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We develop an asymptotically exact renormalization-group approach that treats electron-electron and
electron-phonon interactions on an equal footing. The approach allows an unbiased study of the instabilities of
Fermi liquids without the assumption of a broken symmetry. We apply our method to the problem of strongly
coupled superconductors and find the temperature T* below which the high-temperature Fermi liquid state
becomes unstable towards Cooper pairing. We show that T* is the same as the critical temperature Tc obtained
in Eliashberg’s strong coupling theory starting from the low-temperature superconducting phase. A
1/N-expansion shows that the method is asymptotically exact and Migdal’s theorem follows as a consequence.
Finally, our results lead to a novel way to calculate numerically, from microscopic parameters, the transition
temperature of superconductors.
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I. INTRODUCTION

There is a renewed interest in understanding the interplay
between electron-electron and electron-phonon interactions
in strongly correlated electronic systems.1–5 While the ex-
perimental data indicate the important role played by both
electron-electron and electron-phonon interactions, theoreti-
cal progress has been limited due to the complexity associ-
ated with treating these two interactions on an equal footing.
Most approaches rely on mean-field treatments where a “fa-
vorite” order parameter and broken symmetry are introduced
“by hand.” It is highly desirable if instead one could predict
the leading instability starting from the geometry of the
Fermi surface, the strength of the couplings, and the bare
energy scales of the problem, such as the Fermi energy, EF,
and the Debye frequency, �D.

The renormalization group �RG� provides such an
approach,6 one that has been successful in explaining the
stability and instabilities of Landau Fermi liquids in more
than one dimension. Let us recall the two-stage procedure
advocated there. Firstly, given a microscopic theory defined
in all of momentum space, one integrates out all modes ex-
cept those within an energy cutoff � of EF. In d=2, which is
our focus in this work �the d=3 case can be treated in an
analogous way8�, the remaining phase space has the form of
an annulus of radius kF �the Fermi momentum� and width
2� /vF �where vF is the Fermi velocity�. In the beginning of
this process of integrating out high-energy modes, the cor-
rections are treated perturbatively in the strength of the in-
teractions. In the second stage, provided that mode elimina-
tions have reached an energy cutoff ��EF, a 1 /N expansion
emerges, with N�EF /�. More precisely, imagine dividing
the annulus into N patches of size of order �� /vF�2. The
momentum of each fermion k is a sum of a “large” part
�order kF� centered on a patch labeled by a patch index i
=1, . . . ,N and a “small” momentum �order � /vF� within the
patch.6 It can then be verified that in all Feynman diagrams
of this cutoff theory the patch index plays the role of a con-
served isospin index exactly as in a theory with N fermionic

species. The electron-electron interaction terms, written in
this notation, come with a prefactor of 1 /N ��� /EF�, and
the RG corrections can be organized in terms of powers of
1 /N. Summing up the series of dominant corrections in order
1 /N becomes asymptotically exact since N→� as the RG
procedure decreases the cutoff �→0. This 1 /N expansion
has been developed in Ref. 6 and has been used to show that,
provided one can start the RG flow at �0�EF �large N�,
Landau’s Fermi liquid theory emerges as the asymptotically
exact theory for repulsive fermions with a generic �non-
nested and with no singularities� Fermi surface. In this way
the RG expansion goes beyond perturbation theory and the
end values of the couplings can be large. We make use of this
expansion here and extend it for the case when phonons are
present.

Electron-phonon interactions in the Wilson-like RG of
Ref. 6, wherein momenta are rescaled to attain a fixed point,
posed the following problem:7 electronic momentum scales
differently parallel and perpendicular to the Fermi surface
while phonon momentum scales isotropically. We circum-
vent this problem by using the quantum field theory version
of the RG in which the cutoff dependence of couplings that
preserves the physical quantities defines the flow, with no
rescaling of momenta or frequencies.

The paper is organized as follows: The RG approach for
interacting fermions that are also coupled to phonons is de-
scribed in Sec. II. In Sec. III we illustrate our method for a
circular Fermi surface and an analytical solution is obtained.
The RG indicates an instability in the Cooper channel when
the electron-phonon coupling is strong enough to overcome
the effective repulsive electron-electron interactions. In Sec.
IV we present the finite temperature formalism. We obtain
the temperature T* at which the high-temperature Fermi liq-
uid state becomes unstable in the Cooper channel. We dem-
onstrate that T* is the same as the superconducting tempera-
ture Tc that is obtained from the Eliashberg theory of
strongly coupled superconductor, which approaches the tran-
sition from the ordered phase.10,11 This is an alternative deri-
vation of Eliashberg’s equations starting from a Fermi liquid
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state. Furthermore, by extending the 1/N analysis to the
problem with phonons �Sec. V�, we show that, as in the case
of Landau’s Fermi liquid theory for electron-electron inter-
actions, the Eliashberg theory is the exact low energy effec-
tive theory obtained by using RG. Migdal’s theorem is also
derived from the 1/N analysis. Section VI contains further
discussions and conclusion.

