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Abstract

We study two specific features of onsite breathers in Nonlinear Schrödinger systems on d-dimensional cubic lattices with arbitrary power
nonlinearity (i.e., arbitrary nonlinear exponent, n): their wavefunctions and energies close to the anti-continuum limit – small hopping limit –
and their excitation thresholds. Exact results are systematically compared to the predictions of the so-called exponential ansatz (EA) and to the
solution of the single nonlinear impurity model (SNI), where all nonlinearities of the lattice but the central one, where the breather is located, have
been removed. In 1D, the exponential ansatz is more accurate than the SNI solution close to the anti-continuum limit, while the opposite result
holds in higher dimensions. The excitation thresholds predicted by the SNI solution are in excellent agreement with the exact results but cannot be
obtained analytically except in 1D. An EA approach to the SNI problem provides an approximate analytical solution that is asymptotically exact
as n tends to infinity. But the EA result degrades as the dimension, d , increases. This is in contrast to the exact SNI solution which improves as
n and/or d increase. Finally, in our investigation of the SNI problem we also prove a conjecture by Bustamante and Molina [C.A. Bustamante,
M.I. Molina, Phys. Rev. B 62 (23) (2000) 15287] that the limiting value of the bound state energy is universal when n tends to infinity.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The last decades have seen many efforts to understand
nonlinear localization phenomena in various branches of
physics (see for example Refs. [1–3] for some recent reviews).
The cubic nonlinear Schrödinger equation (NLS) is a celebrated
paradigm for continuous equations supporting solitons. Its
ubiquity in physics arises from its generic occurrence
in systems where small-amplitude wavepackets are to be
described. Its discrete counterpart, the cubic Discrete Nonlinear
Schrodinger Equation (DNLS) also plays an important role
in modeling localization in lattices [4,5]. The DNLS was
derived and studied by Holstein in his pioneering work on
polarons in solids [6] and subsequently rederived in many other
contexts such as biophysical systems [7], optical waveguide
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arrays [3,8], photonic crystals [9] and arrays of Bose–Einstein
condensates [10,11] to name a few. For recent reviews on the
subject the reader may consult Refs. [12,13] for example. Apart
from the above-mentioned applications, the DNLS equation
also arises in the context of Klein–Gordon lattices where
it governs the slow modulations of small-amplitude modes
[14–16].

A generalization of the DNLS equation to arbitrary power
nonlinearities has also been investigated by many authors
[17–23,25,26]. However, until recently the physical motivations
for introducing such a generalization were somewhat elusive.
For instance, it was proposed that a physical model with strong
anharmonicity might require a nonlinearity higher than cubic or
that a higher power nonlinearity could also be used to mimic the
multi-dimensional behavior of the Schrödinger model [19]. But
it seems fair to claim that the generalized DNLS equation was
studied primarily as the discrete counterpart of the continuum
generalized NLS equation, which is known to possess solitary
wave solutions that can be stable or unstable, the latter possibly
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blowing up in the critical or supercritical cases (see Refs. [17,
23] and references therein). More recently however, it has been
shown in Ref. [27] that the generalized DNLS equation governs
the slow modulations of small-amplitude band-edge modes
in partially isochronous Klein–Gordon systems. The critical
feature of these systems is that they possess onsite potentials
(or a combination of the onsite and interaction potentials) that
render their in-phase or anti-phase modes “partially harmonic”
at low amplitude in the sense that, when expanded as power
series in the energy density ε (energy per oscillator), their
frequency reads ω ∼ ω0 + αεµ where µ > 1 is an integer. For
generic potentials µ is typically equal to unity but for partially
isochronous potentials µ can take on higher values.1It has been
shown in Ref. [27] that the degree of the power nonlinearity in
the DNLS equation governing the envelope of these modes is
proportional to µ, whence a natural physical interpretation of
the generalized DNLS equation.

Discreteness and the conservation of the norm of the
wavefunction prevent any blow-up from taking place in DNLS.
But another interesting phenomenon occurs: in the critical and
supercritical cases, that is for (n − 1)d ≥ 2, the normalizable
ground state, which following the convention we shall refer
to as a discrete breather or also as a bound state throughout
this paper, exists above a certain excitation threshold only
(see for example [22–24]). Typically, if the hopping and
the nonlinear strength are fixed, an excitation threshold will
manifest itself as a minimal norm2 for a breather solution
to exist [20,22,23,25]. One of the purposes of the present
study is to provide an approximate analytical expression for
these excitation thresholds. We will derive this expression by
means of an exponential ansatz that has been used in previous
works on discrete breathers, polarons and bipolarons (see for
example [20,28–30]). In 1D, the exponential ansatz turns out
to be the exact solution to the single nonlinear impurity model
(SNI) – a model where the nonlinearity has been removed from
all but one lattice site [31–33]. The solutions to the SNI model
and DNLS are close provided they are essentially localized on
a single site of the lattice. This typically happens when the
hopping term is small or when the nonlinear strength is large.
If these two parameters are fixed, this also happens when the
norm of the breather becomes large [23]. This is the limit where
we expect the EA to provide the best results. Its exact accuracy
needs to be checked, however, for we already know that it is not
good enough to reproduce the bipolaron phase diagram of the
1D adiabatic Holstein–Hubbard model in the strong coupling
limit [30]. Thus, in order to test its accuracy in the strongly
localized limit, we will devote the first part of this study to a
detailed comparison of the exponential ansatz results with the
exact asymptotic ones and with the SNI solution. We will then
use the same ansatz to locate the excitation thresholds and once
again check how the results compare to the numerical and SNI
solutions. Our analysis and results will hopefully make clear
1 For example, V (x) = x2/2 + γ x3
+ (5/2)γ 2x4, is partially isochronous

with µ = 2 because ω = 1 + 210γ 4ε2
+O(ε3).

2 Depending on its sign, the breather energy may have a minimum or a
maximum at the threshold.
what physics one may expect the exponential ansatz to capture
properly.

1.1. Nonlinear Schrödinger systems on lattices

In arbitrary dimension, d, we consider a nonlinear
Schrödinger system on a hypercubic lattice with energy

F({ϕ}) =

∑
m∈Zd

−τϕ∗
m∆ϕm −

1
n
|ϕm|

2n . (1)

The nonlinearity n is an integer that satisfies n ≥ 2. The
wavefunction, ϕm, where m ≡ (m1,m2, . . . ,md) ∈ Zd , is
normalized according to∑
m∈Zd

|ϕm|
2

= 1. (2)

The d-dimensional discrete Laplacian reads

1ϕm =

d∑
j=1

ϕ(m1,...,m j +1,...,md ) + ϕ(m1,...,m j −1,...,md ). (3)

Minimizing (1) with respect to ϕm under the normalization
constraint yields a stationary generalized discrete nonlinear
Schrödinger equation

−τ1ϕm − |ϕm|
2(n−1)ϕm = Eϕm, (4)

where E , the Lagrange parameter associated with the
normalization, is related to the energy F by

F({ϕ}) = E +
n − 1

n

∑
m∈Zd

|ϕm|
2n . (5)

For simplicity, Eq. (4) will be called DNLS throughout this
paper although this name is generally devoted to its non-
stationary version obtained by replacing Eϕm by i ϕ̇m in the
r.h.s. of Eq. (4).

1.2. Scaling

It proves sometimes convenient to work with a wavefunction
ψm normalized to an arbitrary value,

∑
m |ψm|

2
= N , and

also to introduce a nonlinear strength, γ , that multiplies the
nonlinear term in Eq. (4). In this case ψm obeys a seemingly
more general DNLS equation than (4) that reads

−τ̂∆ψm − γ |ψm|
2(n−1)ψm = Êψm, (6)

with energy

F̂({ψ}) =

∑
m∈Zd

−τ̂ψ∗
m∆ψm −

γ

n
|ψm|

2n

= N Ê + γ
n − 1

n

∑
m∈Zd

|ψm|
2n . (7)

This equation will be used in the last section of this paper to
analyze the existence of excitation thresholds in the creation
of discrete breathers. Its advantage, both from the analytical
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and the numerical standpoint, is that it allows the study of the
norm of discrete breathers as a function of their amplitude. The
function N (ψ0) turns out to be single-valued and in certain
cases reaches a minimum, N ∗. Below this threshold value no
breather exists.

The appearance of a norm threshold in Eq. (6) also manifests
itself as a hopping threshold in Eq. (4). To see how, we
introduce φm = ψm/

√
N that is normalized to unity. Dividing

Eq. (6) by γN n−1 we find that φm obeys Eq. (4) with

τ =
τ̂

γN n−1 . (8)

This expression shows that the parameters τ̂ , γ and N of
Eq. (6) can be combined into a single one: namely, the effective
hopping of the DNLS equation (4), valid for a nonlinear
strength and a wavefunction normalized to unity. In particular,
it shows how a threshold value for any of the three previously
mentioned quantities translates into a threshold value for the
effective hopping τ of Eq. (4). Moreover, we also see that the
Lagrange parameters and energies of Eqs. (4) and (6) are related
to each other according to

E =
Ê

γN n−1 and F({φ}) =
F̂({ψ})

γN n . (9)

1.3. Organization of the paper

Throughout this article we will consider the solution to
Eq. (4) (or Eq. (6)) to be located at the center of the lattice,
m = 0. In Section 2, we begin our investigation with a simple
exponential ansatz (EA) solution to Eq. (4) close to the anti-
continuum limit (τ = 0). In Section 3, we compare it to the
exact small τ perturbative solution and show that the results
are the same up to order τ 4n−2 in 1D while they agree up
to order τ 2 in higher dimensions regardless of the nonlinear
exponent n. This lack of improvement with n for d ≥ 2,
which arises because the EA is too symmetric, leads us to
consider (in Section 4 another approximate solution to Eq. (4)):
namely, the single nonlinear impurity (SNI) solution that is
obtained by removing all nonlinearities from the hypercubic
lattice but the one at the central site. After a brief introduction
to the SNI problem, we evaluate its small τ limit and show
that it agrees with the exact expansion up to order τ 2n−2. We
then proceed by providing exact parametric expressions for the
Lagrange parameter E and the energy F of the SNI solution as
functions of τ . We use them to evaluate the hopping threshold
τ ∗

n,d beyond which no SNI breather exists, and we compare this
result to a simple EA approach to the SNI problem. We show
that the two solutions become asymptotically equivalent as the
nonlinear exponent n tends to infinity. In addition, we prove
a conjecture by Bustamante and Molina [33] regarding the
universality of the limiting value of the Lagrange parameter3

E as n → ∞. In Section 5, we use Eq. (6) to analyze the
3 E is referred to as bound state energy in Ref. [33].
existence of thresholds in the DNLS equation. We show that
the exponential ansatz provides reliable parametric analytical
expressions for all quantities (norm, Lagrange parameter, total
energy,etc.) and allows for the determination of the threshold,
if any, provided the nonlinear exponent is large enough. In
this limit, the DNLS solution becomes sufficiently localized for
the SNI approximation to hold. Given that in the same limit
the EA solution to the SNI becomes more and more accurate,
we use the results of Section 4 to derive simple expressions
for all quantities at the threshold and assess their accuracy
by evaluating their relative error with respect to numerical
results. In Section 6, we summarize our results and present our
conclusions.

