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Using a functional renormalization-group method, we obtain the phase diagram of the two-leg ladder system
within the Holstein-Hubbard model, which includes both electron-electron and electron-phonon interactions.
Our renormalization-group technique allows us to analyze the problem for both weak and strong electron-
phonon couplings. We show that, in contrast to results from conventional weak-coupling studies, electron-
phonon interactions can dominate electron-electron interactions, and retardation effects play an important role
on the phase diagram.
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I. INTRODUCTION

The renormalization-group �RG� method has provided a
fundamental understanding of the stable phases of matter in
terms of the basin of attraction of fixed points �FPs�. Quan-
tum phase transitions �QPTs� between different fixed points
can be described in terms of the stability of these FPs relative
to the RG flow. In the theory of metals, Landau’s Fermi-
liquid theory can be described either as a stable FP of the
renormalization-group flow under repulsive interactions or as
an unstable FP under attractive interactions to a supercon-
ducting �SC� state described by BCS theory.1 Apart from
determining the stability of a FP, the RG method also pro-
vides direct information about the energy scales �gaps� and
length scales �correlation lengths� associated with a QPT.
Hence, the RG not only provides qualitative information but
also quantitative information about the different phases of
matter.

In practice, however, there are very few examples of
problems in which the RG can be implemented beyond weak
coupling.2 Furthermore, another well-known challenge to the
RG has been its implementation in problems with retarda-
tion, such as the electron-phonon �e-ph� problem, because of
the introduction of multiple, frequency-dependent interaction
channels that renormalize in a collective, energy-dependent,
way. At weak e-ph coupling, when retardation plays a small
role, the RG can be implemented using approximations such
as the so-called two-step RG.3,4 Usually, the two-step RG
leads to an enhancement of the instabilities that exist when
only electron-electron �e-e� interactions are present, but does
not describe phases where retardation effects due to the e-ph
coupling become dominant over e-e effects. In fact, we show
that new phases, such as charge-density wave �CDW� and
s-wave SC state, emerge at strong e-ph coupling �see Fig. 1�.

Recently, the RG was extended to study the nonperturba-
tive physics of the e-ph problem in the large N limit �where
N=EF /�, EF is the Fermi energy and � is the cutoff� in the
presence of e-e interactions for a two-dimensional circular
�three-dimensional spherical� Fermi surface.5 In particular,
that work established that the stable FP of this problem is
described by the Eliashberg-Migdal theory, which contains
BCS as its weak-coupling limit. Since it has few scattering

channels,1 the circular �spherical� Fermi surface, which is a
consequence of the plane-wave character of the electronic
wave functions, is a particularly simple problem. This is not
the case for Fermi surfaces that derive from localized elec-
tronic orbitals that can be unstable either to exotic SC states
�such as p and d waves� or to density wave �charge and spin�
phases. Arguably, the most famous example of this phenom-
enon are the one-dimensional �1D� conductors where the
nesting associated with Fermi points leads to a richness of
phases that can be described by g-ology, bosonization,6,7 and
the functional RG.8 However, the 1D problem is very par-
ticular because of the restricted phase space for interaction,
and, even in 1D, the treatment of the e-ph interaction is
problematic.9

The recently developed e-ph coupled functional renormal-
ization group5 �FRG� includes the merits of the FRG for the
pure e-e interacting system1,10,11 and goes beyond the two-
step renormalization group for the e-ph interacting
system3,4,12 by allowing the systematic study of the full fre-
quency dependence of couplings. In this paper, we use this
newly extended FRG to study the two-leg ladder Holstein-

FIG. 1. Phase diagram of Holstein-Hubbard ladder as a function
of electron-phonon coupling gep and doping �t=1 and U=2�. Filled
circles, �0=1; open circles, without retardation �antiadiabatic limit�.
Zero doping corresponds to half-filling.
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Hubbard model that describes a quasi-1D system in the pres-
ence of e-e and e-ph interactions. The ladder system, consist-
ing of two 1D chains coupled by interchain hopping, can be
considered as an intermediate between 1D and two-
dimensional �2D� systems, since it shares properties with
both: it has a limited number of scattering channels, as in 1D,
but can also show SC state with 2D characteristics, such as
d-wave order parameter.13,14 As a result, ladders have been
considered by many as a theoretical test bed for the under-
standing of high-Tc superconductivity.15

Furthermore, the interest in the e-ph problem in high Tc
has been revitalized by experimental evidence that the e-ph
coupling may play a critical role in these systems.16,17 Apart
from the cuprates, ladder systems have also attracted much
attention recently because, from the technical point of view,
they are amenable to field theoretical calculations and to re-
liable numerical simulations, in contrast to truly 2D systems.
Studying the interplay between the e-e and e-ph interactions
in a ladder is also important for the understanding of the
physics of some low-dimensional materials, such as molecu-
lar crystals and charge-transfer solids.18

The plan of this paper is to employ this newly developed
functional multiscale renormalization-group method to ex-
plore the properties of the two-leg ladder with both e-e and
e-ph interactions. Thus, Sec. II of the paper, which describes
the Holstein-Hubbard model and the allowed scattering
terms in the two-leg ladder system, will serve as the basis to
illustrate the multiscale nature of the e-ph interacting system.
In Sec. III, we present briefly the multiscale functional
renormalization-group method. In Sec. IV, we discuss the
results, emphasizing the change of the pairing symmetry.
Section V contains a brief conclusion.

