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Dynamics of entanglement in a dissipative Bose-Hubbard dimer
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We study the connection between the semiclassical phase space of the Bose-Hubbard dimer and inherently
quantum phenomena in this model, such as entanglement and dissipation-induced coherence. Near the
semiclassical self-trapping fixed points, the dynamics of Einstein-Podolski-Rosen (EPR) entanglement and
condensate fraction consists of beats among just three eigenstates. Since persistent EPR entangled states arise only
in the neighborhood of these fixed points, our analysis explains essentially all of the entanglement dynamics in the
system. We derive accurate analytical approximations by expanding about the strong-coupling limit; surprisingly,
their realm of validity is nearly the entire parameter space for which the self-trapping fixed points exist. Finally,
we show significant enhancement of entanglement can be produced by applying localized dissipation.
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I. INTRODUCTION

Ultracold gases in optical traps bring unprecedented control
and resolution to the study of quantum systems [1–4]. Their
prospective applications range from simulation of solid-state
phenomena [5–7] to quantum metrology [8] to quantum
information processing [9], but realizing their potential re-
quires a thorough understanding of quantum coherence. An
opportune system for the study of coherence is a Bose-Einstein
condensate loaded into a double-well optical trap, known as
a “BEC dimer” or “bosonic Josephson junction”: it is both
amenable to theoretical analysis and realizable in current
experiments. Highlights of past work on the BEC dimer in-
clude the demonstrations of matter-wave interferometry [10],
number squeezing [11–15], and measurements transcending
the standard quantum limit [16,17], as well as applications
such as gravity detectors [18] and noise thermometers [19].

The macroscopic dynamics of the BEC dimer is well
described by a semiclassical mean-field model. The mean-field
dynamics, including the emergence of self-trapping fixed
points in bifurcations, has been studied both theoretically
[20–23] and experimentally [24,25]. These works imply
a connection between the structure of the classical phase
space and truly quantum phenomena such as entanglement,
a connection studied in greater detail recently [26].

Decoherence and dissipation due to interactions with the
environment are major obstacles to long-time control of the
coherence of quantum systems [27]. However, it was recently
demonstrated that dissipation can be a versatile tool for the
manipulation of quantum systems, if it can be carefully
controlled [28–30]. In a BEC dimer, interactions with a thermal
bath or the escape of atoms from the trap may strengthen
rather than destroy coherence [31,32]. Work has now begun
on analyzing how the effects of noise and phase-space structure
interact [33].

In this paper, we use the global phase-space picture [26]
to offer insight into the dynamics of entanglement and
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dissipation-induced coherence in the double-well optical trap.
We show that the wells are entangled in the Einstein-Podolski-
Rosen (EPR) sense only in the neighborhood of the classical
fixed points. The time dependence of the entanglement
can be entirely explained in terms of beats among three
eigenstates of the system. These eigenstates can only be found
numerically, but we derive analytical results in the limit of
weak coupling between the wells. A perturbative expansion
in this limit produces excellent agreement with numerically
exact calculations. The dynamics of other observables, such
as well population imbalance or condensate fraction, can be
understood in the same framework.

These simple patterns in the dimer’s behavior not only are
interesting in their own right but also suggest a new approach
to understanding the less numerically tractable behavior of
BECs in multiwell optical lattices. The self-trapping fixed
points of the dimer are analogous to discrete breathers in
larger systems. We hope to pursue this connection in future
work.

II. ENTANGLEMENT AND COHERENCE IN THE
BOSE-HUBBARD DIMER

Consider a collection of N bosonic atoms in a double-well
optical trap sufficiently deep that only the lowest state in each
well is populated. In this so-called two-mode approximation,
the atoms’ dynamics is described by the Bose-Hubbard
Hamiltonian [34],

Ĥ = −J (â†
1â2 + â

†
2â1) + U

2
[n̂1(n̂1 − 1) + n̂2(n̂2 − 1)],

(1)

where âi is the annihilation operator for an atom in well i

and n̂i = â
†
i âi is the number operator. The same Hamiltonian

can be realized in related systems, such as two spin states of
atoms in a single optical well [25]. It is also mathematically
equivalent to the Lipkin-Meshkov-Glick model [35–38].

The macroscopic dynamics of the BEC dimer is well
described by a mean-field approximation. This approximation
implicitly assumes that the atoms remain at all times in a
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product state,

|z, φ〉 = 1√
N

[
√

(1 + z)/2 â
†
1 +

√
(1 − z)/2 eiφ â

†
2]N |0〉,

(2)

where z is the population imbalance and φ is the relative
phase of the two modes. For general quantum states, these
observables are defined by z = (〈n̂1〉 − 〈n̂2〉)/(〈n̂1〉 + 〈n̂2〉)
and 〈â†

1â2〉 = ‖〈â†
1â2〉‖ eiφ . In the mean-field approximation,

the system is described solely in terms of z and φ, and the
evolution of these variables is determined by the classical
Hamiltonian,