2. Exponential ansatz

The d-dimensional normalized trial wavefunction for the
exponential ansatz (EA) reads

ϕ̃m =

(
1 − λ2

1 + λ2

)d/2

λ|m|, (10)

where |m| =
∑d

i=1 |mi | is the l1-distance to the central peak
located in m = 0. Notice that the components of this EA
wavefunction with the same distance |m| are equal. In this
respect, the symmetry of this state is higher than the symmetry
required for a solution to Eq. (4). Indeed, the exact solution
to Eq. (4) that consists of a single peak at m = 0 in the anti-
continuum limit (τ = 0) has to be invariant with respect to both
an arbitrary permutation of its indices and a change of their sign
as τ 6= 0 since Eq. (4) satisfies these symmetries. Obviously, the
EA wavefunction possesses these symmetries as well since they
leave |m| invariant. However, as soon as the dimension is higher
than one, other transformations can also leave the distance |m|

invariant. For example, in d = 2, m = (2, 0) and m′
= (1, 1)

have the same distance, |m| = |m′
| = 2, but are not related by a

permutation or a sign inversion of their indices. Therefore, the
EA wavefunction symmetry is higher than that strictly required
as long as d ≥ 2 and ansatz (10) is thus expected to provide
better results in 1D than in higher dimension.

Inserting (10) into (1), we find the energy [28]

F̃ = −
1
n

[(
1 − λ2

1 + λ2

)n
1 + λ2n

1 − λ2n

]d

−
4τdλ

1 + λ2 , λ ∈ [0, 1]. (11)

It is possible to verify that for τ → 0, the energy functional
(11) has always a minimum for λn,d = τ + o(τ 2). This is the
ground state of (11). Higher order corrections to this formula
are n- and d-dependent (see Appendix A).

Minimizing F̃ with respect to λ, we can expand the
solution λn,d(τ ) as a series in τ . Energies F̃n,d are then
obtained by reinserting λn,d(τ ) into (11) and expanding again.
Proceeding thus, we have evaluated λn,d(τ ) up to order τ 7 (see
Appendix A) and find the corresponding energy accurate to
order τ 8 to be given by

F̃n,d = −
1
n

− 2dτ 2
− 2d (ξ − 2) τ 4︸ ︷︷ ︸

n>2
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−
4d

3
(5ξ2

− 18ξ + 16)τ 6︸ ︷︷ ︸
n>3

−
2d

3
(49ξ3

− 252ξ2
+ 428ξ − 240)τ 8︸ ︷︷ ︸

n>4

+ o(τ 8), (12)

where ξ = nd. In the above formula, the under-braces indicate
the range of validity of the corresponding terms. The explicit
formulae for n = 2, 3, 4 are given in Appendix B. The origin
of such corrections is easily understood from (11) itself. In
this expression, the term [(1 + λ2n)/(1 − λ2n)]d is responsible
for corrections starting at order τ 2n in the energy (for, as said
previously, λn,d = τ + o(τ 2)). Terms of order τ 2k in (12) are
then generic for k < n and are to be corrected as specified
in Appendix B otherwise. These somewhat cumbersome but
otherwise straightforward calculations are best carried out with
a software able to perform algebraic manipulations. We have
used Maple [38] to obtain our results. The corresponding
programs are provided as supplementary material in the online
version of this paper both in PDF format (sections C.1.1 and
C.1.2, with a commented version of the programs) and as ready-
to-use Maple codes, ProgC11 and ProgC12.

From the physical perspective, neglecting [(1 + λ2n)/(1 −

λ2n)]d in the energy expression (11) amounts to treating
the problem of a single nonlinear impurity, |ϕ0|

2n , located
at the center of the lattice (within the exponential ansatz
approximation). This is clear from (1) and (10). Moreover, it
is also clear that, in this limit, F̃/d depends on the product
nd only. This explains the exclusive ξ -dependence of the
coefficients in (12), once divided by d . As we will see in
the next section, this exclusive ξ -dependence is an artifact of
the factorized form of the exponential ansatz that disappears
once the appropriate symmetry of the wavefunction is taken
into account. In Refs. [31,32], the exact solution to the single
nonlinear impurity problem has been worked out by means
of a self-consistent use of lattice Green’s functions in 1D and
2D. We shall use this method in a forthcoming section to
derive its small τ perturbative solution and compare it to the
exact perturbative solution in any dimension and for arbitrary
nonlinearities.

3. Small τ perturbative expansion

3.1. Wavefunction symmetry

In this section, we provide an exact perturbative solution
to Eq. (4) such that ϕm = δm0 for τ = 0 by expanding the
wavefunction ϕm and the Lagrange parameter E as series in τ .
We first use the symmetries previously mentioned in Section 2
to reduce the set of components to be calculated. Given that
(4) is invariant with respect to an arbitrary permutation of the
indices (m1, . . . ,md) ∈ Zd of m as well as an arbitrary change
of their sign, we can restrict our investigation to components
whose indices satisfy m1 ≥ m2 ≥ · · · ≥ md ≥ 0. We
shall denote the corresponding class by {m}. For example, in
d = 5, if m = (0,−1, 3, 1, 0) then it belongs to the class
{m} = {3, 1, 1} (except for {0}, we cut trailing zeros).
It is easy by inspection to establish the following properties
of the perturbative series in τ for ϕm – henceforth the
“τ -series”: the τ -series for ϕm is odd (even) if |m| is odd (even)
and its leading order is proportional to τ |m|. According to the
symmetry properties mentioned above, all components ϕm of
the same class, {m}, are equal and can be expanded as

ϕm ≡ ϕ{m} = τ |m|

∞∑
j=0

φ
{m}

2 j τ
2 j . (13)

Inserting this expression in (1) and in (5), we see that both the
energy and the Lagrange parameter are even in τ .

3.2. Energy up to order τ 8

To find the energy of the perturbative solution of (4) up to
order τ 8, we need to expand the Lagrange parameter as

E =

4∑
j=0

E2 j τ
2 j

+ o(τ 8) (14)

and to evaluate the components ϕm with |m| ≤ 4. The complete
list is S = {ϕ{0}, ϕ{1}, ϕ{2}, ϕ{11}, ϕ{3}, ϕ{21}, ϕ{111}, ϕ{4}, ϕ{31},

ϕ{22}, ϕ{211}, ϕ{1111}}. To the same order the normalization of
the wavefunction is obtained from

N 2
= |ϕ{0}|

2
+ 2d

[
|ϕ{1}|

2
+ |ϕ{2}|

2
+ |ϕ{3}|

2
+ |ϕ{4}|

2
]

+ 2A2
d

[
|ϕ{11}|

2
+ |ϕ{22}|

2
]

+ 4A2
d

[
|ϕ{21}|

2
+ |ϕ{31}|

2
]

+
4
3

A3
d |ϕ{111}|

2
+ 4A3

d |ϕ{211}|
2

+
2
3

A4
d |ϕ{1111}|

2
= 1 + o(τ 8), (15)

where Ak
d = d!/(d − k)! if k ≤ d and Ak

d = 0 else. The
prefactors appearing in (15) are the number of elements of the
corresponding class in dimension d. For instance, the number
of elements in class {2} is 2d. The complete list is given by:
(±2, 0, . . . , 0), (0,±2, . . . , 0), . . . , (0, 0, . . . ,±2). Notice that
the elements whose number of nonzero indices exceeds the
dimension d are not involved and disappear from (15) because
of the definition of Ak

d . Finally, because of (13), elements in
class {m} need only be determined up to order τ 8−|m| for (15)
to hold. This means that the index j runs from 0 to 4 − |m| in
φ

{m}

2 j . The number of coefficients φ{m}

2 j to be evaluated is then
5 − |m|.

Inserting (13) and (14) in (4), we may write an equation for
each of the components ϕ{m} ∈ S. This is done in Appendix D.
Solving the DNLS equation (4) (see also (D.1)) order-by-order
in τ provides 5 − |m| equations for each ϕ{m} that allow
for the determination of the 5 − |m| coefficients φ{m}

2 j . The
five remaining coefficients, E2 j , are determined from the five
equations provided by the normalization condition (15). Once
all the coefficients have been determined, we use Eq. (5) to
obtain the energy Fn,d as

Fn,d = −
1
n

− 2dτ 2
− 2d (d − 3 + ξ) τ 4
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−
4d

3

(
60 − 54d + 10d2

+ 5ξ2
− 27ξ + 9dξ

)
τ 6

−
2d

3

(
49ξ3

+ 227d2ξ − 1242dξ + 246d3
− 3465

+ 5031d − 2052d2
+ 1443ξ + 126dξ2

− 378ξ2
)
τ 8

+ o(τ 8) (16)

where ξ = nd and where the terms of order τ 2k

are valid for n > k only. For 2 ≤ n ≤ 4,
corrections to these generic coefficients are provided in
Appendix B (formulae (B.4)–(B.6)). As in the case of the
EA solution, these corrections originate from the nonlinear
impurities lying in the immediate vicinity of the central one
located at site 0. A way to obtain the result quoted above as
well as those reported in Appendix B is to use the Maple
program provided as supplementary material in the online
version (Appendix C, section C.3, code ProgC3).

3.3. Energy accuracy and effective nonlinear part of the lattice

In what follows we discuss briefly the number and location
of lattice nonlinearities needed to obtain a perturbative energy
valid to an arbitrary order, τσ . From Eq. (13), it is clear that the
leading order of |ϕm|

2(n−1)ϕm is τ (2n−1)|m|. Now, if we are to
obtain a perturbative solution up to order τσ for the energy, we
know from Eq. (D.1) that we must solve (4) up to order τσ−|m|

for ϕm. This means that the nonlinear term |ϕm|
2(n−1)ϕm plays

a role in the equation if and only if

2n|m| ≤ σ. (17)

In other words, for a given order σ and nonlinearity n, this
condition determines the “effective” nonlinear part of the lattice
that is, the distance |m| to the central site 0 up to which sites
have to be considered nonlinear. This then yields the number
and location of nonlinear impurities needed to derive the exact
small τ expansion of the energy up to order τσ . The generic
expression (16) corresponds to the result obtained for a single
nonlinear impurity (located at site 0). According to condition
(17), it is valid when the only solution to this inequality is
|m| = 0. This in turn implies that 2n > σ , which explains the
conditions displayed beneath each term of the series (16). Thus,
for a fixed nonlinearity n, the energies of the exact solution to
Eq. (4) and to the single nonlinear impurity problem coincide
up to order τ 2(n−1). Notice that, contrary to the EA energy
(12), once divided by d , the coefficients of the series (16) do
not depend only on ξ = nd . This is a manifestation of the
non-factorability of the true wavefunction solution to the single
nonlinear impurity problem.

