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Abstract

A renormalization-group approach for interacting electrons, which are also coupled to phonons was recently developed [1]. The method is

described here in some detail, including the large-N analysis which shows that the theory is asymptotically exact and from which Migdal’s

theorem follows as a consequence. We present analytical and numerical results for the case of an isotropic Fermi surface and Einstein phonons. In

this case Eliashberg’s strong coupling theory emerges as the N/N theory. Both TZ0 and finite-T renormalization-group formalisms are

developed.

q 2005 Elsevier Ltd. All rights reserved.
Electron–electron interactions are responsible for a vast

number of striking properties in condensed matter systems.

Electrons in solids also interact with bosonic modes, such as

phonons. Recently [1] we developed a method that treats

electron–electron and electron–phonon interactions on an

equal footing. It is a renormalization-group (RG) approach

[2], which provides an unbiased way of studying instabilities of

Fermi liquids without the assumption of a particular broken

symmetry. Experimental evidence shows that in many strongly

correlated systems, such as high-temperature superconductors

and organic charge-transfer salts, both electron interactions and

phonons seem to play an important role [3–8]. Theoretical

understanding of the interplay between these interactions is a

complex issue. Most theoretical approaches rely on mean-field

treatments where a particular order parameter and broken

symmetry are introduced ‘by hand’. While this is useful in

understanding the properties of the particular broken symmetry

state, it is desirable to have methods that predict the leading

instability given the geometry of the Fermi surface and the

microscopic parameters at a high energy scale, when the

system is in the disordered Fermi liquid state.

The RG provides such an approach [2], which has

been successful in explaining the stability and instabilities of

Landau Fermi liquids in more than one dimension. It involves
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a two-stage procedure. First, given a microscopic theory

defined in all of momentum space and with an energy band-

width of order of EF, one reduces the energy cut-off to a smaller

energy scale L0/EF via mode-elimination. The calculation

in this first stage is purely perturbative and can only be carried

out within the assumptions of perturbation theory. It is assumed

for example that in reducing the energy cut-off from EF to L0,

the new cut-off theory does not run into a non-perturbative

singularity in the process.

Once the cut-off scale L0 is reached safely, the second stage

consists in further reducing the cut-off to L!L0 by using the

method of large-N, with NxEF=L. In dZ2, which is our focus

in this work, the remaining phase space has the form of an

annulus of radius KF (the Fermi momentum) and width 2L=vF

(where vF is the Fermi velocity). Imagine now dividing the

annulus into N patches of size ðL=2vFÞ
2. The momentum of each

fermion k is a sum of a ‘large’ part (order kF) centered on a patch

labeled by a patch index iZ1,.N and a ‘small’ momentum

(order L) within the patch. It can then be verified that in all

Feynman diagrams of this cut-off theory the patch index plays

the role of a conserved isospin index exactly as in a theory withN

fermionic species. In the RG flow equations for the interaction

vertices the sum of bubble diagrams are singled out by the 1/N

expansion and reproduce Landau’s Fermi liquid theory for

circular Fermi surface and repulsive bare interaction. A central

result which also applies in the present work is that starting at the

scale L0, the one-loop b-function for the fermion–fermion

coupling becomes exact as L/0 (N/N) via RG.

Here, we present some details of the RG procedure of

Ref. [1] which applies to interacting electrons coupled to

phonons. We show analytical and numerical results for the case
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of a circular Fermi surface with on-site electron–electron

interaction and Eisntein phonons, both at TZ0 and at finite T.

We find that the high-temperature Fermi liquid state becomes

unstable toward Cooper pairing at a temperature scale T*. This

temperature is the same as the critical temperature Tc obtained

from Eliashberg’s strong coupling self-consistent mean field

theory. We then discuss the large-N analysis and Migdal’s

theorem.
Fig. 1. (a) The solid square represents the retarded electron–electron interaction

obtained upon integration of the phonon modes. (b) The tadpole diagram gives

contribution to the electron self-energy. (c) Corrections to the interaction

vertex, including the diagram at tree level, the BCS and the zero-sound (ZS)

contributions.
1. The RG equations

We work in the path-integral representation and consider the

general action

Sðj;fÞZ SeðjÞCSphðfÞCSeKphðjÞCSeKeðjÞ (1)

where

Se Z

ð
uk

j†
kðiuK3kÞjk (2)

and

Sph Z

ð
Uq

f†
qðiUKwqÞfq (3)