HMF = �z2

2
−

√
1 − z2 cos(φ), (3)

where the parameter � = U (N − 1)/2J captures the strength
of the repulsive interaction between the bosons [39]. The
trajectories (z(t), φ(t)) are given by the contours of constant
“energy” HMF = const, shown in Fig. 1(a). For � < 1, the
model has two stable fixed points, at (z, φ) = (0, 0) and (0, π ).
As � is increased above 1, a supercritical pitchfork bifurcation
takes place, and the stable fixed point at φ = π is replaced with
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FIG. 1. (Color online) The global phase-space picture of the BEC
dimer. (a) Mean-field trajectories. (b) The expectation values of z

and φ over time (phase-space trajectory) for an initially coherent
state close to the stable fixed point. The phase trajectory is drawn in
blue (dark gray); nearby mean-field trajectories are in light gray.
Note that the actual trajectory has a “thickness” associated with
it, a phenomenon beyond the mean-field description [40]. (c) The
condensate fraction after 1 s of evolution for initially coherent states
uniformly sampled in z and φ: condensate fraction remains high for
initial conditions in the neighborhood of the stable fixed points. (d)
EPR entanglement for initially coherent states after 1 s of evolution:
the only states still EPR entangled are those initially very near the
self-trapping fixed points. All plots are for N = 40, J = 10 h̄/s, and
U = 100/39 ≈ 2.6 h̄/s, so � = 5.

a pair of stable fixed points at z �= 0, φ = π and an unstable
fixed point at (z, φ) = (0, π ).

In a global phase-space picture we analyze the quantum
dynamics of an initially pure BEC |z, φ〉 as a function of
the starting position (z, φ). The condensate fraction or purity,
defined as the largest eigenvalue of the single-particle density
matrix,

ρ =
(

〈â†
1â1〉 〈â†

1â2〉
〈â†

2â1〉 〈â†
2â2〉

)
,

measures how close the many-body state is to a pure BEC [32,
41]. The EPR entanglement, an important resource in quantum
metrology, is quantified by the observable [42,43],

E = 〈â†
1â2〉〈â†

2â1〉 − 〈â†
1â1â

†
2â2〉. (4)

The wells are said to be EPR-entangled whenever E > 0. The
global phase-space picture [26] shows that the condensate
fraction remains large near all of the stable fixed points, while
EPR entanglement is found only near the z �= 0 fixed points
(see Fig. 1).

The global phase-space picture suggests a new method for
generating EPR entanglement in the Bose-Hubbard dimer:
driving the system closer to the mean-field fixed points
using controlled atom loss. Since the mean-field dynamics
is particularly simple near the fixed points, one might hope
the full quantum dynamics is simple as well, allowing for
a clear yet quantitative understanding. To develop such an
understanding, in Sec. III we describe the full quantum
dynamics of the Bose-Hubbard dimer near the mean-field fixed
points, and in Sec. IV we consider the effects of controlled
atom loss on this dynamics.

III. DYNAMICS NEAR THE SELF-TRAPPED
FIXED POINTS

Let us consider the behavior of the system near the so-
called self-trapping fixed points, located at z = ±

√
1 − 1/�2,

φ = π . In their neighborhood the observables defined in the
previous section exhibit peculiar dynamics, the most striking
feature of which is the presence of two distinct frequencies
(see Fig. 2).

The higher frequency is expected on the basis of the mean-
field model [20]. Linearizing the equations of motion obtained
from the Hamiltonian of Eq. (1) about the fixed point yields

fMF =
√

�2 − 1

π

J

h̄
. (5)

The mean-field prediction works for a broad range of � (see
Fig. 3). The lower frequency, however, cannot be explained
within the mean-field approximation. To see this, consider the
trajectory of the system in z, φ space [see Fig. 1(b)]. In the
mean-field picture, this trajectory is expected to coincide with
the energy contours of HMF. However, simulation of the full
quantum dynamics reveals a “thick” orbit, the size of which
oscillates with the low frequency [44]. (Similar low-frequency
phenomena were noted before [34] but were not discussed
quantitatively.)
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FIG. 2. (Color online) The condensate fraction and EPR en-
tanglement over time for an initially coherent (z = 0.95, φ = π )
state of the Bose-Hubbard dimer with N = 40, J = 10 h̄/s, and
U = 100/39 ≈ 2.6 h̄/s, so � = 5. The stable fixed point is at z =
2
√

6/5 ≈ 0.98, φ = π . Results are obtained by numerical integration
of the Schrödinger equation.

