
This article was downloaded by: [Boston University]
On: 22 January 2014, At: 14:07
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tphm20

Renormalization-group approach to
superconductivity: from weak to strong
electron–phonon coupling
S.-W. Tsai a , A. H. Castro Neto a , R. Shankar b & D. K. Campbell a
a Department of Physics , Boston University , Boston, MA 02215,
USA
b Sloane Laboratory of Physics , Yale University , New Haven, CN
06520, USA
Published online: 29 Nov 2010.

To cite this article: S.-W. Tsai , A. H. Castro Neto , R. Shankar & D. K. Campbell (2006)
Renormalization-group approach to superconductivity: from weak to strong electron–phonon
coupling, Philosophical Magazine, 86:17-18, 2631-2641, DOI: 10.1080/14786830500318928

To link to this article:  http://dx.doi.org/10.1080/14786830500318928

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/tphm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14786830500318928
http://dx.doi.org/10.1080/14786830500318928
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Philosophical Magazine,
Vol. 86, Nos. 17–18, 11–21 June 2006, 2631–2641

Renormalization-group approach to superconductivity:
from weak to strong electron–phonon coupling

S.-W. TSAIy, A. H. CASTRO NETO*y, R. SHANKARz

and D. K. CAMPBELLy

yDepartment of Physics, Boston University, Boston, MA 02215, USA
zSloane Laboratory of Physics, Yale University, New Haven, CN 06520, USA

(Received 16 May 2005; accepted 19 August 2005)

We present the numerical solution of the renormalization group (RG) equations
derived in Tsai, Castro Neto, Shankar, et al. [Phys. Rev. B to appear], for the
problem of superconductivity in the presence of both electron–electron and
electron–phonon coupling at zero temperature. We study the instability of a
Fermi liquid to a superconductor and the RG flow of the couplings in the
presence of retardation effects and the crossover from weak to strong coupling.
We show that our numerical results provide an ansatz for the analytic solution
to the problem in the asymptotic limits of weak and strong coupling.

1. Introduction

The renormalization-group (RG) approach to interacting fermions in more than
one spatial dimension [1] has been extensively applied to the study of instabilities
of the Fermi liquid state, and has become a major tool in the study of correlated
electron systems. Nevertheless, even for weak electron–electron interactions, the
picture is far from being complete, since electrons in solids also interact with bosonic
modes such as phonons. Therefore, the development of a RG scheme [2] that
includes both electron–electron and electron–phonon interactions on an equal
footing is an important advance. Experimental evidence shows that in many
strongly correlated systems, such as high-temperature superconductors and organic
charge transfer salts, both electron interactions and phonons seem to play an
important role [3–7].

The renormalization-group approach to interacting fermions coupled to
phonons was presented in [2]. This approach takes retardation effects and the pre-
sence of multiple energy scales fully into account. For a circular Fermi surface, the
RG equations predict the onset of the superconducting instability in agreement with
Eliashberg’s superconducting theory [8]. A large-N analysis, where N � EF=L is the
number of patches in the Fermi surface (EF is the Fermi energy and L is the size of
the patch), shows that in this case Eliashberg theory is asymptotically exact and
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Migdal’s theorem [9] emerges as a consequence of the 1/N expansion. Here we

present a numerical solution of the RG equations at T¼ 0, showing how the
couplings, which are functions of frequencies, flow with the RG procedure. In the

limits of weak and strong phonon coupling, simple analytical expressions are

extracted on the basis of the numerical solution.
For completeness, in section 2 the RG equations for the self-energy and inter-

action couplings are derived. In section 3 we present the numerical results, and the

analytical expressions associated with the asymptotic limits. Section 4 contains the

concluding remarks.