are the free actions for the electrons and the phonons,

respectively. Here kZ{u,k} and qZ{U, q} where u,U are

the Matsubara frequencies and k,q are the momenta. We first

focus on TZ0 and dZ2 where
Ð
u;k h

ÐN
KN

du
2p

Ð
dk

ð2pÞ2
. The

interaction terms are given by

SeKph Z

ð
uk

ð
Uq
gðqÞj†

kCqjkðfq Cf
†
KqÞ (4)

and

SeKe Z
1

2

Y3

iZ1

ð
uiki

uðk4; k3; k2; k1Þj
†
k4
j†
k3
jk2

jk1
(5)

where k4Zk1Ck2Kk3 from conservation of total momentum

and frequency. We use units such that ZZ1ZkB throughout

the paper. The above action defines the input physics at a cut-

off L0 such that uD/L0/EF, where uD is the Debye

frequency. In this way at any subsequent scale L!L0 we have

NxEF=L0[1. The expansion in 1/N can then safely be made

and the one loop result becomes exact as the RG takes L/0,

i.e. N/N.

The phonons are described by a Gaussian action and can

therefore be integrated out exactly leading to the retarded

electron–electron interaction given by

~uðk4; k3; k2; k1Þ

Z uðk4; k3; k2; k1ÞK2gðk1; k3Þgðk2; k4ÞDðk1Kk3Þ; (6)

where

DðqÞZ
uq

ðu2 Cu2
qÞ

is the phonon propagator.
We now carry out the RG procedure for this retarded

interaction ~u, shown schematically in Fig. 1(a).

The couplings depend on the momenta of the incoming and

outgoing electrons. Since, EF[uD; g; u0 we ignore radial

excursions away from the Fermi surface. In this case the

external electron momenta can be put on kF. Therefore, for a

circular Fermi surface, as the energy cut-off is lowered, only

two types of interaction vertex remain: forward scattering with

k1Zk3, k2Zk4 (these evolve into Landau parameters) and the

scattering in the Cooper channel with k1ZKk2, k3ZKk4. The

box vertex in the diagrams in Fig. 1 can represent either one of

these scattering processes. The forward scattering channel

(which does not flow under the RG as in the case of pure

electron–electron interactions) contributes to the electron self-

energy Sðk;uÞ via the tadpole diagram shown in Fig.1(b). We

can write Sðu;kÞzS0C ið1KZðu; kÞÞu with two types of

contributions: a shift in the chemical potential (dmfS0) and

wave-function renormalization, Z(u). The shift in the chemical

potential comes from the instantaneous part of ~u. It is

convenient to reabsorb it in the theory by assuming a fixed

number of electrons [2]. There is also wave-function

renormalization, Z(u), which comes from the retarded

potential due to the phonons and is of special interest in this

problem.

In Wilson-like RG the high-energy mode elimination is

followed by rescaling of all momenta and frequency in order to

preserve the non-interacting part of the action. With the wave-

function renormalization Z(u), the rescaling becomes non-

trivial. The fact that rescaling is a problem can be seen even

without the calculation of Z(u). In the original action there are

electrons and phonons, and while electronic momenta scale

differently in the directions parallel and perpendicular to the

Fermi surface, the phonon momenta scale isotropically. We

circumvent this problem by abandoning the momentum rescale

procedure altogether. Instead we use the quantum field theory

version of the RG in which the cut-off dependence of the

couplings are defined by imposing that the physical quantities

are preserved [9].

At a given cut-off L, the interaction vertex Gð4Þ½ ~u� in the

Cooper channel (see Fig.1(c)) is given at one-loop by
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Gð4Þ½ ~uðKk3; k3;Kk1; k1Þ�

Z ~uðKk3; k3;Kk1; k1Þ

K

ð
uk

~uðKk; k;Kk1; k1Þ ~uðKk3; k3;Kk; kÞ

ðiuK3kKSðu;kÞÞðKiuK3kKSðKu;kÞÞ
; (7)

where the momentum integral is such that all internal energies

lie between 0 and L. This is represented by Fig. 1(c), where for

the Cooper channel, the BCS diagram contributes and the ZS

diagram does not. The RG Eq. for ~u is obtained from (7) by

imposing the condition of cut-off independence, namely,

dGð4Þ=d[Z0, where [Z lnðL0=LÞ is the RG scale.