3.4. Exponential ansatz versus exact perturbative result

We now compare Eqs. (12) and (16). As we can see, for
d ≥ 2 they agree up to order τ 2 only. We can verify from
the expressions given in Appendix B that this statement is
also valid when 2 ≤ n ≤ 4. This result is independent
of the nonlinearity n and therefore, does not improve as n
increases. The exponential ansatz is then not very accurate
in the small τ regime in dimensions higher than unity. As
previously explained, this essentially originates in its “excess”
symmetry compared to the symmetry of the exact solution.
In 1D, however, it is possible to see that Eqs. (12) and
(16) coincide. In fact, it is easy to establish that in 1D, the
exponential ansatz is an exact solution to the single impurity
problem. This shows that its energy series is at least valid up
to order τ 2(n−1). But in fact, a more careful analysis proves
it to be valid up to order τ 4n−2 and thus, to be as accurate
as a two nonlinear impurity solution. This can be verified by
comparing expressions (B.1) and (B.4) for n = 2 (and d = 1)
that can be seen to agree up to order τ 6 rather than τ 2, as
would be expected from a comparison with the single impurity
solution (16). In some sense, when account is taken of the full
nonlinearity of the problem within the exponential ansatz, the
term [(1 + λ2n)/(1 − λ2n)] correcting the single impurity term
[(1−λ2)/(1+λ2)]n (see expression (11) and comments below)
accurately captures the effect of the nonlinearity of sites 1 (and
−1) but not the others. This is difficult to explain intuitively
and only a careful analysis reveals it. Importantly, it is not true
in higher dimensions. A numerical check of Eq. (16) for n = 2
and d = 1, 2, 3 and a comparison to the exponential ansatz
solution (12) performed in Appendix G proves the correctness
of these expressions.

3.5. Summary

In this section, we have derived the exact small τ

perturbative expansion for the energy of the Discrete Nonlinear
Schrödinger Equation on a hypercubic lattice with arbitrary
dimension and compared it to results from the perturbative
expansions of the exponential ansatz (EA) and the single
nonlinear impurity (SNI) approaches. We shown that the SNI
solution provides an expression for the energy that is accurate
up to order τ 2(n−1) in the anti-continuum limit (τ → 0). Hence,
the accuracy of this solution improves as the nonlinearity
increases. We have argued that this improvement is due to the
fact that the SNI wavefunction possesses the same symmetry as
the exact one. In contrast, because of its “excessive” symmetry,
the EA result is accurate only up to order τ 2 in dimension two
and higher. But in 1D systems, the accuracy of the EA goes
well beyond the SNI solution, as its energy coincides with the
exact one up to order τ 4n−2. We have shown that the enhanced
accuracy of the EA can be interpreted as resulting from the
proper accounting of two nonlinear impurities located at sites
0 and 1 (and −1 by symmetry), and is hence obviously beyond
the scope of the SNI approach. Nonetheless, the accuracy of the
perturbative SNI solution strongly motivates a more detailed
study of this approach, and we undertake this study in the
ensuing section.

4. Single nonlinear impurity (SNI) problem

4.1. Brief review of the SNI problem

We now investigate the single nonlinear impurity problem
and use the method proposed by [31,32] to derive its
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5 The reason for choosing Rz < −2τd in (27) is because this formula is to
be used at z = E . The bound state energy E lies below the band-edge of the∑d
exact solution in a hypercubic lattice of dimension d with
nonlinearity n. The purposes of this section are two. First, to
rederive the generic form of energy (16) from the exact results
of the SNI problem. Second, to use the exact SNI results to
study the existence of excitation thresholds for the creation of
discrete breathers. Armed with these results, we shall see in
the next section how these predictions of the EA and the SNI
solutions compare with the numerical results regarding these
excitation thresholds.

For the present purposes it is convenient to decompose the
SNI Hamiltonian, H , into its free particle (tight binding) part,
H0, and its nonlinear part, H1.

H = H0 + H1, (18)

with (in an obvious notation)

H0 = −τ
∑
n.n

|m〉〈n|; H1 = α|0〉〈0|;

α = −|ϕ0|
2(n−1). (19)

The kets |m〉, m ∈ Zd form the lattice basis and any
wavefunction |ϕ〉 can be expanded as |ϕ〉 =

∑
m∈Zd ϕm|m〉.

The sum in H0 extends to nearest neighbors. By convention
the Schrödinger equation associated with Hamiltonian (18) is
H |ϕ〉 = E |ϕ〉. It reads

−τ1ϕm − |ϕ0 |
2(n−1) ϕ0 δm,0 = Eϕm. (20)

The corresponding energy functional is given by

F = −τ
∑

m∈Zd

ϕ∗
m1ϕm −

1
n
|ϕ0 |

2n . (21)

Notice that F 6= 〈ϕ|H |ϕ〉 = E which is due to the fact that H1
depends on ϕ0 (and is thus nonlinear). The Lagrange parameter
E – bound state energy – is related to the total energy F by

F = E +
n − 1

n
|ϕ0 |

2n . (22)

It is clear that this expression is the same as Eq. (5) except for
the second term that retains the central nonlinearity only. The
resolvents (Green’s functions) associated with H and H0 are
respectively given by

G(z) = (z − H)−1 and G(0)(z) = (z − H0)
−1, z ∈ C. (23)

Defining their lattice components as Gmn(z) = 〈m|G(z)|n〉 and
the corresponding expression for G(0)

mn(z), we obtain4

Gmn(z) = G(0)
mn(z)+

αG(0)
m0(z)G

(0)
0n (z)

1 − αG(0)
00 (z)

. (24)

According to the general properties of lattice Green’s functions
[35], the pole of G(z) provides the bound state energy z = E
4 Using (23) and dropping the z-dependence of the Green’s functions for
convenience, we have (z − H0 − H1)G = 1 that is, (1 − G(0)H1)G =

G(0). Using (19) and bracketing this equality with 〈m| and |n〉 yields Gmn −

αG(0)m0G0n = G(0)mn. Specializing to m = 0, we find G0n = G(0)0n /(1 − αG(0)00 ),
whence the result (24).
and the residue of Gmn(z) at z = E , the density matrix element
ρmn = ϕ∗

mϕn. Thus, from (24), the bound state energy is related
to the value of its wavefunction at the center of the lattice by
G(0)

00 (E) = α−1
= −|ϕ0 |

−2(n−1) while |ϕ0 |
2

= ρ00 is given by

|ϕ0 |
2

= Res G00(z)|z=E = −
[G(0)

00 (E)]
2

G(0)′
00 (E)

, (25)

where the prime denotes a derivative with respect to z.
Combining these results, we finally obtain an exact equation
that allows for the determination of the bound state energy E ,

[G(0)
00 (E)]

2n−1

[−G(0)′
00 (E)]n−1

= −1. (26)

This equation is valid in arbitrary dimension d and for
any nonlinearity n. To proceed further, we need an explicit
expression for the free particle Green’s function G(0)

00 (z) in
a d-dimensional hypercubic lattice. It is given by (see for
example [35,36])

G(0)
00 (z) =

1
(2π)d

∫ π

−π

ddk

z + 2τ
d∑

l=1
cos kl

= −
1

2τ
Ld

(
−

z

2τ

)
,

Rz < −2τd. (27)

The function Ld(s) is the Laplace transform of the dth power
of the modified Bessel function I0,

Ld(s) =

∫
∞

0
e−su [I0(u)]d du. (28)

The last equality in (27) has been obtained from5
−ν−1

=∫
∞

0 eνx dx for Rν < 0 and the integral representation of the
modified Bessel function I0(z) =

1
π

∫ π
0 ez cos θdθ [37]. For the

lowest values of d, Ld(s) can be evaluated exactly in terms
of elementary (d = 1) or special (d = 2, 3, 4) functions of
increasing complexity (see for instance [39–42]6 and references
therein). In the general case, expanding I d

0 (u) as a power series
in u and integrating term-by-term yields

Ld(s) =
1
s

∞∑
σ=0

(2σ)!

22σ

D(d)
σ

s2σ , where

D(d)
σ =

∑
k1+···+kd =σ

ki ≥0

1

[k1!k2! · · · kd !]2 . (29)

In particular, D(1)
σ =

1
(σ !)2

, D(2)
σ =

(2σ)!
(σ !)4

, D(3)
σ =

3 F2(
1
2 ,−σ,−σ ; 1, 1; 4)/(σ !)2, where 3 F2(a, b, c; d, e; z) de-
continuum 2τ l=1 cos kl , hence E < −2τd.
6 These papers do not give the Laplace transform Ld (s) defined in (33)

directly. But they evaluate the function

Pd (z) =
1

πd

∫ π

0

dd k

1 −
z
d

d∑
i=1

cos ki

=
d

z
Ld

(
d

z

)
. Hence Ld (s) =

1
s

Pd

(
d

s

)
.
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notes the generalized hypergeometric function. For an arbitrary
dimension d , we can evaluate the first coefficients: D(d)

0 = 1,

D(d)
1 = d , D(d)

2 = d(2d − 1)/4, D(d)
3 = d(6d2

− 9d + 4)/36,
etc.

4.2. Energy in the anti-continuum limit (τ → 0)

To compare with our perturbative results, we need to solve
Eq. (26) for the bound state energy E in the anti-continuum
limit, τ → 0. We first expand E as a series in τ . Noticing that
a change of variable kl → kl + π simply changes the sign of
τ in (27), we see that G(0)

00 (z) is even in τ and then, so does E .
Moreover, as ϕ0 → 1 when τ → 0, the leading order of E is
−1 in this limit. Then,

E = −1 +

∞∑
j=1

E2 j τ
2 j . (30)

Now we expand −2τ/E as a power series in τ and use (27)
and (29) to obtain a τ -series for G(0)

00 (E) and G(0)′

00 (E) whose
coefficients are functions of the parameters E2 j . Inserting these
results in (26) and solving order-by-order in τ yields eventually
the parameters E2 j : E2 = 2ξ−4d , E4 = 6ξ2

−(18+2d)ξ−8d2
+

24d , etc., where ξ = nd. Once E is known to some order in τ ,
it can be used to calculate |ϕ0|

2 to the same accuracy, thanks to
(25). The result is finally reinserted into (22) to obtain the total
energy

Fn,d = −
1
n

− 2dτ 2
− 2d(d − 3 + ξ)τ 4

−
4d

3
(60 − 54d + 10d2

+ 5ξ2
− 27ξ + 9dξ)τ 6

−
2d

3
(49ξ3

+ 227d2ξ − 1242dξ + 246d3

− 3465 + 5031d − 2052d2
+ 1443ξ

+ 126dξ2
− 378ξ2)τ 8

+ o(τ 8). (31)

This result is of course the same as the energy derived in
(16), except for the restrictions upon the coefficients that have
disappeared since no nonlinear impurity but the central one
is present in this SNI model. This result is then valid for
any n and d . Although tedious, the calculations needed to
produce this expression are straightforward and automatic once
implemented in the Maple code named ProgC2 provided as
supplementary material in the online version of this paper in
Appendix C, section C.2.