II. HOLSTEIN-HUBBARD TWO-LEG LADDER

The Holstein-Hubbard model is described by the follow-
ing Hamiltonian �we use units such that �=1=kB�:

H = − t �
�i,j�,�

�ci,�
† cj,� + H.c.� + U�

i

ni,↑ni,↓

+ gep�
i,�

�ai
† + ai�ni,� + �0�

i

ai
†ai − ��

i,�
ci,�

† ci,�, �1�

where ci,�
† �ci,�� creates �annihilates� an electron at site i with

spin � �ni� is the electron number operator�, ai
† �ai� creates

�annihilates� an optical phonon at site i with energy �0, t is
the hopping energy of the electrons along legs and rungs of
the ladder, U is the on-site e-e interaction, gep is the e-ph
coupling energy, and � is the chemical potential to fix the
filling factor. In what follows, we use units such that t=1. In
the absence of e-e �U=0� and e-ph �gep=0� interactions, the
energy spectrum of the electrons is given by

��k � �kx,ky�� = − 2t cos�kx� − t cos�ky� − � . �2�

It has the form shown in Fig. 2.
One can reformulate the problem in terms of path inte-

grals, and since the phonon fields enter quadratically in the
action, they can be integrated out exactly,5 generating an
effective action S for the electrons that can be written as

S = 	
k� ,�

��
†�k��
i� − ��k�����k��

+ 	
�k��,�,��

g�k1,k2,k3,k4���
†�k4����

† �k3�����k2����k1� ,

�3�

where � is the electron field, and the coupling functions for
electron-electron interactions in the momentum space are
given by

g�k1,k2,k3,k4� = U − 2gep
2 �0/
�0

2 + ��1 − �4�2� , �4�

where k� = �k ,��. Each coupling is a function of the incoming
and outgoing momenta and frequencies, subject to k1� +k2�
=k3� +k4� . In order to lighten the notation, we suppress the
fourth index of the coupling, showing it explicitly to empha-
size the momentum or frequency dependences only. Thus,
g�k1� ,k2� ,k3� ,k4� � is understood to be equivalent to g�k1� ,k2� ,k3� �
with the fourth index, k4� , given by k4� =k1� +k2� −k3� . For a sys-
tem with e-ph interactions, the couplings are frequency de-
pendent, i.e., retarded. We choose g�k1� ,k2� ,k3� ,k4� � to represent
the scattering between electrons with opposite spins. The
coupling functions for scattering between electrons with par-
allel spins are determined by those with opposite spin due to
the SU�2� spin symmetry.

Following Ref. 5, our only assumption is that the full
bandwidth of the two-leg ladder system is larger than any of
the interaction terms; i.e., that 6t	U ,gep ,�0, leaving the
relative values of U, �0, and gep free. The strong-coupling
limit of the electron-phonon problem occurs when 

�2N�0�gep

2 /�0	1. This regime is accessible in our FRG
approach. By utilizing the time-reversal symmetry, exchange
symmetry, and reflection symmetry, the number of indepen-
dent couplings in the Fermi surface for the two-leg ladder at
incommensurate fillings is 12 �each coupling is a function of

FIG. 2. Energy dispersion for free electrons in a two-leg
ladder.
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three momenta and three frequencies; the frequency depen-
dences are suppressed for clarity�. There are six intraband
couplings:

g4
A = g�kL

A,kL
A,kL

A,kL
A�, g4

B = g�kL
B,kL

B,kL
B,kL

B� ,

g1
A = g�kL

A,kR
A,kL

A,kR
A�, g1

B = g�kL
B,kR

B,kL
B,kR

B� ,

g2
A = g�kL

A,kR
A,kR

A,kL
A�, g2

B = g�kL
B,kR

B,kR
B,kL

B� , �5�

and six interband couplings:

g1
C = g�kL

A,kL
B,kL

A,kL
B�, g2

C = g�kL
A,kL

B,kL
B,kL

A� ,

g1
D = g�kL

B,kR
B,kL

A,kR
A�, g2

D = g�kL
B,kR

B,kR
A,kL

A� ,

g1
E = g�kL

B,kR
A,kL

B,kR
A�, g2

E = g�kL
B,kR

A,kR
A,kL

B� . �6�

III. MULTISCALE FUNCTIONAL RENORMALIZATION-
GROUP METHOD

For pure e-e interactions, the Fermi velocities are renor-
malized by g4

A and g4
B, and the renormalizations of scattering

between particles on the same side of the Brillouin zone at
different bands, g1

C and g2
C, are absent in the leading order.