II. RG FOR INTERACTING ELECTRONS COUPLED TO
PHONONS

We work in the path-integral representation and consider
the general action

S��,�� = Se��� + Sph��� + Se-ph��,�� + Se-e��� , �1�

where

Se = �
�k

�k
†��i� − �k��k� �2�

is the free electron action and

Sph = �
	q

�q
†�i	 − wq��q �3�

is the free phonon action �k= �� ,k� and q= �	 ,q�, where
� ,	 are fermionic and bosonic Matsubara frequencies, re-
spectively, and k ,q are the momenta�. The interaction terms
are given by

Se-ph = �
�k
�

	q
g�q��k+q

†� �k���q + �−q
† � �4�

and

Se-e =
1

2�
i=1

3 �
�iki

u�k4,k3,k2,k1��k4

†��k2��k3

†���k1��, �5�

where k4=k1+k2−k3. �We use units such that 
=1=kB.� The
above action defines the input physics at a cutoff �0 such
that �D ,g ,u��0�EF �thus N�EF /�0�1�.

The phonons, being described by a Gaussian action, can
be integrated out exactly, leading to an electron-electron
problem with retarded interactions

ũ�k4,k3,k2,k1� = u�k4,k3,k2,k1� − 2g�k1,k3�g�k2,k4�D�k1 − k3� ,

�6�

where

D�q� =
�q

�2 + �q
2 �7�

is the phonon propagator. Here we are considering fermions
with spin and it is sufficient to focus on interactions involv-
ing two fermions with opposite spins.9 For spinless fermions
the initial condition must be antisymmetrized with respect to
1↔2 and 3↔4. The Feynman diagram associated with the
initial vertex ũ is shown in Fig. 1�a�. The vertex is a function
of the momenta and frequencies of the incoming and out-
going electrons, with momentum and frequency conserva-
tion. The dependence on the magnitude of the momenta is
irrelevant and all k’s are taken to be on the Fermi surface.
For a generic non-nested Fermi surface, with no singular-
ities and with time-reversal symmetry, only two types of
scattering exist:6 forward scattering with k1=k3 ,k2=k4 �these
evolve into Landau parameters� and the scattering in the
Cooper channel with k1=−k2 ,k3=−k4. The box vertex in the
diagrams in Fig. 1 can represent either one of these scattering
processes. The forward scattering channel �which does not
flow under the RG as in the case of pure electron-electron
interactions6� contributes to the electron self-energy ��k ,��
as shown in Fig. 1�b�. We can write

���,k� = �0 + i	1 − Z��,k�
� �8�

with two types of contributions: a shift in the chemical po-
tential ����0� and wave-function renormalization,
Z�� ,k�. The shift in the chemical potential can be reab-
sorbed in the theory by assuming a fixed number of
electrons.6 The wave-function renormalization, Z�� ,k�, is of
special interest in this problem.

The starting point of our RG is the interaction vertex
��4�	ũ
 in the Cooper channel, as shown in Fig. 1�c�:

��4�	ũ�− k3,k3,− k1,k1�
 = ũ�− k3,k3,− k1,k1� − �
�k

ũ�− k,k,− k1,k1�ũ�− k3,k3,− k,k�
	i� − �k − ���,k�
	− i� − �k − ��− �,k�


, �9�

where the momentum integral is such that all internal ener-
gies lie between 0 and �.

III. EXACT ANALYTICAL SOLUTION FOR A CIRCULAR
FERMI SURFACE

In order to establish the method and proceed with simple
analytical manipulations, we focus on an isotropic Fermi sur-
face with no singular regions, and Einstein phonons with
frequency �E �the generalization for an arbitrary phonon

spectrum is straightforward8�. Since EF��D ,g ,u we ignore
radial excursions away from the Fermi surface in the cou-
pling constants. In this case the external electron momentum
can be put on kF and ũ�−k3 ,k3 ,−k1 ,k1� depends on the angles
only via the difference �1−�3. Let us define

ṽ��1,�3� = N�0� � d�1

2�
� d�3

2�
ũ�− k3,k3,− k1,k1� ,

where N�0� is the Fermi surface density of states.
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The RG equations are obtained from �9� by imposing the
condition of cutoff independence, namely,

d��4�

d�
= 0, �10�

where �=ln��0 /�� is the RG scale. From �9� we obtain

d

d�
ṽ��1,�3,�� = − �

−�

� d�

�

��ṽ��1,�,��ṽ��,�3,��
��

2 + Z�
2����2 ,

�11�

with the initial RG condition

ṽ��1,�3,� = 0� = u0 − ��ED��1 − �3� ,

where u0 is the bare electron-electron interaction12 and

� =
2N�0�g2

�E
�12�

is the electron-phonon coupling constant. Notice that this is a
functional equation, because retardation introduced by the
phonons leads to a mixing of the couplings at low and high
frequencies.