4.3. Hopping threshold for the existence of breathers in the SNI
problem

For values of the hopping parameter τ that are not small,
Eq. (26) allows for the derivation of the exact energy of the
bound state(s), if any. For that purpose, it is convenient to
introduce a parameter that measures the “distance” between the
energies of the bound state and the continuum band-edge (with
respect to the middle of the continuum band), κ = −2τd/E .
As E < −2τd , this parameter takes on values within the range
[0, 1). The limit κ → 0 corresponds to τ → 0 that is, to the
anti-continuum limit (as we have seen previously, E → −1
in this limit). On the other hand, it is obvious that κ → 1 as E
comes close to the continuum band-edge energy −2τd. Written
in terms of κ , Eq. (26) can be cast into the form

gn,d (κ) = τ, κ =
−2τd

E
∈ [0, 1), (32)

with

gn,d(κ) =
1
2

[Ld(s)]2n−1

[−L′

d(s)]
n−1 |s=d/κ , (33)

where the prime denotes a derivative with respect to s.
Using Eqs. (33) and (22) we can now provide a parametric
representation for τ , E and F in terms of κ ,

τ = gn,d(κ); E = −
2d

κ
gn,d(κ);

Fn,d = −2gn,d(κ)

[
d

κ
+

n − 1
n

Ld
( d
κ

)
L′

d

( d
κ

)] . (34)

The last equation has been obtained thanks to Eq. (25) where
the Green’s function has been expressed in terms of Ld(s).
This representation provides an implicit analytical expression
for E(τ ) and Fn,d(τ ).

4.3.1. 1D lattice, d = 1
The 1D case is very special as it can be solved exactly

by means of the exponential ansatz (10). Indeed, inserting
the EA form of the wavefunction into the SNI equation (20)
yields immediately a parametric solution given in terms of the
localization parameter λ ∈ [0, 1]

τ =
λ

1 − λ2

[
1 − λ2

1 + λ2

]n−1

; E = −

[
1 − λ2

1 + λ2

]n−2

;

Fn,1 = E +
n − 1

n

[
1 − λ2

1 + λ2

]n

. (35)

Using these expressions, we can provide a relation between the
parameter κ = −2τ/E , measuring the “distance” of the bound
state energy to the continuum band-edge, and the localization
parameter λ. It takes the remarkably simple form

κ =
2λ

1 + λ2 . (36)

Let us now obtain the SNI solution by using the Green’s
function approach. Using Eqs. (32) and (33) and L1(s) =

(s2
− 1)−1/2 [39], we find

gn,1(κ) =
κ

2

(
1 − κ2

) n
2 −1

, (37)

and, upon using Eqs. (34), this eventually yields

τ =
κ

2

[
1 − κ2

] n
2 −1

; E = −

[
1 − κ2

] n
2 −1

;

Fn,1 = −
1
n

[
1 − κ2

] n
2 −1

[1 + (n − 1)κ2
]. (38)
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Fig. 1. Functions gn,1(κ) for n = 2, 3, 4, 10, 50. As n increases, the maximum
of gn,1(κ) shifts towards κ = 0.

We can verify by using Eq. (36) that these equations
are equivalent to (35). The two methods are then merely
reparametrizations of one another in terms of distance to
the continuum or localization length. The curves gn,1(κ)

corresponding to different values of the nonlinearity n have
been drawn in Fig. 1. As we can see, they all posses a maximum
for κ ∈ [0, 1]. This indicates that above a certain n-dependent
critical hopping value, τ ∗

n,1, no bound state exists anymore. An
essential difference occurs between the particular case n = 2
and higher values of n. For n = 2, g2,1 = κ/2 and Eq.
(32) indicates that a single bound state exists for all values
of τ < τ ∗

2,1 = 1/2. Strangely, its Lagrange parameter does
not depend on τ and is given by E = −1. But its energy,
F2,1 = −1/2 − 2τ 2, does depend on τ .

For n > 2, the number of bound states below τ ∗

n,1 is two.
The closest to κ = 0 can be shown to be stable while the other
one is unstable [20]. Actually, we see this stability difference
on the graph of the functional F (see Fig. 2, left panel). The
bound state the closest to λ = 0 – that is also the closest to
κ = 0 given Eq. (36) – corresponds to a minimum of F while
the other one corresponds to a maximum of the functional. On
Fig. 3 (left panel), these bound states are the intersections of the
curve gn,1(κ) with the horizontal line representing the value of
τ . For τ → 0, the stable bound state is the one whose energy
has been evaluated perturbatively in expression (31). The other
one (for n > 2) comes close to the continuum band in this
limit and disappears by merging with it as κ = 1. In this
limit, its localization length, | ln λ|−1, becomes infinite, while
the localization length of the stable bound state tends to zero.

One of the great advantages of the parametric form (38)
(or (35)), is to provide at once the energies Fn,1 of both
the stable and unstable bound states with respect to τ . These
energies have been plotted in Fig. 4 for various nonlinearities.
The lower branch of Fn,1(τ ) gives the energy of the stable
bound state while the upper one corresponds to the energy of
the unstable bound state. The turning point corresponds to the
critical hopping value, τ ∗

n,1, beyond which no bound state exists.
It is easy to evaluate all quantities at criticality by finding the
maximum of gn,1(κ). We obtain

κ∗

n,1 =
1

√
n − 1

; λ∗

n,1 =
√

n − 1 −
√

n − 2, (39)

and

τ ∗

n,1 =
1

2
√

n − 1

[
n − 2
n − 1

] n
2 −1

; E∗

n,1 = −

[
n − 2
n − 1

] n
2 −1

;

F∗

n,1 = −
2
n

[
n − 2
n − 1

] n
2 −1

. (40)

For n = 2 these expressions are still valid provided they are
evaluated as limits (n → 2). For n → ∞, their asymptotic
behaviors read

κ∗

n,1 ∼
1

√
n
; λ∗

n,1 ∼
1

2
√

n
; τ ∗

n,1 ∼
e−1/2

2
√

n
;

E∗

n,1 ∼ −e−1/2
; F∗

n,1 ∼ −
2
n

e−1/2. (41)
Fig. 2. SNI energy functional F in 1D for n = 3 versus the localization parameter λ. Left panel, τ = 0.18 < τ∗
3,1. The minimum around λ ' 0.2 represents

the stable bound state solution. The maximum around λ ' 0.65 represents the unstable bound state. Right panel, τ = τ∗
3,1 = 1/4. For this critical value of τ , the

minimum and the maximum merges at λ∗
3,1 =

√
2 − 1. For τ > τ∗

3,1 no bound state exists.
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Fig. 3. Graphic solution to Eq. (32), g3,1(κ) = τ , for τ = 0.18 < τ∗
3,1 (left panel) and for τ = τ∗

3,1 = 1/4 (right panel). On the left panel, the stable bound state
corresponds to the intersection near κ = 0.4 while the other intersection around κ = 0.9 corresponds to the unstable bound state. On the right panel, the two bound
states have merged at κ∗

3,1 = 1/
√

2.
7 In 2D, the nonlinear parameter γ of Ref. [32] is related to our hopping
parameter via γ ≡ 1/(4τ) and the quantity m = 1/z2 corresponds to κ2.
Fig. 4. Energies Fn,1(τ ) of the stable (lower branch) and unstable (upper
branch for n > 2) bound states for various nonlinearities. Diamond symbols
mark the turning points (τ∗

n,1,F
∗
n,1) as given by Eqs. (40).

4.3.2. Higher dimensions

For d ≥ 1, the SNI problem cannot be solved exactly with
the exponential ansatz. But whenever an analytical expression
is available for the Laplace transform Ld(s), Eqs. (34) provide
exact parametric expressions for the Lagrange parameter En,d

and the energy Fn,d versus the hopping τ . This is the case in
d = 2, 3, 4. These expressions are given here for d = 2 and
the reader is referred to Refs. [40–42] for explicit analytical
results in 3D and 4D. Using L2(s) =

2
πs K ( 2

s ) [39], where

K (k) =
∫ π/2

0 [1 − k2 sin2 θ ]−1/2dθ is the complete elliptic
integral of the first kind, we obtain

gn,2(κ) =
2n

4πn κ(1 − κ2)n−1 K (κ)2n−1

E(κ)n−1 , (42)

where E(k) =
∫ π/2

0 [1 − k2 sin2 θ ]1/2dθ is the complete elliptic
integral of the second kind. The same expression, although with
different notations,7has been obtained in [32]. Some curves
gn,2(κ) have been drawn in Fig. 5 (left panel). In contrast to
the 1D case, the number of bound states is always two below
the hopping critical value τ ∗

n,2 and zero above, even for n = 2.
The parametric equations (34) have the particular form

τ = gn,2(κ); E = −
4
κ

gn,2(κ);

Fn,2 = −
4gn,2(κ)

κ

[
1 −

n − 1
n

(1 − κ2)
K (κ)

E(κ)

]
.

(43)

For n = 2 to n = 5, energies Fn,2 have been drawn in
Fig. 5 (right panel) together with their exponential ansatz
approximations, F̃n,2 (see Section 4.3.4). As we can see, in
contrast to the 1D case, the lowest curve (for n = 2) now has
two branches corresponding to a stable (lower branch) and an
unstable (upper branch) bound states.