For a circular Fermi surface the external electron momenta

are vectors of magnitude kF and ~uðKk3; k3;Kk1; k1Þ depends on

the angles q1 and q3 only via the difference q1Kq3. We can then

define s-wave component of ~u

~vðu1;u3ÞZNð0Þ

ð
dq1

2p

ð
dq3

2p
~uðKk3; k3;Kk1; k1Þ;

where N(0) is the Fermi surface density of states.

Imposing now the condition dGð4Þ=d[Z0 on (7) one obtains

d

d[
~vðu1;u3; [ÞZK

ðN
KN

du

p

L[ ~vðu1;u; [Þ ~vðu;u3; [Þ

L2
[ CZ2

[ ðuÞu
2

; (8)

The initial condition is given by

~vðu1;u3; [Z 0ÞZ u0KluEDðu1Ku3Þ (9)

where u0 is the bare electron–electron interaction and l, for

Einstein phonons, is given by lZ2Nð0Þg2=uE.

We obtain functional flow Eq. (8) because retardation

introduced by the phonons leads to a mixing of the couplings at

low and high frequencies. The RG Eq. for Z[ðuÞ is derived from

diagram shown in Fig. 1(b). It can then be formally integrated

to give

Z[ðuÞZ 1C
1

pu

ðN
KN

du0

ðN
L[

dL0 ZL0u0DðuKu0Þ

Z2
L0 ðu0Þu02 C[L02

: (10)

If the frequencies are taken as discrete, the RG Eqs. for the

couplings (8) can be written as a matrix equation:

dU

d[
ZKU,M,U (11)

where

Uijð[ÞZ ~vðui;uj; [Þ;

Mijð[ÞZL[dij=pðL
2
[ CZ2

[ ðuiÞu
2
i Þ:

The solution of the matrix Eq. (11) is:

Uð[ÞZ ½1CUð0Þ,Pð[Þ�K1Uð0Þ;

where

Pð[ÞZ

ð[
0

d[0Mð[0Þ

and U(0) is given by the initial condition (9).
An instability is signaled by the divergence of any of the

couplings ~vðui;uj; [Þ at a certain scale [Z[c. The condition for

this to happen is given by

det½1CUð0Þ,Pð[cÞ�Z 0: (12)

Equivalently [c is the scale at which an eigenvalue of the

matrix ½1CUð0Þ,Pð[Þ� first becomes zero. Let f be the

corresponding eigenvector, then

½1CUð0Þ,Pð[cÞ�,f Z 0:

Writing the explicit for of U(0) and Pð[cÞ we get

f ðuÞZK
1

p

ð
u0

ðN
Lc

½u0KluEDðuKu0Þ�

Z2
Lðu

0Þu02 CL2
f ðu0Þ: (13)

For a given value of input parameters (u0, l, uE, L0)

Eq. (13), together with Eq. (10), determine the critical cut-off

energy scale, Lc, at which the running couplings diverge and

the Fermi liquid description breaks down.
2. Finite T

The calculation is readily extended to TO0. This provides

us with a more experimentally accessible quantity, namely, a

critical temperature. We seek the temperature T* below which

the Fermi liquid description breaks down as one scales toward

the Fermi surface. In this case we replace the frequency

integrals in (10) and (13) by Matsubara sums and extend the

integrals in L from 0 to N to obtain

ZðunÞfðunÞZKpT�
X
m

½u0KluEDðunKumÞ�
fðumÞ

jumj
; (14)

where we have defined fðunÞZ f ðunÞ=ZðunÞ and unZpT *ð2

nC1Þ (n is an integer). Moreover, from (10) we find:

ZðunÞZ 1CluE

pT *

un

X
m

sgnðumÞDðunKumÞ: (15)

The solution of (14) and (15) gives the value ofT* as a function

of the input parameters. We solve the problem numerically

through the following procedure: we first calculate Z(un, T) for

temperatures starting at high values (of the order of L0) and for

decreasing values. One could then solve (14), which is self-

consistent for fðunÞ, in order to obtain T*. But, instead, there is a

much more straightforward way to calculate T* which does not

involve the self-consistent equation. The relation shown in (14)

comes from imposing the condition det½1CUð0Þ,PðT *Þ�Z0. So

instead of solving the self-consistent equation, we simply

compute the quantity det½1CUð0Þ,PðTÞ� and find out at which

temperature it becomes zero (inset of Fig. 2). Calculation of this

determinant simply requires knowledge of the initial conditions

and the wave-function renormalization Z(un,T). This calculation

was repeated for many values of l as shown in the main plot of

Fig. 2. The three solid curves are for different values of the

electron interaction, as indicated. For convenience we have

expressed the temperatures in units of uE.