A. Eigenstate decomposition

To explain the low-frequency oscillations, let us decompose
the evolving quantum state into the energy eigenstates:

|ψ(t)〉 =
N∑

n=0

ane
−iEnt/h̄|En〉. (6)

At first glance, this decomposition does not offer much insight,
as the Hamiltonian has a large number of eigenstates and
their energies can only be found numerically. However, in
the neighborhood of the system’s fixed points only a few
states contribute appreciably to the wave function (see Fig. 4).
This is not entirely surprising: the stable fixed points are the
extrema of the mean-field energy, so in the neighborhood of
these points only the eigenstates with most nearly extremal
energy values should contribute to the coherent state. Indeed,
for the z = 0.95, φ = π coherent state of Fig. 2, we find
the contributions of the three highest-energy eigenstates
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FIG. 3. (Color online) The high frequency observed near the fixed
point for different values of � (blue circles) on a log-log scale. The
mean-field prediction [green (light gray) line] is consistent with the
numerically exact results. The O(�−2) perturbative result [shown in
red (medium gray)] agrees with the mean-field down to � = 1.5,
below which it overestimates the frequency; see Sec. III B for a
discussion.
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FIG. 4. (Color online) A projection onto just three eigenstates is
effective near the mean-field fixed points. Consider a coherent state
|z, φ〉 = ∑N

n=0 an|En〉 and its projection |ψ ′〉 = ∑2
n=0 an|En〉 onto the

three energy eigenstates with the largest coefficients an in the energy
eigenstate expansion. The plot above shows the norm |〈ψ ′|ψ ′〉|2 of
this projection as a function of z and φ. Note that the norm of the
projection is nearly 1 (perfect) near all of the fixed points, including
the unstable one, suggesting the three-eigenstate description will be
informative for those initial conditions. The system parameters are the
same as those in Fig. 2, namely, J = 10 h̄/s, � = 5, and N = 40. The
mean-field stable fixed points are at z = 0, φ = 0 and at z = ±0.98,
φ = π , while the unstable fixed point is at z = 0, φ = π . Contours
of constant mean-field energy are shown in white.

to be

a0 = 0.9353, E0 = 2040 h̄/s,

a1 = 0.3474, E1 = 1942 h̄/s,

a2 = 0.0653, E2 = 1850 h̄/s.

These three eigenstates together account for

|a0|2 + |a1|2 + |a2|2 = 0.9997

of the probability weight of the coherent state. We might
therefore expect the frequencies observed in the data to be
beats between the eigenstates,

(E0 − E1)/2π = 15.56 Hz ≡ ffast,

(E1 − E2)/2π = 14.64 Hz,

(E0 − E2)/2π = 30.23 Hz,

or perhaps higher-order beats, such as

E0 − E1

2π
− E1 − E2

2π
= 0.8805 Hz ≡ fslow.

These expectations are borne out: 15.6 Hz is the mean-field
frequency given by Eq. (5), while 0.85(5) Hz is the measured
frequency of the large-amplitude oscillation in Fig. 2. The
two other beats are also seen in the power spectrum of the
condensate fraction [at 14.65(5) and 30.27(5) Hz], although
not in that of EPR [45]. The projection onto the three most
important eigenstates recovers not only the frequencies but
essentially all of the observables’ dynamics (see Fig. 5). A
projection onto just two states is sufficient to recover the mean-
field motion but not the low-frequency oscillations.
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FIG. 5. (Color online) Validity of the two-frequency approxima-
tion. The condensate fraction and EPR entanglement calculated by
approximating the initial coherent state with only three eigenstates
[blue (dark gray)] is virtually indistinguishable from the numerically
exact results shown in Fig. 2. An approximation with only two
eigenstates [green (light gray)] reproduces the fast but not the slow
oscillations.

B. J → 0 limit

To gain more insight into the two frequencies, consider the
limit J → 0 in which the Hamiltonian can be diagonalized
exactly [46]. The eigenstates are the Fock states |N1, N −
N1〉 ≡ |N1〉, and the associated energies are

εN1 = N1(N1 − 1)

2
U + (N − N1)(N − N1 − 1)

2
U, (7)

which we denote with ε rather than E to distinguish the
J → 0 limit from the general case. Note the N1 → N − N1

twofold degeneracy of the spectrum, reflecting the symmetry
of the system with respect to a relabeling of the wells. The
frequencies analogous to ffast and fslow computed numerically
in Sec. III A are

ε0 − ε1

2πh̄
= U (N − 1)

2πh̄
≈ 15.9 Hz,

ε0 − ε1

2πh̄
− ε1 − ε2

2πh̄
= U

πh̄
≈ 0.82 Hz.

The J → 0 estimate of ffast coincides with the limit of the
mean-field expression:

fMF =
√

�2 − 1

π

J

h̄
=

√
U 2(N − 1)2 − 4J 2

2πh̄

= U (N − 1)

2πh̄

√
1 −

(
2J

U (N − 1)

)2

= U (N − 1)

2πh̄

[
1 − 1

2
�−2 + O(�−4)

]
. (8)

More interesting is fslow = U/πh̄. The slow oscillations are
a purely quantum phenomenon, as U/πh̄ goes to zero in the
classical limit of N → ∞ with � = U (N − 1)/2J fixed. A
first hypothesis might identify them with the quantum revivals,
in which all of the components of the coherent state rephase
[47]. This is almost correct. Consider an initial state |ψ(0)〉
decomposed into energy eigenstates [Eq. (6)]. Evolving the
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FIG. 6. (Color online) The slow frequency near the fixed point
as a function of �. The numerically exact values (blue circles) are
well described by the second-order perturbative results (solid red
line). Zeroth-order perturbation theory (dashed green line) slightly
underestimates the frequency.