In 3D, we have used the analytical expression provided
in [41] to calculate the curves gn,3(κ). These are represented
in Fig. 6 (left panel) for various values of n and compared
to their EA counterparts (see next section). Energies Fn,3(τ )

are displayed in the right panel of the same figure. As we can
see, the major difference between the exact gn,3(κ) curves and
their EA counterparts is that exact curves tend to zero as the
Lagrange parameter reaches the continuum band-edge (κ → 1)
while the EA counterparts do not. Actually, an asymptotic
analysis of the behavior of the Laplace transform Ld(s) and
its derivative indicates that the opening of a gap at κ = 1 for
gn,d(κ) only occurs in d = 1 for n = 2 or when d ≥ 5. This fact
is important because a gap at κ = 1 implies that a single bound
state exists for 0 ≤ τ < gn,d(1) while for gn,d(1) ≤ τ < τ ∗

n,d
two bound states exist that disappear when τ > τ ∗

n,d .
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Fig. 5. Left panel: Functions gn,2(κ) for n = 2, 3, 4, 5. As n increases, the maximum of gn,2(κ) shifts towards κ = 0. Right panel: Comparison between the exact
(Eq. (43)) and the approximate exponential ansatz (Eq. (49)) energies, Fn,2 and F̃n,2, for n = 2, 3, 4, 5. The lowest curve corresponds to n = 2 and curves are
shifted upwards as n increases.

Fig. 6. Left panel: Functions gn,3(κ) for n = 2, 4, 10, 40 compared to their exponential ansatz counterparts τ(κ̃) (see Eqs. (48) and (50)) evaluated with λ ∈ [0, λ̄3],
where λ̄3 = 2 −

√
3. Right panel: Comparison between the exact and the approximate exponential ansatz energies, Fn,3 and F̃n,3, for the same values of n. The

exponential ansatz solution is evaluated for λ ∈ [0, λ̄3] (dashed line) and for λ ∈ [λ̄3, 1] (dotted line).
4.3.3. Large nonlinearities, n → ∞

We have seen in the previous section that evaluating
the hopping threshold τ ∗

n,d amounts to solving the equation
dτ/dκ = 0, that is dgn,d(κ)/dκ = 0. Using the explicit
expression (33), the latter translates into

(2n − 1)
(
L′

d(s)
)2

= (n − 1)L′′

d(s)Ld(s), s =
d

κ
, (44)

where the prime denotes a differentiation with respect to s. The
key point is to observe that when n tends to infinity, a solution to
(44) requires s to tend to infinity too. Then, using the expansion
provided in (29), Eq. (44) becomes

1

s4 +
d(4 − n)

s6 +
3d

4
(6 − 10d)n + 23d − 11

s8

+O
( n

s10

)
= 0 (45)
which yields the asymptotic result s2
∼ nd + (7d − 9)/2 +

O(n−1). Reinserting this value into (34) we find in leading
order

κ∗

n,d ∼

√
d

n
; τ ∗

n,d ∼
e−1/2

2
√

nd
;

E∗

n,d ∼ −e−1/2
; F∗

n,d ∼ −
2e−1/2

n
, (n → ∞).

(46)

Note that the evaluation of F∗

n,d requires the knowledge of
the constant term in the expansion for s2 (see above). That
is why it is provided. To derive the other quantities, the
leading term is sufficient. These asymptotic expressions are the
generalization of those obtained in 1D in (41). A by-product
of this asymptotic analysis is a proof, for hypercubic lattices
of arbitrary dimensions, of a conjecture by Bustamante and
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Molina [33] that the value of the Lagrange parameter E∗

n,d
(bound state energy) of the SNI is universal. Indeed, in their
paper, these authors have obtained strong numerical evidence
that8 |E∗

n,d | ∼ 1/
√

e as n → ∞ for a wide variety of
lattices. The result above shows that this is indeed the case
for hypercubic lattices. But the same idea may be applied to
Eq. (26) that is valid for an arbitrary lattice. Using a general
asymptotic expansion of the lattice Green’s function G(0)

00 , we
show in Appendix E that the bound state energy E∗

n,d converges
towards a universal value as the nonlinear exponent tends to
infinity regardless of the detailed structure and the dimension
of the lattice.

4.3.4. Approximate exponential ansatz solution to the SNI for
d > 1

As we have seen previously, the exponential ansatz (EA)
is the exact solution to the SNI in 1D. In higher dimensions,
this is no longer the case. Nevertheless, the EA still proves to
be a very useful approximate analytical solution, as we now
establish. Using (10) and the energy F defined in (22) we
find the following functional for the EA approach to the SNI
problem:

F̃ = −
1
n

(
1 − λ2

1 + λ2

)nd

−
4τdλ

1 + λ2 . (47)

The extrema of this functional are given by ∂F̃/∂λ = 0 which
can immediately be solved for τ

τ =
λ

1 + λ2

[
1 − λ2

1 + λ2

]nd−2

. (48)

Reinserting this result into (47) and using (22), we obtain the
energy and the Lagrange parameter as

Ẽ = −

[
1 − λ2

1 + λ2

]nd [
1 +

4dλ2

(1 − λ2)2

]
;

F̃ = −

[
1 − λ2

1 + λ2

]nd [
1
n

+
4dλ2

(1 − λ2)2

] (49)

and we can also define κ̃ = −2dτ/Ẽ , the EA approximation of
the parameter κ , that reads

κ̃ =
2λd(1 + λ2)

(1 − λ2)2 + 4dλ2 . (50)

Clearly, this expression is an approximate d-dimensional
generalization of Eq. (36) that is recovered for d = 1. In 1D and
2D, κ̃ and λ are in one-to-one correspondence over the interval
[0, 1]. But as soon as d ≥ 3, this is no longer true and for λ >
λ̄d = d − 1 −

√
(d − 1)2 − 1, the parameter κ̃ becomes larger

than unity. This is the main drawback of the EA approach to
the SNI problem, for the Lagrange parameter cannot penetrate
into the continuum band. But the approximate expressions
8 To compare with [33], readers should note that in our case the nonlinear
parameter γ is set to unity; it is easily reinserted using Eq. (9). Recall also that
sign convention for the energy is opposite.
derived within the EA violate this condition unless the range
of λ is restricted to [0, λ̄d ]. Restricting the localization length
parameter to such a range of values is not inconsequential,
however. For instance, the resulting value of τ at λ = λ̄d
(i.e. κ̃ = 1) is nonzero, which contradicts the prediction of the
exact result in 3D and 4D. In 3D and 4D, the exponential ansatz
creates a gap that does not exist for the unstable bound state
(this is seen for d = 3 in Fig. 6, left panel). Nevertheless, in
Fig. 6, we show that the energies F̃n,3 reproduce the exact ones
well enough if we use the full range λ ∈ [0, 1] in the parametric
representation (49) and (48).This agreement must in some
sense be regarded as accidental, given that the EA does not
provide reliable results in the vicinity of the continuum band.
From (48), we can calculate the critical localization length,
λ∗

n,d , maximizing τ . It is given by

λ∗

n,d =

[
(2nd − 3)−

√
(2nd − 3)2 − 1

]1/2
. (51)

It is easy to see that for n ≥ 2 and d ≥ 3, λ∗

n,d < λ̄d .
This means that the value of the localization parameter at the
maximum of τ is located within the portion of the graph where
κ̃ is less than unity. This value is then admissible. Using (51),
(48) and (49), we can evaluate all quantities at criticality and in
particular, their asymptotic expression as n → ∞

λ∗

n,d ∼
1

2
√

nd
; κ̃∗

n,d ∼

√
d

n
; τ̃ ∗

n,d ∼
e−1/2

2
√

nd
;

Ẽ∗

n,d ∼ −e−1/2
; F̃∗

n,d ∼ −
2e−1/2

n
.

(52)

As we can see, these expressions are exactly the same as
those derived from the exact SNI solution in (46). Hence,
the approximate EA solution to the SNI problem becomes
asymptotically correct at high nonlinearities. Moreover, Fig. 5
(right panel), which compares the energies of the exact and the
EA solutions in 2D, shows that the accuracy of the latter is good
even at low nonlinearities. The simple analytical expressions
derived from this approximation are then useful to treat the SNI
problem whose exact solution becomes dauntingly complicated
as the dimensionality increases.

4.3.5. Exact localization parameter vs κ
As we have seen in the previous section, the EA does not

provide a reliable relation between the localization parameter λ
and the parameter κ . This is due to the angular dependence of
the localization parameter. Indeed, in contrast to the EA whose
wavefunction assumes a single localization parameter for all
directions, ϕ̃m ∝ λ|m|, the exact SNI wavefunction decays
differently in different directions m. We can define an exact
direction-dependent localization parameter λm through

ln λm = lim
µ→∞

1
µ|m|

ln
∣∣ϕµm

∣∣
= lim

µ→∞

1
µ|m|

ln
∣∣∣G(0)

0,µm(E)
∣∣∣ , (53)

where we have used the fact that |ϕm|
2

= Resz→EGmm(z)
together with Eq. (24). An asymptotic analysis done in
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Appendix F shows that in the direction m = (1, . . . , 1, 0,
. . . , 0), with m 1’s and d − m 0’s, the leading order of the
Green’s function G(0)

0,µm(E) reads

G(0)
0,µm(E) ∼

−1
2τ

[
Am −

√
A2

m − 1
]µm

(2πµm)
d−1

2

× m
d
2 −1 (A

2
m − 1)

d−3
4

A
m−1

2
m

(µ → ∞), (54)

where

Am =

(
1
κ

− 1
)

d

m
+ 1 , m ∈ {1, 2, . . . , d}. (55)

Obviously, from Eqs. (53) and (54), the localization parameter
can be expressed as

λm = Am −

√
A2

m − 1. (56)

Inverting (56), we obtain κ as a function of λm

κ =
2dλm

m(1 − λm)2 + 2dλm
. (57)

We see now that κ and λm are in one-to-one correspondence and
that κ = 0 for λm = 0 while κ = 1 when λm = 1, which means
that the wavefunction is not exponentially localized when the
bound state energy reaches the continuum band-edge: it is at
best algebraically decaying in this limit. The expression (57)
is clearly different from the approximate EA solution given in
Eq. (50) although the two formulae become equivalent in the
limit of small λ (or small κ). Let us first notice that in 1D
(m = 1 is the only possible value in this case), the expression
(57) reduces to the formula already given in (36). Another
interesting observation is that, in the (1, . . . , 1) direction (m =

d), the expression (57) is equivalent to this 1D expression

κ ≡
−2τd

E
=

2λ1,...,1

1 + λ2
1,...,1

. (58)

Thus, measuring the decay of the wavefunction in the (1, . . . , 1)
direction is a simple way to obtain the bound state energy
(Lagrange parameter) E of the SNI problem.