This is not necessarily valid for couplings with frequency
dependence. Moreover, these couplings generate self-energy
corrections, which are important for studying the system
with retardation effects,5 leading to the renormalization of
Fermi velocities and quasiparticle lifetime. Thus we keep
these couplings even though they are not renormalized in the
nonretarded system. In leading order, the RG equations for
the coupling function, g��k�1 ,k�2 ,k�3�, is

��g��k1,k2,k3� = −	 dp���
G��p� �G��k���g��k1,k2,k��g��p� ,k� ,k3� −	 dp���
G��p� �G��q1��g��p� ,k2,q1�g��k1,q1,k3�

−	 dp���
G��p� �G��q2��
− 2g��k1,p� ,q2�g��q2,k2,k3� + g��p� ,k1,q2�g��q2,k2,k3� + g��k1,p� ,q2�g��k2,q2,k3�� .

�7�

The RG equations for the self-energy, ���k��, is

�����k�� = −	 dp���
G��p� ��
2g��p� ,k� ,k�� − g��k� ,p� ,k��� ,

�8�

where k� =k1� +k2� − p� , q1� = p� +k3� −k1� , q2� = p� +k3� −k2� , �dp�
=�dp��1/ �2��, and G� is the self-energy corrected propa-
gator at cutoff �. The initial condition for the coupling func-
tions is given by Eq. �4�. The self-energies are equal to zero
at �=�0.

Once we obtain the renormalized couplings and self-
energies, we calculate the RG flow of the susceptibilities
corresponding to different order parameters and determine
which one dominates. The SC susceptibility, ���k ,��, is de-
fined as

��
� �k = 0,� = 0� =	 D�1,2�f��p1�f��p2�

��cp1,↓c−p1,↑c−p2,↑
† cp2,↓

† � , �9�

where �=s ,d for s- and d-wave SC states, respectively. The
form factor f� is defined as fs�p�=1 for s-wave SC state, and
fd�p�=cos�px�−cos�py� for d-wave SC state. D�1,2� is de-
fined as the integration over the energy modes with energy,
��p1� and ��p2�, larger than the cutoff �. That is,
�D�1,2� � ���p1���d�1J���p1� , p1����p2���d�2 J ���p2� , p2�,

where J���p� , p� is the Jacobian for the change of the inte-
gration measure from �dp to �d�.

The RG equations for the susceptibility flows are

����
� �k = 0,� = 0� =	 dp���
G��p� �G��− p� ��
Z�

� �p� ��2.

�10�

The function Z�
� �p� � is the effective vertex in the definition for

the susceptibility ��
� , and its flow is governed by the RG

equations:

��Z�
� �p� � = −	 dp� ���
G��p� ��G��− p� ���

�Z�
� �p��g��p�,− p�,− p� ,p� � . �11�

Its initial condition, at �=�0, is 1 for s-wave pairing and
cos�kx�−cos�ky� for d-wave pairing. The RG equations for
susceptibilities are solved with initial condition ��=�0

� �0,0�
=0. The dominant instability in the ground state is given by
the most divergent susceptibility by solving the RG equa-
tions numerically. In the calculations reported here, we have
discretized the frequency axis into nine points and have
checked that our results are essentially unchanged when ad-
ditional discretization points are added.
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IV. PAIRING SYMMETRY CHANGE DRIVEN BY
ELECTRON-PHONON COUPLING

Without e-ph coupling, the d-wave pairing is the generic
dominant instability for 0–0.5 doping �half- to quarter-
filling�, except in a narrow region in the parameter space
where all the charge and spin degrees of freedom are gapless.
The large region of d-wave pairing in the ladder comes from
the anisotropy between the transverse and parallel directions,
which leads the pair scattering to develop a directional de-
pendence when the high-energy degrees of freedom are
eliminated. For the Holstein coupling, the phonon-mediated
attractive retarded interaction is independent of the momen-
tum transfer and is thus isotropic. The attractive interaction is
relevant in generating pair scattering, since it leads the
particle-particle ladder diagrams to acquire logarithmic di-
vergences. The d-wave pairing from repulsive interaction
does not come from this divergence, and thus, the attractive
interaction is very effective in leading to pairing instability,
and more importantly, this pairing has s-wave symmetry.
Therefore, the e-ph coupling tends to enhance the s-wave
component in the pairing scattering matrix, and once this
coupling exceeds a critical value, the s-wave channel domi-
nates. This result can only be seen in strong coupling and,
hence, is not accessible to the two-step RG.4 A study of the
fully retarded problem for a 2D circular Fermi surface has
similarly shown how the two-step RG breaks down in the
strong-coupling �
	1� limit.19 Another consequence of e-ph
coupling is that retardation leads to corrections to the quasi-
particle lifetime. These come from self-energy corrections
which depend on the density of states �i.e., on the Fermi
velocity�. Near half-filling the Fermi velocities of the two
bands are similar. However, close to quarter-filling they are
very different, the self-energy corrections are then different
for the two bands, and therefore d-wave tendency is further
enhanced when there is retardation �Fig. 1�.