2. Derivation of the RG equations

The action that describes electron–electron and electron–phonon interactions can be
written as Sð ,�Þ ¼ Seð Þ þ Sphð�Þ þ Se�phð ,�Þ þ Se�eð Þ, where � are bosonic

fields,  are fermionic (Grassman) fields (we use units such that �hh ¼ 1 ¼ kB),

Se ¼

Z
!k�

 y

k�ði!� �kÞ k� ð1Þ

is the free electron action, �k is the electron dispersion as a function of momentum

k and

Sph ¼

Z
Oq
�yqðiO� wqÞ�q ð2Þ

is the free phonon action, where wq is the phonon dispersion (� ¼" , # is the electron
spin, k ¼ f!, kg and q ¼ fO, qg, where !,O are fermionic and bosonic Matsubara

frequencies, respectively, and k, q are the momenta). The electron–phonon
interaction can be written as

Se�ph ¼

Z
!k�

Z
Oq
gðqÞ y

kþq� k�ð�q þ �
y
�qÞ, ð3Þ

where g(q) is the electron–phonon coupling constant. The electron–electron

interactions have the form

Se�e ¼
1

2

Y3
i¼1

Z
!iki��

0

uðk4, k3, k2, k1Þ 
y

k4�
 k2� 

y

k3�
0 k1�

0 , ð4Þ

where uðfkigÞ is a general spin-independent electron–electron coupling which depends

on the momenta and frequencies of the electrons, and k4 ¼ k1 þ k2 � k3 due to
momentum conservation.

Since the bosonic action is quadratic in the boson fields, they can be integrated

out exactly, leading to an effective electron–electron problem with retarded

interactions:

~uuðk4, k3, k2, k1Þ ¼ uðk4, k3, k2, k1Þ � 2gðk1, k3Þgðk2, k4ÞDðk1 � k3Þ, ð5Þ

2632 S.-W. Tsai et al.
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where

DðqÞ ¼ !q=ð!
2
þ !2

qÞ ð6Þ

is the phonon propagator. Here we consider the case of a circular Fermi surface and

anisotropic Einstein phonons, with gðk, k0Þ ¼ g0 and !q ¼ !E. In what follows, it is

also convenient to define the dimensionless electron–phonon coupling constant

� ¼ 2Nð0Þg20=!E: ð7Þ

In the Kadanoff–Wilson approach to RG the flow equations are obtained by

computing the corrections to the couplings of the theory as the energy modes in an

energy shell between L and Lþ dL are integrated out. The momenta, frequencies

and fields are then rescaled in such a way that the quadratic terms remain

unchanged. This second step presents a difficulty in the electron–phonon problem.

The momenta of the electrons scale differently in the directions parallel and perpen-

dicular to the Fermi surface, while the momenta of the phonons scale isotropically.

In our RG treatment of the electron–phonon problem [2], we use the quantum field

theory version of the RG, with no rescaling. In this approach, corrections to the

vertices of the model are written in term of running, i.e. cut-off dependent, coupling

functions. The RG flow equations for these running couplings are then obtained

by imposing that the vertices are cut-off independent.
We start with the two-point vertex, which at one loop is given by [2]

Gð2Þ
ðSð!, kÞÞ ¼ S‘ð!, kÞ �

Z 1

�1

dO
2p

Z
ðLÞ

d2k0

ð2pÞ2
exp ðiO0þÞ

iO� �k0 � S‘ðO, k
0Þ
~uuðk, k0, k, k0Þ, ð8Þ

where k ¼ ð!, kÞ and k0 ¼ ðO, k0Þ, and S‘ð!, kÞ is the electronic self-energy which now

flows under the RG, and the RG parameter ‘ ¼ log ðL0=LÞ, so that d‘ ¼ �dL=L.
The RG equation for the electron self-energy is obtained by imposing the condition

of renormalizability of the theory, that is

dGð2Þ

d‘
¼ 0, ð9Þ

where ‘ ¼ log ðL0=LÞ and d‘ ¼ �dL=L.
Notice that the interaction that appears in equation (8), ~uuðk, k0, k, k0Þ, only

describes the forward scattering channel (k4 ¼ k1 ¼ k, k3 ¼ k2 ¼ k0) which, in the

large N limit, does not flow under RG [2]. Therefore, it can be substituted by its

unrenormalized value given by equation (5). The electron–electron part of the inter-

action, uðk, k0, k, k0Þ ¼ u0, contributes only to the real part of the self-energy and

gives a shift in the chemical potential that can be reabsorbed into the definition

of the chemical potential [1]. The electron–phonon part for ! > 0, leads to the

following RG equation for the imaginary part of the self-energy, S00
ð!Þ:

@

@‘
S

00

‘ð!Þ ¼ �

Z þ1

�1

dO
p
�!EDðO� !Þ

L‘ðO� S
00

‘ðOÞÞ

ðO� S
00

‘ðOÞÞ
2
þ L2

‘

, ð10Þ

Renormalization-group approach to superconductivity 2633
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where L‘ ¼ L0e
�‘ (where L0 < EF is the cut-off at the beginning of the RG flow and

it is assumed to be much larger than the other energy scales in the problem). There is

no dependence of S
00

‘ on the direction of the momentum k because we are considering

the case of an isotropic Fermi surface, and the dependence on the magnitude of k

is irrelevant [1]. It is convenient to write S00
ð!Þ ¼ ½1� Zð!Þ�!, and the solution of

equation (10) becomes

Z‘ð!Þ ¼ 1þ
1

!

Z þ1

�1

dO
2
�!EDðO� !ÞOF‘ðOÞ, ð11Þ

where

F‘ð!Þ ¼
2

p

Z 1

W‘ð!Þ

dW0

ZW0 ð!Þ=ZWð!Þð Þ
2!2 þW02

, ð12Þ

where we have introduced W‘ð!Þ ¼ L‘=Z‘ð!Þ as the new renormalized cut-off

running scale. The dependence of ZW(!) on W is weak (see below) and therefore

we can write ZWð!Þ � ZW 0 ð!Þ. In this case (12) can be solved at once:

F‘ð!Þ �
1

j!j
1�

2

p
tan�1 W‘ð!Þ

j!j

� �� �
: ð13Þ

In what follows we will be only interested in the low frequency behaviour, in which

case W‘ð!Þ can be safely replaced by W‘ð! ¼ 0Þ, and the expression for Z‘ð!Þ can be

easily evaluated from (11) to give

Z‘ð!Þ ¼ 1� �
!E

!
tan�1 W‘ þ !E

j!j

� �
�
p
2

� �
: ð14Þ

Notice that indeed the dependence of ZW on W is weak, as assumed previously.

In the static limit, !! 0, one obtains

Z‘ð0Þ ¼ 1þ �!E=ðW‘ þ !EÞ: ð15Þ

So far we have considered the renormalization of the self-energy. The renormal-

ization of the interaction in the Cooper channel (k4 ¼ �k3 and k2 ¼ �k1) can be

obtained in a completely analogous way. Since we are considering the case of

a circular Fermi surface, we can focus on the s-wave component of the BCS

interaction ~vvð!1,!3Þ ¼ Nð0Þ
R
d�1=2p

R
d�3=2p ~uuð�k3, k3, � k1, k1Þ. The RG equation

for this interaction can be shown to be [2]:

@

@‘
~vvð!1,!2, ‘Þ ¼ �

Z þ1

�1

d!

p
L‘

½!� S
00

‘ð!Þ�
2
þ L2

‘

~vvð!1,!, ‘Þ ~vvð!,!2, ‘Þ, ð16Þ

where the initial condition for the flow is given by ~vvð!1,!3, ‘ ¼ 0Þ ¼

u0 � �!EDð!1 � !3Þ. Equation (16) can be written in matrix equation form as

@U

@‘
¼ �U �M �U, ð17Þ

2634 S.-W. Tsai et al.
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where

Uijð‘Þ ¼ ~vvð!i,!j, ‘Þ ð18Þ

Mijð‘Þ ¼ L‘�ij=½ð!i � S
00

‘ð!iÞÞ
2
þ L2

‘�: ð19Þ

Formally, we can rewrite (17) as

@U�1

@‘
¼ M ð20Þ

since U
�1@‘UU

�1
¼ �@‘U

�1. The solution of (20) reads:

U
�1
ð‘Þ ¼ U

�1
ð0Þ þ Pð‘Þ ð21Þ

where

Pð‘Þ ¼

Z ‘

0

d‘0Mð‘0Þ, ð22Þ

which can be inverted to give

Uð‘Þ ¼ ½1þUð0Þ � Pð‘Þ��1
�Uð0Þ: ð23Þ

Equation (23) allows the study of instabilities of the Fermi liquid state towards

superconducting instabilities. The instabilities occur when one of the couplings

diverges under the RG flow. These instabilities happen at some finite energy (or

temperature) scale ‘c at which one of the eigenvalues of the coupling matrix Uð‘cÞ
diverges at ‘ ¼ ‘c. Notice that the condition for the instability can be written as

det ½1þUð0Þ � Pð‘cÞ� ¼ 0: ð24Þ

Hence, the problem reduces to the calculation of the zeros of a determinant or,

equivalently, to the problem of finding the zero eigenvalue of the matrix

1þUð0Þ � P½ �:

½1þUð0Þ � Pð‘cÞ� � f ¼ 0, ð25Þ

where the fi is the eigenvector of the problem. Equation (25) can be written

explicitly as

fð!Þ ¼ �

Z þ1

�1

dO
p

Z L0

Lc

dL
1

½OZ‘ðOÞ�
2
þ L2

u0 �
�!2

E

ð!� OÞ2 þ !2
E

" #
fðOÞ: ð26Þ

Here we can, similarly to the expression for the self-energy (11), write

Z‘c ð!Þ�‘c ð!Þ ¼ �

Z þ1

�1

d!0

2
u0 �

�!2
E

ð!� !0Þ
2
þ !2

E

" #
F‘c ð!

0
Þ�‘c ð!

0
Þ, ð27Þ
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where we have defined �‘c ð!Þ ¼ f‘c ð!Þ=Z‘c ð!Þ. Equations (14) and (27) determine
the energy scale Wc ¼ W0e

�‘c at which the renormalization group equations for
the scattering in the Cooper channel diverge as one renormalizes the problem
from high to low energies. Below this energy scale the Fermi liquid breaks down
and superconductivity sets in. Thus, we can associate Wc with the superconducting
gap, D. In fact, we will show that the equation for Wc gives exactly the same result
obtained from Eliashberg’s theory for strongly coupled superconductors [8].

3. Solution of the RG flow equations

Traditionally the superconducting temperature has been calculated directly from
Eliashberg’s equations [8]. Nevertheless, the formalism presented in the previous
section allows the solution of the problem by solving equations (14) and (23),
instead. The advantage of such a procedure is clear since it is not necessary to
solve integral equations.

It is interesting to investigate how the coupling matrix evolves under the RG
flow in different regimes since it provides an insight on how to solve the problem
analytically in some asymptotic limits. The simplest case occurs when there are
no phonons present (as discussed in [1]) where a full analytical solution is possible.
For the case of �¼ 0, equation (14) gives Z‘ ¼ 1 and (23) becomes independent of
the external frequency and therefore we must have �ð!Þ ¼ C is a non-zero constant.
In this case (23) gives

1 ¼ �u0

Z þ1

�1

d!0

2
F‘c ð!

0
Þ

¼ �u0 ln ðW0=WcÞ, ð28Þ

where we have used (13). Notice that because Wc <W0 the above equation only
has solution if u0<0, that is, if the unrenormalized electron–electron interactions
are attractive to start with. The solution of the above equation gives

D ¼ L0 exp ð1=u0Þ, ð29Þ

whereW0 ¼ L0 since Z¼ 1. Since, in our case we assume u0>0, no superconducting
instability can exist in the absence of phonons.