The RG equation for Z����, which for a circular Fermi
surface does not depend on the momentum direction, can be
likewise derived and formally integrated to give

Z���� = 1 +
�

��
�

��
�

��

� Z���D�� − ���
Z�

2 ������2 + �2 . �13�

The large-N considerations of Ref. 6 are fully applicable
here since we are dealing with nonsingular interactions
�albeit retarded�. Thus the one-loop flows derived above are
exact as N→�. More detailed analysis is presented in
Sec. V.

Notice that �11� can be seen as a matrix problem:

dU

d�
= − U · M · U , �14�

where

Uij��� = ṽ��i,� j,�� ,

and

Mij��� =
��ij

����
2 + Z�

2��i��i
2�

.

The solution of �14� is

U��� = 	1 + U�0� · P���
−1U�0� ,

with P��� defined as

P��� = �
0

�

d��M���� .

Therefore, the condition for the instability of the RG at a
certain scale �=�c is given by

det	1 + U�0� · P��c�
 = 0. �15�

Equivalently, we could search for the eigenvector f of the
matrix U−1��c� with zero eigenvalue:

	1 + U�0� · P��c�
 · f = 0,

that is,

f��� = −
1

�
�

��
�

�c

� 	u0 − ��ED�� − ���

Z�

2 ������2 + �2 f���� , �16�

which is an integral equation for f���.
For a given value of input parameters �u0 ,� ,�E ,�0� the

set of equations �16� and �13� can be solved for a critical
cutoff energy scale, �c, at which the running couplings di-
verge and the Fermi liquid description breaks down.

IV. FINITE TEMPERATURE FORMALISM AND
DERIVATION OF ELIASHBERG’S EQUATIONS

The T=0 formalism presented in the previous section can
be readily extended to T�0, providing us with a more ex-
perimentally accessible quantity, namely a critical tempera-
ture. We seek the temperature T* below which the Fermi
liquid description ceases to exist as one scales towards the
Fermi surface, that is, as �c→0. In this case we replace the
integrals in �13� and �16� by Matsubara sums and extend the
integrals in � from 0 to � to obtain

Z��n����n� = − �T*�
m

	u0 − ��ED��n − �m�

���m�
��m�

,

�17�

where we have defined ���n�= f��n� /Z��n� and the Matsu-
bara frequency �n=�T*�2n+1�, where n is an integer. More-
over, from �13� we find

Z��n� = 1 + ��E
�T*

�n
�
m

sgn��m�D��n − �m� . �18�

The solution of �17� and �18� gives the value of T* as a
function of the input parameters.

We now relate our approach to Eliashberg’s self-
consistent mean-field theory, which assumes a broken sym-
metry with a superconducting order parameter ���n�, in con-
trast to ours, which starts from the Fermi liquid phase.

FIG. 1. �a� The retarded interaction ũ. �b� The self-energy cor-
rection. �c� The interaction vertex.
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Remarkably �17� and �18� coincide with the Eliashberg equa-
tions at T=Tc if we replace ���n� by ���n�.11 This result is
striking since ���n� is not an order parameter and no sym-
metry breaking was assumed in our calculation. By the same
token, we can show that �c plays the role of the zero tem-
perature superconducting gap, �0 since the RG procedure,
approaching the instability from high temperatures, leads to
an instability of the Fermi liquid state at a temperature T*

that is equal to the critical temperature Tc produced by the
Eliashberg theory. Thus, it is no surprise that we can show
that in the weak/intermediate coupling regime ��*���1�
we recover the McMillan formula:13

T*  1.13�E exp�−
1 + �

� − �*�1 + ��� , �19�

where

�* =
u0

1 + u0 ln��0/�E�
�20�

is the effective electron-electron interaction at the scale of
�E �Anderson-Morel potential� and the Allen-Dynes
expression14

T*  0.16���E �21�

at strong coupling.

