the Holstein model. More elaborate calculations
using Monte Carlo algorithms which can directly extract the
pairing correlations for much larger system sizes may provide
further insight.”’

Although we cannot rule out the possibility of a metallic
phase from this study, it is quite clear that the Holstein model
in one dimension does not support dominant superconducting
correlations for the half-filled case. This is due to the relevant
Umklapp scattering from the perspective of the perturbative
renormalization group,®’-7" which is supposed to be reliable
from weak to intermediate coupling. In general, breaking the
particle-hole symmetry alone,”’ by, for example, including
nonlinear terms for the phonon, is probably not sufficient to
induce dominant superconducting correlation.’® The crucial
point is to weaken the contribution from the particle-hole
channel by removing the nesting condition. Theoretically, this
can be achieved by introducing long-range hopping terms or
doping away from the half-filling.?*-33->°

VI. CONCLUSION

In this paper we have examined the nature and applicability
of using the LL relations to determine the possible existence
and the nature of a proposed metallic ground state of the
one-dimensional half-filled Holstein model. We conclude by
reiterating our answers to the three questions posed in our
introduction. (i) The LL scaling relation acpwoss = 1 is
valid only in the limit of infinite-size systems; for finite-size
systems there are corrections that lead to K, > 1. (ii) For
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a wide range of electron-phonon coupling, the dominant
correlation for finite-size systems in the Holstein model is
the CDW. (iii) Although the CDW seems to be always the
dominant correlation, without a direct study of the gap—
which is expected to be exponentially small with respect to
the electron-phonon coupling and thus very challenging to
study numerically—we cannot rule out the possibility of a
charge gapless “metallic” phase for weak electron-phonon
coupling.
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