state over one period τ = 1/fslow of the slow oscillation yields

|ψ(τ )〉 =
{∑N

n=0 an|n〉 for N odd,∑N
n=0(−1)nan|n〉 for N even,

(9)

up to an overall phase (see Appendix A for a proof). For
odd N , we observe a full revival, as expected. For N even,
the relative phases of the eigenstates are altered, and a
revival occurs only after a translation by 2τ . However, the
additional phases present after a τ translation cancel when the
condensate fraction and EPR are computed (see Appendix B
for a proof). In the limit J → 0 one therefore expects revivals
in these observables with a frequency 1/τ = U

πh̄
for all values

of N .
Surprisingly, the J → 0 result is close to the observed

frequencies even when J � U (see Fig. 6). To shed light
on this, one may compute the shifts in the frequencies due to
J � 0 using degenerate perturbation theory (see Appendix C
for a derivation following [48]). The resulting corrections to
the J = 0 result are proportional to �−2 ≈ (J/NU )2:

ε0 − ε1

2πh̄
= U (N − 1)

2πh̄

×
[

1 − 1

2

N + 1

N − 3
�−2 + O(�−4)

]
,

ε0 − ε1

2πh̄
− ε1 − ε2

2πh̄
= U

πh̄

[
1 + 3

2

(N − 1)(N + 1)

(N − 5)(N − 3)
�−2

+O(�−4)

]
. (10)

The perturbative high-frequency estimate agrees with the
mean-field result [Eq. (8)] in the limit of large N , as one would
expect. Close to the bifurcation the mean-field expression per-
forms better than the perturbative one (see Fig. 3), presumably
because we dropped terms of order �−4 and higher. But above
� ≈ 2, the agreement of the perturbative expressions with the
observed frequencies of both the mean-field motion (Fig. 3)
and the quantum revival (Fig. 6) is excellent.

C. Region of validity

How far from the fixed point can we expect the dynamics to
be dominated by the two-frequency pattern described above?
To avoid introducing additional frequencies at the outset, the
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FIG. 7. (Color online) Breakdown of the three-eigenstate approx-
imation near the bifurcation. The squared norm ‖〈ψ ′|ψ ′〉‖2 of the
projection of coherent states onto the three energy eigenstates with
the largest coefficients in the energy eigenstate expansion is plotted for
� = 1.1. The mean-field trajectories are overlaid in white. Note that
the projection norm is not conserved along the mean-field trajectories,
indicating the breakdown of the mean-field approximation and the
two-frequency pattern.

initial coherent state |z, φ〉 must have an appreciable projection
onto just three eigenstates: that is, the projection |ψ ′〉 =∑2

n=0 an|En〉 must satisfy ‖〈z, φ|ψ ′〉‖2 = ‖〈ψ ′|ψ ′〉‖2 ≈ 1.
But in addition, coherent states at every point of the mean-field
trajectory must be well approximated by the three eigenstates:
if ‖〈z, φ|ψ ′〉‖2 deviates significantly from 1 anywhere along an
orbit, a breakdown of the two-frequency pattern is expected.
An instructive example of such a breakdown is observed as
the system approaches the bifurcation (� → 1+). Although
in the neighborhood of the stable fixed points the norm of
the three-eigenstate projection remains high, the mean-field
orbits venture out of this neighborhood (see Fig. 7). The true
quantum dynamics involves tunneling from one stable fixed
point to the other [49], which is classically forbidden and does
not conform to the two-frequency paradigm described in this
section.

Thus, the two-frequency description is valid only for
initial conditions in some neighborhood of the stable fixed
points. However, this is generally sufficient to understand the
generation of EPR entanglement: On long time scales EPR
entanglement is present only for initial conditions close to the
fixed points, as shown in Fig. 1.

What is more, the slow oscillations set the time scale for
which EPR entanglement is present in the system. To obtain
a global picture of entanglement generation, we simulated the
dynamics of 10 000 initially coherent states uniformly sampled
from the Bloch sphere. In Fig. 8 we plot, as a function of time,
the fraction of these in which the two wells are entangled.
Pronounced revivals occur with the frequency fslow analyzed
above. The implication, supported by an examination of
individual phase-space trajectories [50], is that entanglement
is only observed in those regions of phase space where its
dynamics is dominated by the two-frequency behavior. In this
sense, the two-frequency model explains the dynamics of the
dimer’s entanglement quite generically.
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FIG. 8. (Color online) EPR entanglement is predominantly found
at the quantum revival times and can be promoted by applying
localized dissipation. We plot the fraction of coherent-state initial
conditions for which the two wells are EPR entangled (EPR > 0) as
a function of time for � = 5. The initial conditions are uniformly
sampled on the Bloch sphere. The quantum revival times near the
fixed point (multiples of τ = 1.13 s) are marked with black vertical
lines. The thin blue line is obtained in the absence of dissipation; the
thick green line is the result seen when atom loss at the second site
is induced between seconds 1 and 1.25 of the simulation. Applying
dissipation increases the fraction of initial conditions for which the
wells are persistently entangled.