V. EXPANSION IN 1/N AND DERIVATION OF MIGDAL’S
THEOREM

From the 1/N analysis of Ref. 6, we know that the solu-
tion above for the one-loop RG equations contains the sum
of all dominant corrections in 1/N. The terms that have been
left out go to zero as N→�. We have therefore demonstrated
that, provided that one can start the RG flow at �0�EF,
Eliashberg’s theory is the asymptotically exact description of
the effective low-energy physics obtained by RG thanks to
the small parameter 1 /N. While this is an important result,
the main significance of our methods is that it can be used to
study the competition between charge density wave �and
other instabilities� and superconductivity in the strong cou-
pling ���1� regime of phonons, something that cannot eas-
ily be achieved in a mean-field approach. This issue arises,
for example, for Fermi surfaces with regions of nesting. For
arbitrary shapes of the Fermi surface the solution of the RG
equations can be obtained numerically by discretizing the
Fermi surfaces into patches.9,15

Since Eliashberg’s theory is based on Migdal’s theorem,16

which states that electron-phonon vertex corrections to the
electron self-energy vanish as �D /EF→0, it must be that this
theorem is built into our approach. We show here how this
result arises and that the small parameter �D /EF of Migdal’s
theorem is replaced here by 1/N.

Let us go back to the problem before we traced the
phonons and discuss the 1/N hierarchy. The patch index no-
tation carries very naturally to phonons. While it is obvious
that when a fermion in patch i scatters to patch j, it emits a
phonon of momentum k j −ki, we can also go the other way:
a phonon of “large” momentum can be resolved, up to a

twofold ambiguity, into a difference ki−k j associated with
patches i and j, due to the fact that the electron momenta lie
in a thin annulus around the Fermi surface. This fact allows
us to describe phonons with the double-index notation em-
ployed by ’t Hooft for gluons in QCD:17 the phonon line is
seen as made out of two counter propagating electron lines,
as depicted in Fig. 2�a�. The feature of the large N approach,
that given a sum or difference of momenta, one can uniquely
reconstruct the parts as �→0, was pointed out in Ref. 6.
Since integrating out the phonons produces a four-fermion
interaction of size 1/N it is clear the electron-phonon vertex
will be of size 1/�N in our notation.

Any given diagram made of nu vertices u, ng vertices g,
and nL internal loops is of order �1/N�n where n=−nu

−ng /2+nL. This way we can organize the diagrammatic ex-
pansion in powers of 1 /N. The number of loops in each
diagram, nL, can be easily obtained using Fig. 2�a�. Consider
the problem of the RG for ��k ,�� shown in Figs. 2�b�–2�d�.
It is clear from Fig. 2�b� that the correction of order g2

should be taken into account. While g2 comes with a factor
1 /N, there is an internal closed loop giving an extra factor of
N resulting in a correction of O�N0� for the self-energy. At
the same order in perturbation expansion in 1/N, there are
diagrams that are made from a simple repetition of Fig. 2�b�,
which are obviously of order O�N0� but higher order in g.
Diagram Fig. 2�c� is of order O�N0�, like Fig. 2�b�, and so are
all the other “rainbow” diagrams that are automatically in-
cluded into the theory. Thus, by solving the RG equations for
a “running” self-energy at one loop, we in fact take into
account all corrections of order O�N0� to all loops. The infi-
nite series of diagrams being summed is not arbitrary and
arises naturally from the RG equations, as shown by our 1/N
analysis. The final diagram of order g4 is shown in Fig. 2�d�:
this is the famous vertex correction to the electron self-
energy due to electron-phonon interactions studied by
Migdal.16 Notice that Fig. 2�d� does not contain any internal
loops and is of order O�N−2� and thus is vanishingly small as
N→�. It is easy to show that these corrections to the self-
energy lead to �13�. Thus, Migdal’s theorem is built into the
large N approach.18 We can also show that the phonon self-
energy has only contributions of order 1 /N28.

VI. DISCUSSION AND CONCLUSION

Our method provides a novel way to calculate Tc of su-
perconductors, starting from the normal state. At the super-

FIG. 2. �a� The electron-phonon vertex; �b�–�d� are self-energy
corrections.
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conducting instability, Eliashberg’s equations are derived
from the RG flow equations. These self-consistent integral
equations �17� are equivalent to the condition of zero deter-

minant expressed in �15�. In our RG approach, once the bare
values of the couplings are given, we simply calculate the
flow of det	1+U�0� ·P�T�
 by solving the differential RG
flow equations and determine T* as the point when this quan-
tity becomes zero �see inset in Fig. 3�. This numerical calcu-
lation is much simpler than solving �17� directly, since it
does not involve self-consistency conditions. In Fig. 3 we
show the calculation of T* as a function of � with this new
method together with the approximate asymptotic expres-
sions for weak and strong coupling.

In summary, we have developed an asymptotically exact
RG method that takes into account electron-electron and
electron-phonon interactions in an unbiased way and repro-
duces all of Eliashberg’s theory and also provides a frame-
work �large N� for understanding it as well as Migdal’s theo-
rem that goes into it. Our procedure can be used for any
Fermi surface geometry and for any number of scattering
channels �forward, charge and spin density wave, etc.� and
therefore allows for the study of the competition between
scattering channels.8 Finally, our procedure allows for a new
numerical way to investigate superconductivity in metals.
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