5. DNLS excitation thresholds

5.1. Exponential ansatz approach

The purpose of this final section is to determine excitation
thresholds for the appearance of breathers in DNLS hypercubic
lattices. Depending on the fixed parameters, any threshold
will manifest itself as a minimum or maximum of a free
quantity. It is convenient at this point to use the general form
of the DNLS equation presented in Section 1.2 to follow one-
parameter families of discrete breather solutions. Such families
are typically obtained by tuning the amplitude of the breather
while fixing two of the three quantities involved in Eq. (6)
namely, the hopping τ̂ , the nonlinear strength γ and the norm
N . The interdependence of these quantities is given by equation
(8) that shows how they combine to form the effective hopping
of a DNLS equation whose norm and nonlinear strength are
set to unity. Once two parameters are fixed, the third one
reaches an extremum at the threshold. For instance, if we fix the
norm and the nonlinear strength, the hopping will be maximum
at the threshold. Above this value, no breather exists. If the
hopping and the norm are fixed, the nonlinear strength reaches
a minimum at the threshold and so does the norm, if the hopping
and the nonlinear strength are fixed instead.

In what follows, we focus on the families obtained by
fixing the values of the hopping and the nonlinear strength
while tuning the amplitude of the breather, ψ0. The norm
and the energy of the breather both turn out to be single-
valued functions of the amplitude that can be reduced to
arbitrary small values [22]. For large enough values of the
amplitude, the breather is peaked around its center (site 0)
and its norm is asymptotically given by N ∼ |ψ0|

2 [23].
As the amplitude decreases, the breather broadens but if a
threshold exists, the norm reaches a minimum N ∗ for some
value of the amplitude ψ∗

0 and increases again as the amplitude
tends to zero. For ψ0 < ψ∗

0 the breather is unstable while
it is stable when ψ0 > ψ∗

0 [20]. Numerical solutions to (6)
with given amplitude are easily obtained with a version of the
Proville–Aubry algorithm [34] modified to fix the amplitude
of the breather rather than its norm. For convenience, we have
set the hopping and nonlinear strength to unity. Monitoring the
norm as a function of the amplitude, we obtain the curves of
Fig. 7. As we can see, in 1D (upper-left panel), for n = 2
(cubic DNLS), the norm has no minimum and goes all the
way down to zero as the amplitude decreases toward zero. This
indicates the well-known fact that there is no threshold in the
1D cubic DNLS equation. In contrast, as long as n ≥ 3, a
threshold exists. In higher dimensions, Fig. 7 (upper-right and
lower panels) shows that for d ≥ 2 thresholds exist even for
n = 2. In fact, according to Weinstein’s result, thresholds exist
in DNLS systems provided d(n − 1) ≥ 2 [23]. We observe
on these graphs that, regardless of the dimension of the lattice,
the trend is that both ψ∗

0 and N ∗ tend to 1 as the nonlinear
exponent n increases. This means that the other components
of the wavefunction ψ∗

j , j 6= 0, progressively vanish as n →

∞. The increasingly important role of the central nonlinearity
suggests an SNI solution to the DNLS problem in that limit.

Our goal is now to find a reliable explicit analytical
approximation for the excitation threshold. As in the previous
sections, we will once again make use of the exponential ansatz
with the difference that its norm be now N rather than unity.
Using

ψ̃m =
√
N
(

1 − λ2

1 + λ2

)d/2

λ|m|, λ ∈ [0, 1], (59)

and Eq. (7), we obtain the energy functional

ˆ̃F = −
γN n

n

[(
1 − λ2

1 + λ2

)n
1 + λ2n

1 − λ2n

]d

−
4τ̂N d λ

1 + λ2 . (60)
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Fig. 7. Norm N vs amplitude ψ0 in 1D, 2D, 3D, 4D for n = 2, 3, 4, 5, 10. The parameters τ̂ and γ are set to unity. Numerical results displayed as points are
compared to the exponential ansatz result (lines) given in (62) and (61). The dimension of the lattice is indicated in the lower-right corner of the graph.
We can also directly obtain this result by using Eqs. (11), (8)

and (9). Now, we find the extremum of ˆ̃F with respect to λ for
a fixed norm9 and solve for N to obtain

N n−1
= −

4τ̂

γ (1 + λ2)2

(1 − λ2)

An(λ)d−1 A′
n(λ)

where An(λ) =

[
1 − λ2

1 + λ2

]n
1 + λ2n

1 − λ2n
. (61)

From Eq. (59), the amplitude is given by

ψ̃0 =
√
N
(

1 − λ2

1 + λ2

)d/2

, (62)

and we have thus obtained an approximate parametric
representation for N (ψ̃0), that is (ψ̃0(λ),N (λ)), through the
localization parameter λ ∈ [0, 1]. Similarly, by reinserting
(61) into (60) we can obtain a parametric representation for
9 It is important to note that, although arbitrary, the norm is fixed. If not, the
energy is unbounded.
the energy (or the Lagrange parameter) as a function of the
amplitude. In Fig. 7, these approximate analytical solutions are
compared to the numerical results. We see that they become
quite accurate when the nonlinear exponent n increases. As
a general trend, the EA solution becomes less accurate as
the amplitude decreases, and this is particularly true after
the threshold (minimum of the norm). Nevertheless, in most
cases the threshold is well-reproduced by this approximation
provided n is large enough. We also note that as the
lattice dimension d increases the EA solution becomes less
accurate for the lowest values of the nonlinear exponent n.
Finally, despite the norms being single-valued functions of
the amplitude, the approximate EA parametric expression,
(ψ̃0(λ),N (λ)), is not single-valued, as long as d ≥ 3. This is
because ψ̃0(λ) is not monotonically decreasing as λ increases.
It typically decreases up to some value λ′ where it reaches
a minimum, increases and decreases again towards zero as λ
tends to 1. Nevertheless, the norm N (λ) reaches its minimum
before λ′, raising the possibility of capturing the threshold
correctly.
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Table 1
Numerical norm thresholds N ∗

n,d in 1D, 2D, 3D and 4D for τ̂ = γ = 1 and for various nonlinearities followed by the relative error of expression (63) with respect
to the numerical result (in %)

n 1D 2D 3D 4D
N ∗

n,1 % N ∗
n,2 % N ∗

n,3 % N ∗
n,4 %

2 – – 5.7012519 8.8 7.8521534 11.0 9.7085587 13.4
3 2.0187163 0.92 2.7039808 2.23 3.1169024 3.60 3.4243891 4.55
4 1.7325176 0.02 2.0577604 1.20 2.2445921 1.88 2.3793423 2.31
5 1.5753225 5 × 10−4 1.7742353 0.76 1.8874388 1.16 1.9681758 1.40
10 1.2858659 3 × 10−7 1.3451997 0.18 1.3790034 0.27 1.4028796 0.31
10 In Ref. [46], the threshold has been determined for γYiu ≡ γ /(6τ̂ ) =

1/(6τ) (in our notation). The norm threshold is obtained by means of the
relation (N ∗)n−1

= 1/τ∗
= 6γ ∗

Yiu.
5.2. Large n limit: SNI approach

We now turn to the determination of the excitation threshold.
As we have seen, this corresponds to the minimum of the
norm. Then, according to (61), it is obtained for the localization
parameter λ∗

n,d solution to ∂N /∂λ = 0. No exact analytical
solution can be obtained for λ∗

n,d for general d and n.
Nevertheless, as n becomes large, we have seen previously
that the central nonlinearity plays a dominant role and that
the DNLS problem becomes asymptotically a SNI problem.
This problem has already been treated in Section 4 for a
wavefunction normalized to unity. Moreover, it has been
demonstrated in Sections 4.3.3 and 4.3.4 that, when n becomes
large, an exponential ansatz approach to the SNI problem leads
to the same asymptotic results at the threshold. Then, using
Eq. (8), we can estimate the norm threshold to be given by
[N ∗

n,d ]
n−1

' τ̂ /(γ τ ∗

n,d) where τ ∗

n,d is the EA approximation
of the SNI effective hopping derived in (48) for the localization
parameter λ∗

n,d = [(2nd − 3) −

√
(2nd − 3)2 − 1]

1/2 given in
(51). After some algebra, we find

N ∗

n,d '

[
2τ̂
γ
(nd − 1)1/2

(
nd − 1
nd − 2

) nd
2 −1

] 1
n−1

, nd > 2, (63)

and from (62), the amplitude threshold reads

(ψ̃0)
∗

n,d '

[
4τ̂ 2

γ 2

(nd − 1)d−1

(nd − 2)d−2

] 1
4(n−1)

, nd > 2. (64)

From Eqs. (63) and (64), we see that the norm and amplitude
thresholds tend to unity as the nonlinear exponent n tends to
infinity. This is confirmed by the numerical results. To assess
the accuracy of the above expressions, we compare them to the
numerical results in Table 1. The general trend is that, for a fixed
dimension d , the expression (63) improves as n increases. But
for a fixed nonlinear exponent n, the approximation deteriorates
as d increases.

The approximate norm threshold (63) is seen to provide
excellent results in 1D, but it is clearly poor for cubic
nonlinearities (n = 2) in higher dimensions. Moreover, a
striking difference exists between the 1D case and higher
dimensions. Clearly, the expression (63) fails to improve as
fast as in 1D when the nonlinearity increases. To understand
whether this is due to the SNI approach itself or to its
exponential ansatz solution, we have evaluated the SNI norm
thresholds as follows: using the known analytical form for
the Laplace transforms Ld(s) for 1 ≤ d ≤ 4, we have
calculated the functions gn,d(κ) defined in (33) and computed
their maxima τ ∗

n,d . Then using Eq. (8) (with τ̂ = 1 and
γ = 1) we have evaluated the SNI norm thresholds as
N ∗

n,d = (τ ∗

n,d)
−1/(n−1). As we have seen in Section 4.3.1, the

EA solution to the SNI is exact in 1D. So the relative errors
of the SNI thresholds with respect to the exact ones are the
same as those provided in Table 1. They quickly improve as
n becomes large. In higher dimensions results are quite similar.
For n = 2, 3, 4, 5, 10, the following respective relative errors
(in %) have been obtained for the exact SNI result. In 2D: 4.2,
0.07, 9 × 10−4, 9 × 10−6,<10−7. In 3D: 1.6, 0.02, 10−4, 10−6,
<10−7. And in 4D: 0.82, 6 × 10−3, 4 × 10−5, <10−7, <10−7.
Obviously, these results are quite different from those reported
in Table 1. As in 1D, the relative errors decrease dramatically
as n increases. Moreover, in contrast to the EA approximation
to the SNI, they improve as the dimension d increases. Thus,
the SNI approach to the threshold determination is accurate
for virtually any n and d. Its main drawback, however, is that
it requires the expression of the lattice Green’s function in
dimension d and even when the latter is known, its complexity
generally precludes obtaining an analytical expression for the
threshold.