We now relate our approach to Eliashberg’s self-consistent

mean-field theory [11,12] which assumes a broken symmetry
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Fig. 2. Numerical solution of (12) (continuous line) for m*Z0, 0.17, and 0.24

(from top to bottom) as a function of l. Dashed line: T * =uEZ1:1 expfKð1C
lÞ=ðlCm*ð1ClÞg for m*Z0.24; dotted line: T * =uEZ0:11
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p
for m*Z

0.24. The inset shows the determinant in (12) as a function of T for m*Z0 and

lZ0.3, 0.4, 0.5, 0.7 and 1 (from top to bottom).

S.-W. Tsai et al. / Journal of Physics and Chemistry of Solids 67 (2006) 516–521 519
with a superconducting order parameterDðunÞ, in contrast to ours

which starts from the Fermi liquid phase. Remarkably (14) and

(15) coincide with the Eliashberg equations atTZTc if we replace

fðunÞ by DðunÞ [12]. This result is striking since fðunÞ is not an

order parameter and no symmetry breaking was assumed in our

calculation. By the same token, we can show that in the TZ0

formalism Lc plays the role of the zero temperature super-

conducting gap D0 [10]. Since the RG procedure, approaching

the instability from high temperatures, leads to an instability of

the Fermi liquid state at a temperature T* that is equal to the

critical temperature Tc produced by the Eliashberg theory, it is no

surprise that we can show that in the weak/intermediate coupling

regime (m*!l!1) we recover the famous McMillan formula

[13]: T *z 1:13uEexpfKð1ClÞ=ðlKm*ð1ClÞÞg, where m*Z
u0=ð1Cu0 lnðL0=uEÞÞ is the effective electron–electron inter-

action [14] at the scale of uE and the Allen-Dynes expression

[15,16]: T * z0:16
ffiffiffi
l

p
uE at strong coupling. In addition we have

demonstrated that Eliashberg’s theory is an asymptotically exact

description of the effective low-energy physics obtained by RG

thanks to the small parameter 1/N. For arbitrary shapes of the

Fermi surface, the momentum on the Fermi surface can be
Fig. 3. At an energy cut-off L the remaining momentum space is divided in N

patches of size ð2L=vFÞ
2. The patch index plays the hole of a conserved isospin

and N is then the number of fermion species.
discretized in angular patches [20] for purposes of numerical

computation. Our methods can be used to study the competition

between charge density wave and superconductivity in the strong

coupling regime [10], something that cannot easily be achieved in

a mean-field approach.

Since Eliashberg’s theory is based on Migdal’s theorem

[17], which states that electron–phonon vertex corrections to

the electron self-energy vanish as uD=EF/0, it must be that

this theorem is built into our approach. We shall show how this

result arises and that the small parameter uD=EF of Migdal’s

theorem is replaced here by 1/N.

3. The 1/N picture

The starting point of the RG flow is at energy cut-off of

L0/EF such that N[1. The 1/N picture introduced by

Shankar [2] shows that from this point on the RG resummation

of diagrams is non-perturbative in the strength of the couplings

and asymptotically exact as N/N. The idea behind it was

briefly summarized in the introduction and illustrated in Fig. 3.

While the 1/N analysis apply in the same way to the present

case where ~u is frequency-dependent, it is instructive to go

back to the problem before we traced out the phonons.

Let’s see how the patch index notation carries over to the

labeling of the phonons. Electrons and phonons interact via Eq.

(4). While it is obvious that when a fermion in patch i scatters

to patch j, it emits a phonon of momentum kjKki, we can also

go the other way: a phonon of ‘large’ momentum can be

resolved, up to a two-fold ambiguity, into a difference kiKkj
associated with patches i and j, due to the fact that the electron

momenta lie in a thin annulus around the Fermi surface. This

fact allows us to describe phonons with the double-index

notation employed by t’Hooft for gluons in QCD [18]: the

phonon line is seen as made out of two counter-propagating

electron lines, as depicted in Fig.4(a). The fermion-fermion

interaction scales as 1/N. Integrating out the phonons produces

a four-fermion term which goes as g2, therefore, the electron–

phonon vertex g scales as 1=
ffiffiffiffi
N

p
.

Any given diagram made of nu vertices u, ng vertices g and

nL internal loops is of order (1/N)n where nZKnuKng=2CnL.