IV. DISSIPATION-INDUCED COHERENCE

Atoms can be removed from a double-well optical trap with
single-site resolution using strong resonant laser blasts or a
focused electron beam [51,52]. This process can be described
by the quantum master equation in Lindblad form for the
density matrix ρ̂ [53],

d

dt
ρ̂ = −i[Ĥ ,ρ̂] − 1

2

2∑
j=1

γj (â†
j âj ρ̂ + ρ̂â

†
j âj − 2âj ρ̂â

†
j ),

(11)

where γj is the loss rate at site j . Instead of solving the master
equation directly, we use the quantum jump method [54–58],
discussed further in Appendix D. Previous studies carried out
along these lines show that controlled atom loss may lead to
improved coherence (as measured by, among other indicators,
the condensate fraction) in the Bose-Hubbard dimer [31,32]
and in multiwell systems (i.e., lattices) [33,59–62].

An example of dissipation-induced coherence, simulated
using the quantum jump method, is shown in Fig. 9. The
initial condition is a coherent state near the self-trapping fixed
point. After a second of free evolution, atoms are removed
from the less populated site for half a second. The result is a
long-term increase in condensate fraction and a transition from
intermittent entanglement to a persistently entangled state.
This process can be understood within the phase-space picture:
the system’s trajectory is driven towards the stable fixed point,
which is a region of high entanglement.

How representative is the picture presented above? Con-
sider again the evolution of 10 000 coherent states uniformly
spaced in z and φ, shown in Fig. 8. Between the quantum
revivals, the fraction of entangled states is substantially
increased by the application of dissipation. This implies the
mechanism shown in Fig. 9 operates for an appreciable range
of initial conditions.

V. SUMMARY AND OUTLOOK

We have used the global phase-space picture of the BEC
dimer to illuminate the dynamics of entanglement in this
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FIG. 9. (Color online) Dissipation-induced coherence, with signatures in condensate fraction, EPR entanglement, and phase-space trajectory
(expectation values of z and φ). The initial condition is the same as in Fig. 2, but atom loss (γ2 = 5 J/h̄) is induced at site 2 between seconds
1 and 1.5 of the simulation. The plots of condensate fraction and EPR compare the results without [blue (dark gray)] and with [green (light
gray)] dissipation.

system and provide a perspective on dissipation-induced
coherence. We showed that for initial conditions close to
the mean-field self-trapping points the dimer’s dynamics is
completely captured by a projection onto just three eigenstates.
Where the projection is successful, two frequencies appear
prominently in the observables: ffast, due to the mean-field
motion, and fslow, associated with a quantum revival. These
frequencies are accurately analytically approximated by a
second-order expansion about the strong-coupling limit. The
frequency fslow sets the dominant time scale for the dynamics
of EPR entanglement in the BEC dimer. This is because
the regions of phase space in which our description is
valid coincide with the regions where EPR entanglement
persists. It is also within these regions that dissipation-induced
entanglement can be induced.

The significance of this work is twofold. First, the patterns
we describe, two-frequency motion near the fixed point, the
driving of the system into the fixed point by dissipation, and
the resulting enhanced coherence, should be observable in
ongoing experiments. Second, and more broadly, analogous
patterns may be present in larger, multiwell systems of cold
atoms in optical lattices. These systems are potential platforms
for quantum information processing but by virtue of their
size cannot be analyzed via exact techniques. Consequently,
relationships between approximate but tractable semiclassical
dynamics and inherently quantum behavior such as are
described here offer an attractive path to large-scale quantum
engineering.
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APPENDIX A: REVIVALS OF THE WAVE FUNCTION

Consider a Bose-Hubbard dimer with J = 0 and N atoms.
The energy eigenstates of this system are the Fock states |n〉 ≡
|N1, N − N1〉, with energies

εn = n(n − 1)

2
U + (N − n)(N − n − 1)

2
U. (A1)

It will prove convenient to define a dedimensionalized energy,

hn ≡ εn

U
. (A2)

The coherent states of the dimer are of the form

|ψ(t)〉 =
N∑

n=0

an e−iεnt/h̄ |n〉, (A3)

with the expansion coefficients an all nonzero. Consider
translating the coherent state in time by

τ ≡ πh̄

U
. (A4)

As was asserted in the main text, the results of this translation
depend on the value of N :

|ψ(τ )〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|ψ(0)〉 for N = 1 + 4p,

−∑N
n=0(−1)nan|En〉 for N = 2 + 4p,

−|ψ(0)〉 for N = 3 + 4p,∑N
n=0(−1)nan|En〉 for N = 4 + 4p,

(A5)

with p ∈ Z�0. Let us prove this assertion case by case.
Case 1. If N = 1 + 4p for p ∈ Z�0, then |ψ(τ )〉 = |ψ(0)〉.
Proof. Note that

exp(−iεnτ/h̄) = exp(−iπhn). (A6)

