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We calculate the phonon spectrum for a graphene sheet resulting from the model proposed by Lenosky et al.
�Nature �London� 355, 333 �1992�� for the free energy of the lattice. This model takes into account not only the
usual bond-bending and stretching terms, but it also captures the possible misalignment of the pz orbitals. We
compare our results with previous models used in the literature and with available experimental data. We show
that while this model provides an excellent description of the flexural modes in graphene, an extra term in the
energy is needed for it to be able to reproduce the full phonon dispersion correctly beyond the � point.
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I. INTRODUCTION

The phonon dispersion of graphite is a recurrent topic in
the literature, and the last years have seen a revival of inter-
est due to the successful isolation of a single layer of graph-
ite, graphene.1 Due to the very weak interaction between the
planes, the phonon spectra for graphene and graphite are
essentially the same, except at very low frequencies where
the splitting of the out-of-plane acoustic mode in graphite is
noticeable.2 In general, the theoretical models most success-
ful in describing phonon dispersions are first-principles ones,
and graphite is not an exception. However simple analytical
models that would give a good qualitative description of the
system are highly desirable. These models are valence-force
models and usually require many free parameters to give
accurate results. The generally accepted best-fitting valence-
force model for graphite is the one given in Ref. 3, in which
one considers interactions up to four nearest neighbors and
20 fitting parameters. More recently, a five-nearest-neighbor
model was shown to give a very good fit to new available
experimental data.4 Also, a valence-force model based on the
symmetries of the lattice was proposed.5 Simpler valence-
force models in which only nearest-neighbor interactions are
considered with only two free parameters �these models treat
only the in-plane modes� are given by Kirkwood,6 in which
the elastic energy cost of stretching and bond bending is
considered, and by Keating,7 in a model that takes into ac-
count the symmetries of the lattice. These models can be
extended to include the out-of-plane modes by adding a
“dangling bond” term.8,9 The Kirkwood model is already a
harmonic model, while the Keating model includes up to
quartic-order terms. The expansion up to second order of the
Keating model gives an effective model very similar to the
Kirkwood model, although it outperforms it slightly. For this
reason, in this paper we will take as a reference the extended
Keating model—with the dangling bond term—as presented
in Ref. 9.

In Ref. 10 it was shown that for improving the accuracy
of either the Kirkwood or the Keating model, it is necessary
to take into account the overlap of the � and the � orbitals
due to bending. In Ref. 10, this was done by considering a
full quantum-mechanical model by the use of a tight-binding
formalism. On the other hand, in the work by Lenosky et
al.,11 the authors proposed a microscopic form for the energy

of a graphene sheet that took into account this overlap by
considering the energy cost of having misaligned normal
vectors to the graphene membrane. The original model was
applied to treat the energetics of negatively curved graphene
structures, denominated schwarzites, and it was later ex-
tended to describe the elastic properties of nanotubes.12 In
this work, we study this proposed free energy and calculate
the resultant phonon dispersion, comparing it with the avail-
able experimental data. We will show that the terms involv-
ing the misalignment of the normals flatten the dispersion of
the optical modes at the � point, a flattening that is observed
experimentally—leaving aside, of course, the Kohn anomaly
of the longitudinal optic �LO� model.13 In particular, the out-
of-plane modes ZA �flexural acoustic� and ZO �flexural op-
tic� are very well fitted. Graphene is the experimentally re-
alized example of a polymerized membrane and these out-
of-plane modes play a fundamental role since it is the
nonlinear coupling between them and the in-plane modes
that stabilizes the flat phase,14 and they are directly related to
the rippling observed in the graphene sheets.15 We will see
however that, even though Lenosky’s energy describes quali-
tatively the phonon dispersion near the � point, it gives the
wrong ordering in energy for the modes at the K point. We
circumvent this by adding an extra term to Lenosky’s origi-
nal formulation, the bond-bending term, which is present in
both the Kirkwood and the Keating models but not in Lenos-
ky’s.

II. MODEL

In graphene the carbon atoms form a honeycomb lattice
as shown in Fig. 1. This configuration is due to the symmetry
of the bonds between the carbon atoms: their s and p orbitals
hybridize in the form sp2, which results in � bonds contained
in the graphene plane, while the remaining pz orbital is per-
pendicular to the plane and forms the � and the �� bands.16

The proposed form for the energy given by Lenosky and
collaborators in Ref. 11 is given by the following expression:

UL =
�0

2 �
�ij�

��rij� − �eij��2 + �1�
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	�
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r̂ij
2

+ �2�
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�1 − n̂i · n̂ j� + �3�
�ij�
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where rij is the vector that points from atom i to atom j in the
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lattice, r̂ij =
rij

�rij�
, and n̂i is the normal vector to the plane de-

termined by the three nearest neighbors of atom i �we will
call this loosely the “normal at atom i”�. rij =eij for the un-
deformed lattice, where eij is a unit vector, and we have
absorbed the lattice constant a=1.42 Å in the definition of
the elastic constants �n. The indices i , j run over the N atoms
of the lattice and �ij� denotes nearest neighbors. According to
Ref. 11, the first two terms in expression �1� correspond to
bond stretching and angle bending, respectively. We will
however refer to this second term as the dangling bond term
since it is essentially the same term that was introduced as
such in Refs. 9 and 17. The last two terms take into account
the energy cost of orbital overlapping due to rippling and are
“nonlocal” in the sense that they involve more than nearest-
neighbor terms as we will see below. The first of these two
terms can be thought as related to the �-� orbital overlap,
since it involves the scalar product between normal vectors
at neighboring atoms, while the second is the projection of
the normal onto the bonds and therefore related to the �-�
orbital overlap.