Instead of only focusing on the solution of the RG equation at the instability, at
which point the zero eigenvalue condition (25) holds, we have also obtained the full
solution for the RG flow by solving (11) and (23) numerically. Figure 1 shows the
evolution of Uð‘Þ with ‘. Each panel in figure 1 represents the N�N matrix Uð‘Þ at a
given ‘. The frequency has been cut-off so that j!j < L0 and has been discretized in
N¼ 200 divisions in this interval. In a typical flow in the weak-coupling limit (in the
case of figure 1 � ¼ 0:3, !E ¼ 10, and u0 ¼ 0:1), U flows from the initial condition
where ~vvð!, � !Þ are the largest couplings to the instability point where the couplings
that first diverge are the ~vvð!i,!jÞ where j!ij, j!jj < !E.

We can clearly see from figure 1 that, as the RG develops, the matrix U, which at
the beginning of the RG has its largest elements along the diagonal, acquires a cross-
like shape, at which point its largest matrix elements occur near the origin where the

2636 S.-W. Tsai et al.
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frequencies are very small. The region with largest matrix elements occurs within

the dark circle of size !E around the origin. Moreover, within this circle the matrix

elements are essentially constant showing that there is very little frequency

dependence if the frequencies are smaller than !E. Hence, !E is the scale that

separates high from low energy physics in the weak coupling regime. Thus, the

full frequency dependence of the phonon propagator is irrelevant and we can safely

approximate:

�!EDð!Þ �
� if j!j < !E,

0 if j!j > !E:

�
ð30Þ

Hence, from equation (14) we have Z‘ð!Þ � 1þ � which is independent of ‘.
Even tougher, the most divergent elements of the matrix U are the ones at small

frequencies, and it is important to include all the matrix elements since the RG

equation couples low and high frequency processes. Again, making use of the fact

that !E is the energy scale that separates high and low energy physics in this limit,

we can propose the ansatz:

�ð!Þ ¼
�0 if j!j < !E,

�1 if j!j > !E,

�
ð31Þ

where �0 and �1 are unknowns that are to be calculated. Substituting (30), (31)

and the expression for Z‘c into (23) one finds

1þ �þ ðu0 � �Þ hð!E=LcÞ½ ��0 þ ð1þ �Þð‘c � hð!E=LcÞÞ�1 ¼ 0,

u0hð!E=LcÞ�0 þ ð1þ �Þ 1þ ð‘c � hð!E=LcÞÞu0½ ��1 ¼ 0, ð32Þ

where

hðzÞ ¼
2

p

Z z

0

dx
tan�1

ðxÞ

x
, ¼

z

2p
Fð�z2Þ ð33Þ
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Figure 1. Plots of the N�Nmatrix U at different RG scales ‘. Here the number of frequency
divisions N ¼ 200 and the value of the parameters used are � ¼ 0:3, L0 ¼ 100, !E ¼ 10,
u0 ¼ 0:1. Panels correspond to ‘ ¼ 0, 2.5, 3, 5, 6.5, 6.9, 7.1 and 7.19.
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and where FðxÞ is a LerchPhi function, FðxÞ ¼
P1

k¼0 x
k=ðkþ 1=2Þ2. The solution of

(32) is given by the determinant equation:

1þ �þ ðu0 � �Þhð!E=LcÞ ð1þ �Þð‘c � hð!E=LcÞÞu0

u0hð!E=LcÞ ð1þ �Þð1þ ð‘c � hð!E=LcÞÞÞu0

����
���� ¼ 0, ð34Þ

or equivalently,

�u0h
2
ð!E=LcÞ � �ð1þ u0 þ u0‘cÞhð!E=LcÞ þ ð1þ �Þð1þ u0‘cÞ ¼ 0, ð35Þ

which is a transcendental equation for Lc. The last equation can be rewritten in a

more interesting form by defining Lc ¼ xc!E where xc is the variable of the problem

(notice that ‘c ¼ ln ðL0=LcÞ ¼ ‘E þ ln ð1=xcÞ where ‘E ¼ ln ðL0=!EÞ) in order to get

h2ð1=xcÞ � 1=��
þ 1þ ln ð1=xcÞ½ �hð1=xcÞ þ

1þ �

�
1=��

þ ln ð1=xcÞ½ � ¼ 0, ð36Þ

where

��
¼

u0
1þ u0 ln ðL0=!EÞ

ð37Þ

is the renormalized electron–electron interaction at the scale of phonon energy !E.