The dedimensionalized energy hn satisfies

2hn = n(n − 1) + (N − n)(N − n − 1)

= n(n − 1) + (1 + 4p − n)(1 + 4p − n − 1)

= n2 − n + 4p − n + 16p2 − 4np − 4np + n2

= 2(n2 − n) + 4p + 16p2 − 8pn,

hn = n(n − 1) + 2(p + 4p2 − 2pn).
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The right-hand side is even for any n ∈ Z�0 and any p ∈ Z�0.
Therefore, hn is even and exp(−iπhn) = 1. It follows that
|ψ(τ )〉 = |ψ(0)〉. �

Case 2. If N = 3 + 4p for p ∈ Z�0, then |ψ(τ )〉 =
−|ψ(0)〉.

Proof. We proceed as in the previous case.

2hn = n(n − 1) + (N − n)(N − n − 1)

= n(n − 1) + (3 + 4p − n)(3 + 4p − n − 1)

= n2 − n + 6 + 12p − 3n + 8p + 16p2

− 4np − 2n − 4np + n2

= 2n2 − 6n + 20p + 16p2 − 8np + 6,

hn = [b(b − 1) + 2(−b + 5p + 4p2 − 2np)] + 3.

Note that the number in square brackets is always even; thus,
hn is odd. Consequently, for any n,

exp(−iπhn) = −1.

The claim then follows from the definition of |ψ(t)〉. �

Case 3. Let N be even. Then,

|ψ(τ )〉 =
N∑

n=0

an e−iεnτ/h̄|En〉

=
{∑N

n=0(−1)nan|En〉 for N = 4p + 4,

−∑N
n=0(−1)nan|En〉 for N = 4p + 2,

with p ∈ Z�0.
Proof. Let q = N/2. We have

2hn = n(n − 1) + (2q − n)(2q − n − 1)

= 2n2 + 4q2 − 4nq − 2q,

hn = (n2 − q) + 2(q2 − nq) = (n2 − q) + even factor.

The factor n2 − q (and, by extension, hn) is even if and
only if n and q are of the same parity. Recall that q

is even when N = 4p + 4 and odd when N = 4p + 2.
Therefore,

exp

(
− iεnτ

h̄

)
= exp(−iπhn) =

{
1 if N = 4p + 4 and n is even or N = 4p + 2 and n is odd,

−1 if N = 4p + 4 and n is odd or N = 4p + 2 and n is even.

The claim follows immediately from the definition
of |ψ(t)〉. �

APPENDIX B: REVIVALS OF THE CONDENSATE
FRACTION AND EPR

Consider the two observables discussed in the main text.
The condensate fraction is given by the normalized largest
eigenvalue of the single-particle density matrix,

c = 1

2N
(ρ11 + ρ22 +

√
(ρ11 − ρ22)2 + 4ρ12ρ21), (B1)

where ρij = 〈â†
i âj 〉. The measure of EPR entanglement is

E = 〈â†
1â2〉〈â†

2â1〉 − 〈â†
1â1â

†
2â2〉. (B2)

In this section, we show that these observables take the same
values at time t = τ = πh̄/U as at t = 0, regardless of the
value of N . For odd N , this follows immediately from the
results of Appendix A, so assume N is even.

Consider first the condensate fraction. We have

ρij (t = 0) =
∑

n

∑
m

a∗
nam〈En|â†

i âj |Em〉

and, by the result proven in Appendix A,

ρij (t = τ ) =
∑

n

∑
m

(−1)n+ma∗
nam〈En|â†

i âj |Em〉.

At J = 0 the energy eigenstates are the Fock states, so the
components of ρ can be found immediately:

ρ11(t = τ ) =
∑

n

∑
m

(−1)n+ma∗
namnδn, m

=
∑

n

(−1)2n|an|2n =
∑

n

|an|2n = ρ11(t = 0),

ρ22(t = τ ) = ρ22(t = 0) (analogously),

ρ12(t = τ ) =
∑
n,m

(−1)n+ma∗
nam

√
(m + 1)(N − m)δn,m+1

=
∑

n

(−1)2n−1a∗
nan−1

√
n(N − n + 1)

= −
∑

n

a∗
nan−1

√
n(N − n + 1)

= −ρ12(t = 0),

ρ21(t = τ ) = −ρ21(t = 0) (Hermiticity).

Note that ρ(t = τ ) differs from ρ(t = 0) only in the sign of the
off-diagonal elements. But these elements enter the condensate
fraction only through their product [cf. Eq. (B1)]. Therefore,
c(t = τ ) = c(t = 0).

The argument for EPR is similar. The first term in Eq. (B2)
is equal to ρ12ρ21, and so it is the same at t = τ as at t = 0;
the second term is equal to N1N2, the product of the wells’
populations, and so is independent of time. Therefore, E(t =
τ ) = E(t = 0).

APPENDIX C: PERTURBATION ABOUT THE J → 0 LIMIT

In this appendix, we derive the perturbative corrections
to the J = 0 mean-field and quantum revival frequencies
[Eq. (10)].