III. DYNAMICAL MATRIX

For obtaining the phonon modes, we derive the dynamical
matrix determined by Eq. �1� via a harmonic expansion. If
we allow for small displacements of the atoms with respect
to their equilibrium positions in the lattice, we can write
rij =eij +u j

Y −ui
X, where ui

X is a small displacement of the ith
atom in sublattice X, with X=A ,B and similarly for u j

Y.18 Up
to second order in the displacements, we get that expression
�1� can be written as UL=UL

�0 +UL
�1 +UL

�2 +UL
�3, as we detail

below. The stretching energy is given by the usual expression

UL
�0 = �

X�Y
�
�ij�
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2
�eij · �u j

Y − ui
X��2. �2�

The dangling bond term can be written in compact form by
the use of the dyadic notation as

UL
�1 = �1 �

X�Y
�

n
��

��n�
�u��n�
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We will denote from now on nearest neighbors with Greek
indices. With this notation, u��n�

X indicates the displacement
of the �th neighbor ��=1,2 ,3� of atom n. The supraindex
indicates that the displacement corresponds to an atom in

sublattice X. The unit vectors î� and ĵ� are as indicated in
Fig. 1 �Ref. 19� and Id is the 3�3 identity matrix.

The expansion for the terms that involve the normals to
the graphene plane is more involved. Assuming a labeling as
in Fig. 1, we can write

nn
A = �rnn2 − rnn� � �rnn3 − rnn� ,

which is a vector of length equal to the area of a unit cell and
it is normal to the nth atom of sublattice A, and analogous
expressions hold for n��n�

B . Using the explicit expressions for
rij in terms of the atoms’ small displacements, it can be
shown that

ni
A�B� =

3

2
3k + � �u1�i�

B�A� � u2�i�
B�A� −

�+�
3ĵ1 � u1�i�

B�A�� ,

where the sum is over cyclic permutations of the nearest-
neighbor index. Therefore, the unit vector normal to atom n

in sublattice X is given by n̂i
X=

ni
X

�ni
X� . It is straightforward to

retain the quadratic terms of expressions of the type n̂i
X · n̂ j

Y;
however, for �n̂i

X · n̂i
X�−1/2, we have to use a multivariable Tay-

lor expansion. The expansion depends on nine variables
since �ni

X�−1= �ni
X ·ni

X�−1/2 depends on the three three-
dimensional vectors u��i�

Y . If we define the function
fX�u��i�
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X�−1, we can write
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where u	m
Y is the mth component of the small displacement of

an atom in sublattice Y, which is the neighbor 	 of atom i in
sublattice X. From the definition of the normal vectors it is
evident, as we mentioned previously, that terms that involve
the product of normals at neighboring sites contain neverthe-
less displacements that go beyond nearest-neighbor interac-
tions. Putting all together, we obtain for the �-� and the �-�
overlap energy costs the following expressions, respectively,

UL
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FIG. 1. �Color online� Graphene lattice with the notation used
throughout the text.
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· �
�
�u��n�

Y −
1

3�
�

u����
X �� . �5�

From these expressions we can see that UL
�2 is related to

acoustic modes while UL
�3 involves relative displacements of

the A and the B sublattices, and then it is related to the
optical modes. Both terms have components only in the out-
of-plane �ẑ� direction and hence affect only the flexural
modes. In-plane and out-of-plane modes are decoupled in the
harmonic approximation in the sense that the dynamical ma-
trix can be block diagonalized. However, the modes are
coupled through the elastic constant �1, since the dangling
bond term UL

�1 has both in-plane and out-of-plane compo-
nents.

IV. RESULTS

In Lenosky’s original work,11 the value of �0 was taken to
infinity and the remaining parameters were calculated by lo-
cal density approximation �LDA�. The obtained values were
�1=0.96 eV, �2=1.29 eV, and �3=0.05 eV. Here we take
the parameter �0 as adjustable to reproduce correctly the
value of the optical modes at the � point, from which we
obtain �0=36 eV. In Fig. 2 it is shown the phonon disper-
sion resulting from the Lenosky model plotted as a function
of momentum with the above values for the �n parameters.
As we anticipated, expression �1� gives a very good descrip-
tion for the flexural modes near the � point, as it can be seen
from Fig. 2. However, the description is not so good for the

in-plane modes. The failing of the model for the LO mode at
the � point and the transverse optic �TO� mode at the K point
can be attributed to the Kohn anomalies20,21 that are not
taken into account in Eq. �1�. However, the most important
qualitative failure of the model is for the ordering of the
modes at the K point. With Lenosky’s energy, the ZA/ZO
modes at the K point have larger energy than the transverse
acoustic �TA� mode, in contrary to what is observed experi-
mentally. A quick inspection at the expressions of these
modes in terms of the parameters �n reveals that this problem
cannot be solved by choosing a different set of parameters.
The frequencies of the ZA/ZO and the TA modes at the K
point are given by ZA�K�=1 /a�18�1+12�2� /M and
TA�K�=1 /a18�1 /M, respectively, with M being the car-
bon mass, and where we have used the fact that �0 has to be
the largest energy scale in the problem. Since �n�0, from
these expressions it is evident that ZA�K��TA�K�.