This is the Anderson–Morel potential [10], which emerges naturally from the

solution to the RG flow.
Note that the renormalized interaction is really weakly dependent on the bare

electron–electron interaction since as u0 increases it saturates very fast at

��
� 1= ln ðL0=!EÞ which is interaction independent. In fact, in ordinary supercon-

ductors �� varies little from material to material (0:1 < �� < 0:25) and this can be

understood by the logarithmic dependence with the cut-off L0 and the phonon

frequency !E (if we estimate L0 � 104 K while !E � 102 K we get ��
� 0:217).

When xc � 1 (Lc � !E) we can approximate hð1=xcÞ � ln ð1=xcÞ and

equation (36) becomes

1

��
þ 1�

1þ �

�

� �
ln ð1=xcÞ �

1þ �

���
, ð38Þ

which leads to

Wc � !E exp ½�ð1þ �Þ=ð�� ��
Þ�, ð39Þ

which is the MacMillan expression for the superconducting gap at zero

temperature [11, 12].
In the strong-coupling regime (� > 1) the situation is rather different. Figure 2

shows the numerical results for the full solution of the RG flow for parameters

in strong coupling. The form of the matrix Uð‘Þ is very different from the weak-

coupling limit and the important scale separating the high and low energy physics

is 2Wc. We have seen that for �<1 the characteristic energy scale that separates

high from low energy physics is !E. When � > 1 we expectWc > !E in which case !E

is not the characteristic energy scale of the instability. Instead we expect Wc to act as

2638 S.-W. Tsai et al.
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the characteristic energy scale in separating the low and high energy physics. Thus,
it is natural to make the following ansatz:

�ð!Þ ¼
�0 if j!j < 2Wc,

0 if j!j > 2Wc,

�
ð40Þ

where �0 is an unknown. Since, as discussed previously, �� is bounded from above,
the electron–electron interaction will play a minimal role in the problem and can be
disregarded.

In this regime (27) becomes (�0 6¼ 0):

Zcð0Þ ¼ 2�!2
E

Z 2Wc

0

d!

p

Z þ1

Wc

dL
1

ð!2 þ L2Þð!2 þ !2
EÞ

�
2�

p
p!E

2Wc

�
p!2

E

4W2
c

 !
: ð41Þ

But from (14) we have Zcð0Þ � 1þ �ð!E=WcÞ � �ð!E=WcÞ
2, which substituted in (41)

gives

Wc � �1=2!E, ð42Þ

the strong coupling result of the Eliashberg equation found by Allen and Dynes [12].

4. Discussion and conclusion

We have numerically solved the RG equations for the flow of the BCS coupling
matrix for interacting electrons coupled to phonons, for the case of circular Fermi
surface and Einstein phonons. Figure 3 shows the result for the energy scale of
divergence in the Cooper channel, for a range of �, and the expected analytical
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Figure 2. Plots of the N�Nmatrix U at different RG scales ‘. Here the number of frequency
divisions N ¼ 200, and the value of the other parameters are � ¼ 4, L0 ¼ 100, !E ¼ 10 and
u0 ¼ 0:1. Panels correspond to ‘ ¼ 0, 1, 2, 2.5, 3, 3.13, 3.157, 3.172. The scale 2Wc � 40
distinguishes the high and low frequencies close to ‘c.
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result at weak and strong coupling limits. One can clearly see that the approximate
analytical solutions, based on the evolution of the coupling matrix under the
RG, give a very good description of the superconducting gap in the asymptotic
limits. Thus, our RG scheme can used as an alternative way to solve for the super-
conducting properties of a Fermi liquid and is in full agreement with Eliashberg’s
theory.

Unlike mean-field approaches like Eliashberg theory, the RG approach, when
solved numerically, can be easily extended to any shape of the Fermi surface or
anisotropic phonons. It also addresses the question of competition between different
types of instabilities, as was done extensively for the case without phonons [13–15].
Furthermore, the approach presented here at zero temperature can be easily
extended to finite temperature.
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