It is convenient to rescale the problem by dividing all
energies by NU . Then, the unperturbed Hamiltonian is given
by

H0 = 1

2N
(â†

1â
†
1â1â1 + â

†
2â

†
2â2â2), (C1)
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and its representation in the Fock basis is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N(N−1)
2N

(N−1)(N−2)
2N

(N−2)(N−3)
2N

+ 1
N

. . .
N(N−1)

2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(C2)

In analogy to the main text, we will denote the diagonal entries
ε0, ε1, and so on; because of the rescaling of the Hamiltonian,
εi = NUεi . The perturbed Hamiltonian is

H = H0 + J

NU
(−â

†
1â2 − â

†
2â1) ≡ H0 + λV, (C3)

and the Fock basis representation of V is the tridiagonal matrix,

−

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

N√
N 0

√
2(N − 1)√

2(N − 1) 0
√

3(N − 2)
. . .√
N 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(C4)

Let P be a projection operator onto a subspace corresponding
to a set of degenerate levels of H0. Number the levels n =
0, 1, 2, . . ., as in the main text; then, this operator is represented
by a matrix with only two nonzero entries, Pn+1,n+1 =
PN+1−n,N+1−n = 1. Degenerate perturbation theory can be
used to show that the kth-order corrections to the level energies
ε(k) are the eigenvalues of the matrix [48],

PWkP, (C5)

where the first few Wk matrices are

W1 = V, W2 = −V L−1V,

W3 = V (L−1V )2, W4 = −V (L−1V )3 − ε(2)V (L−1)2V,

(C6)

with L−1 represented by a diagonal matrix with entries

(L−1)ll =
{

1/(H0 − ε(0)I )ll if (H0 − ε(0)I )ll �= 0,
0 otherwise,

(C7)

where ε(0) are the unperturbed energies.
Since V has no diagonal entries, PW1P is a matrix of zeros,

and there are no first-order corrections. [That ε(1) = 0 is used
in the expressions for W3 and W4 in Eq. (C6), which would
otherwise contain terms proportional to ε(1).] The second-order
corrections can be computed using the matrix W2. Its nonzero
entries are

(W2)ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−N/(ε1 − εn) for i = j = N + 1 or i = j = 1,

− (i−1)(N+2−i)
εi−1−εn

− i(N+1−i)
εi−εn

for other i = j ,

−√
i(i + 1)(N + 1 − i)(N − i)/(εi+1 − εn) for j = i + 2,

−√
j (j + 1)(N + 1 − j )(N − j )/(εj+1 − εn) for j = i − 2,

(C8)

where n is the index of the level considered.
Recall that the degenerate states are those corresponding to

rows i and N + 1 − i for i = 1, 2, . . .. Since W2 has nonzero
entries only on the main diagonal and the ±2 diagonals, the
projection onto the subspace of degenerate levels PW2P may
have off-diagonal entries only for the second-lowest energy
level. Conversely, if N � 1, the second-order corrections
to the higher-energy levels are given by the corresponding
diagonal entries of W2. The corrections to the three highest-
energy levels up to second order are given by

ε0 → ε0 − N

ε1 − ε0
(J/NU )2ε0 + N2

N − 1
(J/NU )2,

ε1 → ε1 −
(

N

ε0 − ε1
+ 2(N − 1)

ε2 − ε1

)
(J/NU )2

× ε1 + N (N2 − N + 1)

(N − 3)(N − 1)
(J/NU )2,

ε2 → ε2 −
(

2(N − 1)

ε1 − ε2
+ 3(N − 2)

ε3 − ε2

)
(J/NU )2

× ε2 + N (N2 − 3N + 8)

(N − 5)(N − 3)
(J/NU )2. (C9)

These expressions lead immediately to Eq. (10).

Consider now the third-order corrections to the energies,
determined by the matrix W3. Except for the lowest-lying
states, there are no off-diagonal entries in PW3P ; this follows
from the central result of [48] since off-diagonal entries would
break the degeneracy the authors prove to hold to N th order
of perturbation theory. Therefore, the third-order corrections
to the energies are given by the diagonal entries of the matrix
W3. As we show below, these entries are all zero, and thus,
there are no corrections of this order.

Let A be a matrix. We will call A an odd matrix if Ai,i+p = 0
for all i and all p being even (including p = 0) and an even
matrix if Ai,i+p = 0 for all i and all p being odd. Even and odd
matrices have the following properties under multiplication.

Lemma 1. Let A and B be odd N × N matrices. Then, AB

is an even matrix.
Proof. Let n be an odd integer.

(AB)i,i+n =
N∑

k=1

Ai,kBk,i+n =
N−i∑

p=1−i

Ai,i+pBi+p,i+n.

Since A is an odd matrix, we may restrict the sum to odd p

(the other entries are zero):

(AB)i,i+n =
∑
p odd

Ai,i+pBi+p,i+n.
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Let m = i + p.

Bi+p,i+n = Bm,m+n−p.