In Fig. 3 we show a representative RG flow, in which we
observe the change in the dominant susceptibility for in-
creasing e-ph coupling gep. Although the isotropic phonons
tend to break the d-wave pairs, as long as the e-ph coupling
is small compared to the e-e interactions, the d-wave pairing
remains the dominant instability. However, the s-wave over-
comes the d-wave pairing when the effective interaction in
the antiadiabatic limit, Ueffective=U−2gep

2 /�0, is near zero.
When retardation effects are fully taken into account, the
transition to s wave happens at a smaller value of gep than for
the antiadiabatic limit. This is because the phonons have a
finite energy �0, and at this energy scale, it is enough that the
attractive part of the interaction overcomes the renormalized
repulsive part at that RG scale in order for the s-wave insta-
bility to occur. As the doping increases, the critical values for
the pairing transition remains constant. As quarter-filling is
approached, the d-wave SC region then increases with dop-
ing and is rather stable against s wave, because the Fermi
surface becomes more anisotropic. This result should be con-
trasted with the 2D case where d-wave SC region seems to
be suppressed at larger doping because the Fermi surface
becomes more isotropic. Hence, our results show that one
has to be cautious when comparing results for ladders with
the true 2D problem. For doping close to the quarter filling,

we find noticeable changes in the critical values, and a sub-
stantially stronger e-ph interaction is needed to drive the
s-wave pairing over the d wave. This can be understood from
the fact that the difference between the Fermi velocities of
the antibonding and bonding bands becomes larger as the
system is doped away from half-filling �see Fig. 2�, and from
the different self-energy corrections, as discussed before. The
asymmetry between the bands leads to different contribu-
tions to pair scattering at ky =0 and at ky =�, leading to a
phase difference in the pairing matrix elements which is
manifested as a d-wave pairing channel. At sufficiently
strong e-ph coupling, s wave still dominates

Exactly at quarter-filling, the Fermi surface in the anti-
bonding band shrinks to a point, which leads to a Van Hove
singularity. Also, at this filling the distance between the
Fermi points in the bonding band is commensurate, which
results in the presence of an extra umklapp scattering in the
bonding band, g3

B= �kL
B ,kL

B ,kR
B ,kR

B�. We do not find that the
umklapp scattering is sufficient to drive the system to spin-
density wave �SDW� phase. In contrast to the case without
phonons, 
=0,14 we do not find a Luttinger liquid phase
�C2S2�. The d-wave pairing is still the dominant instability
for small e-ph coupling, and the s wave again overcomes the
d wave at strong coupling. Below quarter-filling, the anti-
bonding band is empty. Only two Fermi points remain on the
bonding band. The system becomes essentially 1D as the
effect of the antibonding band is then irrelevant.

(a)

(b)

FIG. 3. The flows of s-wave SC �solid lines� and d-wave SC
�dotted lines� susceptibilities as a function of l=ln��0 /�� for U
=2, �0=1, and doping of 0.2.
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We have also investigated the problem exactly at half-
filling. In this particular commensurate doping, there is a
direct competition between a SDW and a CDW phase. In the
absence of e-ph interaction, the SDW phase �with a charge
gap but no spin gap� is very robust and is not destabilized at
weak coupling. At intermediate coupling �
�1�, however,
the SDW phase becomes unstable to a CDW phase with a
charge gap. This result cannot be obtained in the weak-
coupling methods discussed previously.

The final results of our study are summarized in the phase
diagram of Fig. 1. We find that the e-ph couplings at inter-
mediate and strong couplings leads to substantial qualitative
differences from previous results, including the appearance
of new phases: CDW and s-wave SC state. Moreover, we see
that the d-wave phase is stabilized close to quarter-filling, in
contrast to the 2D case.

V. CONCLUSION

In conclusion, we have studied the effect of e-ph coupling
on the phase diagram of a two-leg ladder Holstein-Hubbard
model and applied the FRG method. This method deals with
the retardation effects in a systematic way. In particular,
when the e-ph interaction strength is comparable to the e-e
interactions and 
	1, there are qualitative differences in the
phase diagram from that predicted in previous studies. In
particular, in addition to the SDW and d-wave SC phases
found previously, we establish that for strong e-ph coupling,
both CDW and s-wave SC phases can arise.
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