To overcome this issue, we construct a “hybrid” model by
adding to Lenosky’s energy �1� a bond-bending term as
present in the Keating and the Kirkwood models

UB = �
i=1

N

�
�,
��

�	ri��i� · ri
�i� +
1

2

2

, �6�

which represents the energy cost of changing the angle be-
tween bonds. This is roughly equivalent then to taking the
model presented in Ref. 9 and adding the �-� and �-� over-
lap terms, besides the small difference in the dangling bond
term discussed previously. The harmonic expansion UB

� of
this term can be readily obtained and is given by

UB
� = �

X�Y
� �î1 · �u2�n�

Y − un
X� + î2 · �u1�n�

Y − un
X��2, �7�

where the second sum is given over cyclic permutations of
the nearest-neighbor indices.

We present the results from our hybrid model in Fig. 3 for

FIG. 2. �Color online� Solid line: phonon dispersion for Lenos-
ky’s model vs momentum with parameters as discussed in the text;
dots: collection of experimental data taken from Ref. 2. The fre-
quencies are in meV.

FIG. 3. �Color online� Solid line: best fit phonon dispersion for
the hybrid model vs momentum with parameters as discussed in the
text; dots: collection of experimental data taken from Refs. 2 and 4.
The frequencies are in meV.
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the high symmetry lines of the full Brillouin zone. We ob-
tained a best fit for the experimental data in the �-K direction
and utilized the resulting values for the elastic parameters
�0=24.8 eV, �1=1.3 eV, �2=0.2 eV, �3=1.2 eV, and
�=5.0 eV to construct the dispersion for the rest of the Bril-
louin zone. From Fig. 3 it is seen that the fitting for the
flexural modes is indeed exceptionally good. However, prob-
lems still remain for the in-plane modes. In particular, the
degeneracy of the longitudinal acoustic �LA�/LO and TA/TO
modes at the K point is not the right one. This problem is a
consequence of the bond-bending term U� and it is also
present in both the nearest-neighbor Keating and Kirkwood
models, although it is not mentioned in the literature. The
way out of this problem is to realize that these models allow
for the right symmetry if a condition among the elastic pa-
rameters is fulfilled. We found this condition for our hybrid
model to be �0� �7�+ 9

2�1�, which reduces to �0�7� for the
usual Keating model. Therefore, the fitting of the elastic pa-
rameters has to be constrained by this condition, instead of
an unrestricted fit. If we apply this restriction to our fitting of
the data, we obtain the phonon spectrum depicted in Fig. 4.
From the figure it can be seen that the new fit has the right
symmetries and it is overall a very good fit in the whole

Brillouin zone, with the exception of the points where the
Kohn anomaly should play a role, namely, the overbending
of the LO mode at the � point and the softening of the TO
mode at the K point. From the values obtained for the elastic
constants �0=30 eV, �1=1.3 eV, �2=0.2 eV, �3=1.2 eV,
and �=2.4 it can be inferred that the �-� overlap dominates
over the �-� orbital overlap. This is in agreement with the
results presented in Ref. 10 within a tight-binding study but
differs from the values obtained for Lenosky’s energy in Ref.
11 in which �3 is the smallest parameter.

V. CONCLUSIONS

In conclusion, we have analyzed the phonon dispersion
given by the energy function �1� first introduced in Ref. 11
for graphene sheets. We have shown that this model gives
good results for the flexural modes but fails to describe cor-
rectly in-plane modes beyond the � point. To overcome this,
we have constructed a five-parameter hybrid model that adds
to Lenosky’s energy a commonly used bond-bending term.
We have shown that a restricted fit of the elastic parameters
reproduces correctly all the relevant features of the phonon
dispersion of graphene, with the exception of the Kohn
anomalies. This restricted fit is essential to obtain the right
symmetries of the model, and our results with respect to this
point also apply for existent and well-established nearest-
neighbor valence-force models in the literature, namely, the
Kirkwood6 and the Keating7 models. According to our re-
sults, the effect of the change in overlap between the � and
the � bonds is dominant over the effect due to the change in
the �-� overlap. The agreement of our model with the ex-
perimental data is extremely good. In particular, the flexural
modes, which are of extreme importance for graphene, are
excellently described. We have therefore obtained a minimal
few-parameter model, which can be used as a starting point
in future analytical calculations. Results in this respect will
be published elsewhere.
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