Since p is odd and n is odd, n − p is even, so Bi+p,i+n = 0
because B is an odd matrix. Thus,

(AB)i,i+n = 0

for odd n, and AB is an even matrix. �
Lemma 2. Let A be an odd N × N matrix and C be an even

N × N matrix. Then, AC and CA are odd matrices.
Proof. Let n be an even integer. Proceeding as before,

(AC)i,i+n =
N∑

k=1

Ai,kCk,i+n =
N−i∑

p=1−i

Ai,i+pCi+p,i+n

=
∑
p odd

Ai,i+pCi+p,i+n.

Let m = i + p.

Ci+p,i+n = Cm,m−p+n.

Since p is odd and n is even, n − p is odd. Since C is an even
matrix, Ci+p,i+n = 0 and

(AC)i,i+n = 0

for even n, proving that AC is an odd matrix. The proof for
CA is analogous. �

The matrix V is odd, while the matrix L−1 is even. By
the lemmas above, W3 = V (L−1V )(L−1V ) must be odd. The
diagonal entries of an odd matrix are all zero. This implies
there are no third-order corrections to the energies, except for
the few lowest-energy levels. Incidentally, the same argument
can be used to show that the fifth-order corrections are
zero.

APPENDIX D: THE QUANTUM JUMP METHOD

This appendix outlines the quantum jump method, the
technique used in our simulations of the BEC dimer in the
presence of dissipation.

We start with a simulation time interval [0, T ] and an
initial state described by a wave function |ψ(t = 0)〉. The time
interval is divided into time steps δt . At each time step we act
on the state with the time evolution operator,

U = exp

(
− i

h̄
Ĥ ′δt

)
,

where the pseudo-Hamiltonian Ĥ ′ consists of the standard
Bose-Hubbard Hamiltonian Ĥ of Eq. (1) and an extra term:

Ĥ ′ = Ĥ − ih̄

2

∑
j=1,2

γj â
†
j âj .

In addition to the time evolution, each time step atoms are
removed from wells j = 1, 2 with probability

δpj = δtγj 〈ψ(t)|â†
j âj |ψ(t)〉,

where γj is the atom loss rate from well j . The time δt is taken
to be sufficiently small that the possibility of multiple atoms
being removed during one time step can be ignored. If an atom
is removed, we update the wave function,

|ψ〉 → âj |ψ〉,

and reduce the dimension of the Hilbert space. (The Hilbert
space of the dimer has dimension N + 1, where N is the
number of particles, so the problem shrinks as atoms are
ejected.) Finally, regardless of whether an atom was removed
or not, we renormalize the wave function.

A surprising feature of this algorithm is that the time
evolution differs from the dissipation-free case even when no
atoms are removed. This is because the absence of a removal
event reveals information about the system, changing the
probability distribution over the well occupation numbers and
so altering the wave functions. Intuitively, if strong dissipation
is applied to a well and yet no atoms are ejected from it, the
well is likely to be empty. Alternately, one may interpret the
suppression of tunneling into the well as a manifestation of
the quantum Zeno effect [63]. See Sec. 3 of [56] for a more
detailed discussion and references devoted specifically to this
paradoxical “null measurement” effect.

APPENDIX E: A NOTE ON PROJECTIONS

The phase space of the semiclassical model of the BEC
dimer is a sphere; representing it in a plane, as we have
done in Figs. 1, 4, 7, and 9, requires a choice of projection.
Throughout this work, we have used the cylindrical equal-area
projection, also known as the Lambert projection. In the
Lambert projection, the x and y coordinates on the map
are proportional to the longitude φ (polar angle) and the
cosine of the colatitude z = cos θ (the usual z coordinate
of spherical coordinates). In other words, the Lambert is an
axial projection of the sphere onto a cylinder tangent at the
equator.

As its name suggests, the cylindrical equal-area projection
preserves areas: any two regions on the sphere with equal
areas S1 = S2 are mapped to two regions on the map with
equal areas S ′

1 = S ′
2. However, this projection deforms angles

(it is not conformal), as a circle on the sphere is mapped
to an ellipse, the eccentricity of which increases towards the
poles.

The Lambert projection should not be confused with the
Mercator projection, defined by

x = φ, y = ln tan

(
π − θ

2

)
.

The Mercator projection is conformal, mapping a circle
anywhere on the sphere to a circle in the x, y plane, but is not
area preserving: famously, Mercator maps of the Earth show
South America to be smaller than Greenland, although the
former land mass is in fact some eight times larger. In addition,
since y → ∞ as θ → 0 or π , a Mercator map must employ a θ

cutoff and cannot include the poles. Some authors [41,64] have
described their maps of the Bloch sphere as being drawn in
the Mercator projection but labeled the y scale from z = −1
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to z = 1, suggesting they might have actually used the less
well-known Lambert (in which y ∝ z and the poles are in the
range of the map).

A thorough and freely available reference on projections
of the sphere is the review publication of the US Geological
Survey [65].
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Nature (London) 464, 1165 (2010).
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