Another approach to obtaining norm thresholds consists
in using approximate Green’s functions like those pro-
vided in Ref. [35] in 2D and 3D. For 3D lattices, the
use of the so-called Hubbard Green’s function yields10

the approximate norm thresholdN ∗

n,3 ' (3
√

2n − 1)1/(n−1)(2n
−1)/(2n−2) [46]. This expression gives a good result for n = 2
but fails to reproduce the correct asymptotic behavior (63) as
n → ∞. Moreover, for n ≥ 3, the relative errors with respect
to the exact threshold given in Table 1 are larger than that for
the EA solution to the SNI. For n = 2, 3, 4, 5, 10 we find these
relative errors (in %) to be 0.74, 3.87, 3.68, 3.24, 1.85, respec-
tively. The lack of real improvement as n increases shows that
a more accurate Green’s function approximation is needed to
catch the threshold correctly. In 2D dimensions, calculations
based on the approximate Green’s function provided in [35] are
not amenable to a form simple enough to yield an explicit ex-
pression for the norm threshold [47].
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6. Summary and conclusions

We have studied nonlinear Schrödinger systems on
hypercubic lattices in arbitrary dimensions. In the small
hopping limit, τ → 0, we carried out a perturbative expansion
of the onsite “discrete breather” wavefunction and evaluated
its energy. For a nonlinear exponent n (see Eq. (4)), we show
that the so-called exponential ansatz (EA) reproduced the
exact results up to order τ 4n−2 in 1D, whereas its accuracy
is limited to order τ 2 in higher dimensions. The “excess”
symmetry of the EA due to its factorized form was shown
to be the reason why it loses its accuracy when d > 1. To
improve this result, we analyzed a closely related system: a
single nonlinear impurity (SNI) located at the center of an
otherwise linear lattice. The reason for investigating such a
problem is that, when approaching the anti-continuum limit
(τ → 0), the breather wavefunction essentially localizes on
one site, rendering the nonlinear contributions of the other
sites negligible. The SNI solution is shown to match the
exact solution up to order τ 2n−2 in any dimension. More
generally we prove that to achieve an accuracy of order τσ

we need to keep the nonlinearities of the sites located in the
hyperprism defined by the equation 2n|m| ≤ σ , where m =

(m1,m2, . . . ,md) ∈ Zd labels a particular site of the lattice
and |m| = |m1| + |m2| + · · · + |md |. This result shows that in
1D, the EA is as accurate as the solution obtained by keeping
the central (site 0) and nearest neighbor (site +1 and −1)
nonlinearities.

We also analyzed the excitation thresholds for the existence
of discrete breathers. These thresholds are known to appear
as soon as the condition (n − 1)d ≥ 2 is met [23]. We
first investigated the existence of such thresholds in the SNI
problem. For a breather wavefunction normalized to unity, we
derived an exact parametric expression for the total energy,
the Lagrange parameter (also called bound state energy or
frequency) and the hopping τ in terms of the Laplace transform
of the dth power of the modified Bessel function I0. The
parameter κ ∈ [0, 1] used to link these quantities is the ratio
of half the bandwidth of the continuum to the bound state
energy. It measures the “distance” of the bound state to the
band edge of the continuum. With these expressions in hand we
determined the excitation threshold as the maximum value of τ
for which a breather exists. In 1D, we showed that the solution
to the SNI problem is of the exponential ansatz type. We then
linked the parameter κ with λ, the localization parameter of the
exponential ansatz wavefunction. Within this approximation,
we provided an exact analytical result for all quantities at the
threshold as a function of n. In higher dimensions, for 2 ≤

d ≤ 4, the existence of analytical expressions for the Laplace
transforms involved in the parametric equations enabled us to
study τ(κ). But the complexity of these transforms precluded
any attempt to obtain an analytical expression for the threshold.
Nonetheless, we were able to observe that, at the threshold, the
parameter κ tends to zero as the nonlinear exponent n increases.
Using this result and an exact expansion for the Laplace
transform in this limit we finally obtained an asymptotic
expression for all quantities at the threshold as n → ∞. An
important by-product of this analysis was that, using a similar
technique, we proved a conjecture by Molina and Bustamante
that the bound state energy tends towards a universal limit as n
becomes large – in any dimension and for any lattice structure.
We also studied the exponential ansatz solution to the SNI
problem. Although approximate, the latter provides a useful
analytical expression for the localization parameter that enables
us to calculate the hopping and the various energies at the
threshold. In particular, we showed that, as n → ∞, the exact
asymptotic solution of the SNI and its EA approximation are
the same.

Finally, we used a rescaled version of the DNLS equation
to study the existence and location of thresholds in the full
nonlinear problem, without approximations. More specifically,
all other parameters being fixed, we followed the norm of the
discrete breather as a function of its amplitude and evaluated its
threshold (minimum of the norm). We used an EA approach to
obtain an approximate parametric representation for the norm
as a function of the amplitude in terms of the localization
parameter λ. The result proved to be excellent in 1D and good in
higher dimensions, provided the nonlinearity n is large enough.
We observed that, in any dimension, the norm and amplitude
at the threshold tend to unity as n → ∞, meaning that the
discrete breather becomes localized on a single site. We then
used the exponential ansatz to the SNI problem to obtain an
approximate analytical formula for the amplitude and the norm
at the threshold as a function of the hopping, the nonlinearity
and the dimension. We found that, typically, this expression
improves as n increases – and becomes asymptotically exact
as n → ∞ – but degrades as d becomes larger in contrast to
the exact SNI solution that improves as both n and d increase.
The last result suggests that the SNI threshold becomes
asymptotically exact at high nonlinearity and also in high
dimension.
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Appendix A. τ -series for λn,d

λ2,d = τ + (4d − 2) τ 3
+ (40d2

− 42d + 10)τ 5

+

(
1568

3
d3

− 840d2
+

1264
3

d − 67
)
τ 7

+ o(τ 7). (A.1)

λ3,d = τ + (6d − 3) τ 3
+ (90d2

− 90d + 23)τ 5

+ (1764d3
− 2646d2

+ 1344d − 232)τ 7
+ o(τ 7). (A.2)

λ4,d = τ + (8d − 3) τ 3
+ (160d2

− 120d + 22)τ 5

+

(
12 544

3
d3

− 4704d2
+

5216
3

d − 210
)
τ 7

+ o(τ 7). (A.3)

For n > 4, we obtain the general expression
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λn,d = τ + (2ξ − 3) τ 3
+ (10ξ2

− 30ξ + 22)τ 5

+

(
196

3
ξ3

− 294ξ2
+

1304
3
ξ − 211

)
τ 7

+ o(τ 7), (A.4)

where ξ = nd.

Appendix B. τ -series for the energies

B.1. Exponential ansatz result

F̃2,d = −
1
2

− 2dτ 2
− d (4d − 3) τ 4

−
2
3

d(40d2
− 54d + 17)τ 6

−
d

3
(784d3

− 1512d2
+ 923d − 180)τ 8

+ o(τ 8),

(B.1)

F̃3,d = −
1
3

− 2dτ 2
− 2d (3d − 2) τ 4

− 2d(30d2
− 36d + 11)τ 6

− 2d(441d3
− 756d2

+ 438d − 86)τ 8
+ o(τ 8), (B.2)

F̃4,d = −
1
4

− 2dτ 2
− 4d (2d − 1) τ 4

−
32d

3
(10d2

− 9d + 2)τ 6

−
d
6
(12 544d3

− 16 128d2
+ 6848d − 957)τ 8

+ o(τ 8). (B.3)

B.2. Exact perturbative result

F2,d = −
1
2

− 2dτ 2
− d (6d − 5) τ 4

− 2d(32d2
− 66d + 35)τ 6

− d(1064d3
− 3828d2

+ 4918d − 2147)τ 8

+ o(τ 8), (B.4)

F3,d = −
1
3

− 2dτ 2
− 2d (4d − 3) τ 4

−
2d

3
(164d2

− 270d + 121)τ 6

− 2d(1128d3
− 1161 + 3130d − 3060d2)τ 8

+ o(τ 8), (B.5)

F4,d = −
1
4

− 2dτ 2
− 2d (5d − 3) τ 4

− 8d(10 + 21d2
− 27d)τ 6

−
d

2
(14 404d + 8408d3

− 17 424d2
− 4619)τ 8

+ o(τ 8). (B.6)

Appendix C. Maple codes

The Maple codes that we have used to obtain the results of
the previous appendix as well as Eqs. (12), (16) and (31) are
accessible as “supplementary material” in the online version
of this paper. There, we provide a PDF file, AppendixC.pdf,
with a commented version of the codes. We also provide ready-
to-use Maple worksheets containing the codes themselves. The
codes calculating the exponential ansatz energy, F̃n,d , and λn,d
for n = 2, 3, 4 and for n > 4 are named ProgC11 and
ProgC12, respectively. The codes evaluating the SNI energy,
Fn,d , and the exact perturbative energy, Fn,d , up to order τ 8 are
called ProgC2 and ProgC3, respectively. Typical use of these
programs is as follows:

• Copy the program in a file named for example file.
• In the same directory, open Maple and type

> restart;
> read ‘‘file’’;

• For ProgC3 only, enter the value of the dimension d (d ≥ 1)
and the nonlinear exponent n (n ≥ 2) as required by the
program.

Appendix D. Equations for ϕ{m} ∈ S

We list hereafter the equations for the components ϕ{m},
|m| ≤ 4 which, together with (15), allow for the determination
of the coefficients φ{m}

j in (13) and E2 j in (14).

−τ1ϕ{m} − |ϕ{m}|
2(n−1)ϕ{m} = Eϕ{m} + o(τ 8−|m|). (D.1)

Explicit expressions for the Laplacians read

∆ϕ{0} = b0ϕ{1} + o(τ 8)

∆ϕ{1} = ϕ{0} + ϕ{2} + b1ϕ{11} + o(τ 7)

∆ϕ{2} = ϕ{1} + ϕ{3} + b1ϕ{21} + o(τ 6)

∆ϕ{11} = 2ϕ{1} + 2ϕ{21} + b2ϕ{111} + o(τ 6)

∆ϕ{3} = ϕ{2} + ϕ{4} + b1ϕ{31} + o(τ 5)

∆ϕ{21} = ϕ{31} + ϕ{11} + ϕ{22} + ϕ{2} + b2ϕ{211} + o(τ 5)

∆ϕ{111} = 3ϕ{211} + 3ϕ{11} + b3ϕ{1111} + o(τ 5)

∆ϕ{4} = ϕ{3} + o(τ 4)

∆ϕ{31} = ϕ{21} + ϕ{3} + o(τ 4)

∆ϕ{22} = 2ϕ{21} + o(τ 4)

∆ϕ{211} = ϕ{111} + 2ϕ{21} + o(τ 4)

∆ϕ{1111} = 4ϕ{111} + o(τ 4),

where bk = 2(d − k)θ(d − k) and θ(u) = 1 if u ≥ 0 and 0 else.