Therefore, we can easily organize the perturbation theory in

orders of 1/N. The number of loops in each diagram, nL, can be

easily obtained using the representation of Fig.4(a). Consider

the problem of the RG for the self-energy Sðk;uÞ shown in

Fig. 4(b)–(d). It is clear from Fig. 4(b) that the correction of

order g2 should be taken into account: while g2 comes with a

factor 1/N, there is an internal closed loop giving an extra factor

of N resulting in a correction of O(N0) for the self-energy. At

the same order in perturbation expansion in 1/N, there are

diagrams that are made from a simple repetition of Fig. 4(b),

which are obviously of order O(N0) but higher order in g.

Diagram Fig. 4(c) is of order O(N0), like diagram 4(b), and so

are all the other ‘rainbow’ diagrams that are automatically

included into the theory. Thus, by solving the RG equations for

a ‘running’ self-energy at one-loop, we in fact take into account

all corrections of order O(N0) to all loops. The infinite series of

diagrams being summed is not arbitrary and arises naturally



Fig. 4. (a) Electron–phonon interaction vertex and the double index

representation of the phonon propagator (a). Contributions to the electron

self-energy are shown in (b), (c) and (d) and their corresponding order in the

1/N expansion.

Fig. 6. Contributions to the Cooper channel four-point vertex using the two-

fermion representation for the phonon propagator. The presence of an internal

closed loop can be easily identified and each one represents a factor N. The

dashed line in one of the diagrams is equivalent to a solid line and was

introduced just for clarity.
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from the RG equations, as shown by our 1/N analysis. These

corrections to the self-energy lead to the wave-function

renormalization Z shown in (10). The final diagram of order

g4 is shown in Fig.4(d): this is the famous vertex correction to

the electron self-energy due to electron–phonon interactions

studied by Migdal [17]. While at first glance it seems to contain

closed internal loops, following the propagating solid line in

the double-index representation shows that the loop never

closes. This diagram 4(d) is, therefore, of order O(NK2) and

thus vanishingly small as N/N. Thus, Migdal’s theorem is

built into the large N approach [19]. The 1/N picture has been

called the ‘leap to all loops’ [2]. Here, in making the leap, we

land on Eliashberg’s theory, and obtain Migdal’s theorem

during the trajectory.

Just for completeness, we can proceed and see how the loop-

counting works in the contributions for the four-fermion vertex

using the double-index notation. Fig. 1(c) shows the

contributions in terms of the box-vertex ~u obtained after

integrating out the phonons. At this point we can immediately

apply the results of [2] and be done. Alternatively, if the

phonons are kept, we open the box-vertex and the diagrams of

Fig. 1 are represented by the ones in Fig. 5. The first two

diagrams in the series are the tree-level ones, the next three are

contained in the box-vertex BCS diagram, and the last ones are

examples of diagrams that are contained in the box-vertex ZS

diagram.
Fig. 5. Corrections to GðuÞ corresponding to opening the box-vertex of Fig. 1(c).
We can now simply redraw the diagrams following the

double-index prescription. This is shown in Fig. 6 for the

Cooper channel, i.e. incoming electrons with momenta k1 and

Kk1 and outgoing electrons with momenta k3 and Kk3. The

interaction term goes as 1/N. The BCS contributions are of the

same order, and as expected, the ZS contributions are higher

order in 1/N.
4. Conclusions

We have developed an asymptotically exact RG method that

takes into account electron–electron and electron–phonon

interactions in an unbiased way. The inclusion of electron–

phonon interactions leads to more energy scales in the problem

(u, g, uE/L0) and also to retardation effects. It is interesting

to note that, for the starting action at l0, all that is required is

that all the other scales are much smaller than the energy cut-

off. They can, however, have different relative magnitudes.

This is the reason why we could apply it not only for small l
(g/uE) but also for l[1 (g[uE).

Our procedure can be used for any Fermi surface geometry

and for any number of scattering channels (forward, charge and

spin density wave, etc) and therefore allows for the study of the

competition between scattering channels [10]. In this work we

focused entirely on the problem of the superconducting

instability. For a circular Fermi surface it is shown that the

Eliashberg’s theory of strongly coupled superconductors is

asymptotically exact (in the same sense the Landau’s theory of

the Fermi liquid is asymptotically exact) and that Migdal’s

theorem follows from the RG. Finally, our procedure allows

for a new way to investigate superconductivity in metals and

the competition between different instabilities when both

electron–electron and electron–phonon are at play.
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