Appendix E. Bustamante–Molina conjecture

We show in this appendix that for an arbitrary lattice with a
single nonlinear impurity of the type |ψ0|

2(n−1)ψ0, the energy
E∗

n of the bound state obtained at the threshold value τ ∗
n of the

hopping converges towards a universal value as the nonlinear
exponent n tends to infinity.

We start from a tight-binding Hamiltonian with hopping τ
for an arbitrary lattice with normalized eigenstates |ψν〉 and
energies τεν . Its lattice Green’s function G(0)

00 (E) is given by

G(0)
00 (E) =

∑
ν

∣∣ψν,0∣∣2
E − τεν

, (E.1)
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where the sum runs over all possible eigenstates and whereψν,0
denotes the value of the wavefunction at site 0. We introduce the
quantity k = τ/E and the function H(k) such that G(0)

00 (E) =

H(k)/E . Then

H(k) =

∑
ν

∣∣ψν,0∣∣2
1 − kεν

=

∞∑
l=0

kl
〈εl

〉, where

〈εl
〉 =

∑
ν

∣∣ψν,0∣∣2 εl
ν . (E.2)

As
∑
ν |ψν〉〈ψν | = 1, we have 〈ε0

〉 = 1. Moreover, without
loss of generality we can fix the origin of the energies in the
“middle” of the band, that is 〈ε〉 = 0. Then, for k small enough,
H(k) ∼ 1 + k2

〈ε2
〉 + o(k2).

Using the quantities defined above, Eq. (26) that provides
the bound state energy E reads

τ = −k
[H(k)]2n−1

[H(k)+ k H ′(k)]n−1 , (E.3)

where the prime is a differentiation with respect to k. The
maximum of τ yields the hopping threshold τ ∗

n . Differentiating
(E.3) with respect to k and equating to zero we finally obtain

H2
+ 2k H H ′

+ (2n − 1)k2 H ′2
− (n − 1)k2 H H ′′

= 0, (E.4)

where, for simplicity, the k-dependence of H(k) has been
omitted. Given the hypercubic lattice results, we safely
anticipate that the solution k∗

n to (E.4) requires k to tend to
zero as n → ∞. With that in mind and the previous result that
H ∼ 1+k2

〈ε2
〉, we see that the first term of Eq. (E.4) is of order

1, the next one of order k2, the third one of order nk4 and the
last one of order nk2. The second term is then negligible with
respect to the first one and so is the third one with respect to
the last. Hence, as n → ∞, the first and last terms must cancel
each other, which yields

(k∗
n)

2
〈ε2

〉 ∼
1

2n
. (E.5)

Now, by definition, E = τ/k and using both (E.3) and (E.5) we
can evaluate the limit of the bound state energy E∗

n = τ/k|k=k∗
n

as n tends to infinity. We find

lim
n→∞

E∗
n = − lim

n→∞

[H(k)]2n−1

[H(k)+ k H ′(k)]n−1

∣∣∣∣∣
k=k∗

n

= − lim
n→∞

[
1 +

1
2n

]2n−1

[
1 +

3
2n

]n−1 = −
1

√
e
. (E.6)

This result establishes Bustamante and Molina’s conjecture that
the threshold bound state energy of the SNI problem converges
to a universal value11 as the nonlinearity of the impurity
becomes infinite. The result above shows indeed that this limit
does not depend on the detailed nature of the lattice as it does
not depend on 〈ε2

〉, the only lattice-dependent quantity involved
in the calculation.
11 See footnote 8.
Appendix F. Asymptotic analysis of G(0)
0,n(E) for some large

|n|

Here, we evaluate the asymptotic behavior of G(0)
0,µn(E)

when µ → ∞ where n = (n1, n2, . . . , nd) is a vector of
integers indicating the direction towards which the decay of the
Green’s function is to be probed. Because of the hypercubic
symmetry we can choose n1 ≥ n2 ≥ . . . , nd ≥ 0 with n1 ≥ 1.
Starting from its original expression

G(0)
0,µn(E) =

1
(2π)d

∫ π

−π

ddk
eik·n

E + 2τ
d∑

l=1
cos kl

, (F.1)

we obtain after some manipulations

G(0)
0,µn(E) = −

µ

2τ

∫
∞

0
dze−µdαz

d∏
i=1

Iµni (µz) , (F.2)

where α = κ−1
= −E/(2τd) ∈ [1,∞] and where Im(z) is

the modified Bessel function. Using the uniform asymptotic
expansion of the latter provided in [37] we obtain

Iµni (µz) ∼
1

√
2πµ

exp

(
µ

[√
n2

i + z2 + ni ln z

ni +

√
n2

i +z2

])
(n2

i + z2)1/4
,

µ → ∞. (F.3)

Reinserting this expression into (F.2), we see that

G(0)
0,µn(E) ∼ lim

µ→∞
−
µ

2τ

∫
∞

0
dzeµ f ({ni };z)g({ni }; z), (F.4)

where

f ({ni }; z)=
d∑

i=1


√

n2
i + z2 + ni ln

z

ni +

√
n2

i + z2
− αz

 ,
(F.5)

and

g({ni }; z) =
1

(2πµ)d/2

d∏
i=1

1

(n2
i + z2)1/4

. (F.6)

We can prove that f ({ni }; z) has a single maximum at z = z0 >

0. Differentiating f ({ni }; z) with respect to z, we obtain

f ′({ni }; z0) = 0 ⇔

d∑
i=1

√
n2

i + z2
0 = αdz0. (F.7)

Let h(z) =
∑

i

√
n2

i + z2 − αdz. Then h′(z) =∑
i z/

√
n2

i + z2 − αd and h′′(z) =
∑

i n2
i /(n

2
i + z2)3/2. Then,

h′′(z) > 0 for all z and h′(z) is strictly increasing with z.
But limz→∞ h′(z) = d(1 − α) < 0, for α > 1. Then,
h′(z) < 0 and h(z) is strictly decreasing as z increases. Now,
h(0) =

∑
i ni > 0 and h(z) ∼ (1 − α)dz as z → ∞ is surely

negative in this limit. Consequently, there is a single solution
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Fig. G.1. Energy differences,1E , between the numerical energy of a breather and its small τ expansion up to τ8 (solid line) and its exponential ansatz approximation
(dashed line) in d = 1 (left), d = 2 (middle), d = 3 (right) for n = 2. The linear dimension of the lattice is 21 sites.
12 A factor (1/2V ) is missing in this expression
13 Although Eq. (F.10) has been obtained from a particular set of directions,

it is general. Indeed, close to the continuum, α ∼ 1 and Eq. (F.7) leads to
z2

0 ∼
∑

n2
i /(2d(α − 1)). Reinstating this solution in (F.8), we obtain (F.10).
z0 > 0 to (F.7). Moreover, f ′′({ni }; z) = −
∑

i n2
i /z

2
√

z2 + n2
i

implies f ′′({ni }; z0) < 0 �. Thus,

G(0)
0,µn(E) ∼ −

µ

2τ
eµ f ({ni };z0)g({ni }; z0)

√
2π

µ| f ′′({ni }; z0)|
,

µ → ∞. (F.8)

To proceed further, we need the solution to (F.7). For arbitrary
parameters ni an analytical solution is not known in general
except in 2D, where it is easily obtained. We then solve
the specific case where the m first ni ’s are equal to 1 and
the rest is equal to zero which means that we evaluate the
asymptotic behavior of the Green’s function in the direction
n = (1, 1, . . . , 1, 0, 0, . . . , 0) with m 1’s and (d − m) 0’s, m ∈

{1, 2, . . . , d}. The solution to (F.7) is straightforward in this
case and reads z0 = (A2

m −1)−1/2 where Am = 1+(α−1)d/m
hence the result given in Eq. (54),

G(0)
0,µn(E) ∼

−1
2τ

[
Am −

√
A2

m − 1
]µ|n|

(2πµ|n|)
d−1

2

× m
d
2 −1 (A

2
m − 1)

d−3
4

A
m−1

2
m

(µ → ∞). (F.9)

We have not been able to find this asymptotic expression, valid
in arbitrary dimensions d , in the literature. Nevertheless, in
some particular cases, it can be checked against some exact
expressions for the Green’s function. In 1D, Eq. (F.9) yields
the result given by Economou in [35] (page 80, formula 5.28).
In 2D, Katsura and Inawashiro provide an exact expression for
the Green’s function in terms of the hypergeometric function
4 F3 [43]. The latter is simplified in the (1, 1) direction to a
2 F1 function and using an asymptotic result given in Luke [44]
(page 237, formula 11) we have been able to check the validity
of (F.9). In the (1, 0) direction we have not been able to find
any asymptotic result for the 4 F3 function in the literature but
we have observed the validity of (F.9) numerically. In 3D, Joyce
and Delves [45] provide an exact result in the (1, 1, 1) direction
whose asymptotic behavior is reproduced by (F.9) too.
Notice that the leading order of the asymptotic expansion
of G(0)

0,µn(E) involves the l1-distance |µn| = µm rather than the
euclidean distance ‖µn‖ = µ

√
m. Nevertheless, when E comes

close to the continuum band-edge, say E = −2τd + δE , we can
expand Eq. (F.9) for δE small and we find

G(0)
0,n(E) ∼

−1
2τ

(
|δE |

τ

) d−3
4 e−‖n‖

√
|δE|

τ

(2π‖n‖)
d−1

2

(‖n‖ → ∞, δE → 0). (F.10)

In the 2D case, a similar expression12 is given by Economou
(see Eq. (5.46) of [35]). Thus, close to the continuum band-
edge, a rotational invariance is recovered. This is due to the
fact that the localization length becomes large in this limit
and ignores the discreteness of the lattice, adopting finally the
spherical symmetry of a punctual defect.13 In the opposite limit,
far away from the continuum, the distance involved in G(0)

0,n is
the l1-distance appearing naturally in the small τ perturbation.
In this case, the localization length is small and has a marked
angular dependence induced by the hypercubic symmetry of the
lattice.

Appendix G. Numerics

Fig. G.1 is a log–log (τ,1E)-plot showing the energy
difference, 1E , between the numerical energy of a single
breather computed with the Proville–Aubry algorithm [34] and
its small τ expansion up to τ 8 (solid line) in 1D, 2D and 3D
for a cubic nonlinearity (n = 2). It shows also the energy
difference between the exact energy and its exponential ansatz
approximation (dashed line). The slope of the dashed line is 8
in 1D and 4 in 2D and 3D which shows that the exponential
ansatz solution is accurate up to order τ 6 and τ 2, respectively.
In contrast, it is 10 in all dimensions for the exact small τ
expansion up to order τ 8, These results are in perfect agreement
with those reported in Sections 2 and 3.



504 J. Dorignac et al. / Physica D 237 (2008) 486–504
Appendix H. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.physd.2007.09.018.
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