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Abstract – We study the effect of electron-electron interactions in the quasiparticle dispersion of
a graphene bilayer within the Hartree-Fock-Thomas-Fermi theory by using a four-bands model.
We find that the electronic fluid can be described by a non-interacting–like dispersion but with
renormalized parameters. We compare our results with recent cyclotron resonance experiments in
this system.
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Since graphene was isolated in 2004 [1], it has attracted
attention because of its possible application in all-
carbon–based electronic devices [2] and its connections
to relativistic field theory [3]. While there is strong
theoretical [4] and experimental evidence [2,5] that single-
layer graphene (SLG) behaves as essentially a weakly
interacting gas of two-dimensional (2D) Dirac particles,
the situation in bilayer graphene (BLG) is much less
clear. Early theoretical studies have indicated that the
SLG is much less prone towards magnetic states [6], while
BLG can become magnetic at low densities [7]. Moreover,
while the electronic compressibility of SLG has essentially
features of an insulator [5,8,9], the BLG compressibility is,
unlike the 2D electron gas (2DEG) [10], non-monotonic
and strongly dependent on electronic density [11]. It
has also been argued that, unlike SLG, BLG should be
unstable towards many-body states such as a pseudospin
magnet [12], a Wigner crystal [13], and an excitonic
superfluid [14]. It has been demonstrated that BLG is a
tunable gap semiconductor by application of a transverse
electric field [15,16], leading to extra flexibility in dealing
with its electronic properties [17,18]. While electrons in
BLG have a different topological (Berry’s) phase than
electrons in SLG, as evident in integer quantum Hall
effect measurements [19], the experimental evidence for
electron-electron interaction effects in BLG has been
elusive. Nevertheless, recent cyclotron resonance experi-
ments in bilayer graphene [20] have shown departures from
the non-interacting bilayer model proposed by McCann
and Fal’ko [21]. These disagreements do not seem to be
describable in terms of disorder effects alone [22]. The
objective of our paper is to clarify these discrepancies.

The SLG has a honeycomb lattice structure that
leads to a Dirac-like electronic dispersion, E(k) =±c̃|k|,
at the edges (the K and K ′ points) of the Brillouin
zone. The electrons are described in terms of a 2D
“relativistic” Dirac Hamiltonian with zero rest mass,
where the velocity of light, c, is replaced by the Fermi-
Dirac velocity, c̃. In the BLG (Bernal structure) the
two graphene layers are rotated by a relative angle of
π/3 that breaks the sublattice symmetry leading
to 2 pairs of massive Dirac particles at the K (K ′)
point. Nevertheless, the system remains metallic because
2 bands, belonging to different pairs, touch in a
point. More explicitly, the non-interacting bands have
the form: E1(k) =−mc̃2+E(k), E2(k) =mc̃2−E(k),
E3(k) =mc̃

2+E(k) and E4(k) =−mc̃2−E(k), where
E(k) =

√
(mc̃2)2+(c̃k)2. Hence, E1(k) and E4(k) (E2(k)

and E3(k)) describe a massive relativistic dispersion with
rest mass energy given by mc̃2. Rotations by other angles
do not break the sublattice symmetry and hence do not
lead to mass generation [23].
Our results suggest that BLG behaves as a liquid of

Dirac quasiparticles with renormalized mass and velocity.
The situation described here is unique when compared to
standard non-relativistic Fermi liquids such as 3He [24]
and ordinary metals [25], or even to relativistic Fermi
liquids such as quark matter in the core of neutron
stars [26]. While the electrons in graphene are effectively
“relativistic”, in the sense that they obey an effective
Lorentz invariance (only true at low energies) with the
Dirac velocity playing the role of velocity of light, on the
other hand, from the point of view of an external observer,
the whole graphene system is Galilean invariant and
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non-relativistic since the Dirac velocity is much smaller
than the actual speed of light. As a consequence, electron-
electron interactions, just as in the case of relativistic [26]
and non-relativistic [24] Fermi liquids, renormalize the
quasiparticle mass, but unlike the relativistic and non-
relativistic Fermi liquids, the “velocity of light” is also
renormalized1. Moreover, in BLG as well as in SLG the
existence of negative-energy bands and a pseudo-spin
degree of freedom has to be included when construct-
ing a Fermi liquid theory. This has been analyzed micro-
scopically in refs. [27,28] and through a phenomenological
model in ref. [29] for SLG, however, a treatment of BLG
which takes into account its full hyperbolic four-bands
structure is missing.
The Coulomb interaction between electrons breaks the
effective Lorentz invariance of the non-interacting prob-
lem since it can be thought as instantaneous from the
point of view of the electrons. In SLG, this violation of
Lorentz invariance leads to the famous upward logarith-
mic renormalization of the Fermi-Dirac velocity originally
proposed in ref. [30]. That effect is a result of the lack of
screening in the SLG due to the vanishing of the density
of states. The BLG, however, has a finite density of states
at the Dirac point and hence screening plays an impor-
tant role [31]. We show that, similarly to the 2DEG [25],
the Hartree-Fock (HF) theory alone leads to an unphysi-
cal logarithmic singularity at the Fermi surface indicating
the importance of screening in this system. When screen-
ing is accounted through the Thomas-Fermi (TF) theory,
the log singularity is suppressed and, surprisingly, Lorentz
invariance is recovered. We show that this result is due
to the suppression of the intra-band transitions relative
to the inter-band transitions. In order to test our find-
ings, we study the problem of cyclotron resonance in this
system and find good quantitative agreement with recent
measurements [20].
We use a tight-binding description of BLG in which

only the in-plane, t≈ 3 eV, and the out-of-plane, t⊥ ≈
0.37 eV, nearest-neighbor hopping parameters are consid-
ered2. In this case we have c̃= 3ta/2 (a= 1.42 Å) and
mc̃2 = t⊥/2. From now on we choose units such that
�= 1= c̃. The hyperbolic shape of the non-interacting
dispersion introduces an intrinsic energy scale in the prob-
lem, m. In the “non-relativistic” (NR) limit, k�m, one
can replace the four hyperbolic bands by two parabolic
bands E±(k) =±k2/2m [21]. In this approximation, the
usual NR dispersion of the 2DEG is recovered, but with
allowed negative-energy values. In the “ultra-relativistic”
(UR) limit, k�m, E(k)∼ k, one obtains the SLG disper-
sion. The crossover energy scale from non-relativistic to
ultra-relativistic (NR-UR) is given by m. We notice that
the effective non-relativistic low-energy approximation

1Note that the mass renormalization in both the non-relativistic
and relativistic Fermi liquid is directly associated to the Galilean or
Lorentz invariance of the system, see refs. [24,26].
2Other hopping parameters are smaller in magnitude [32] and

usually suppressed by disorder [22].

fails when treating the interacting problem because the
Coulomb energy associated with electron-electron interac-
tions is of the order of the inter-band transitions [11].
The electronic interactions are included by adding

to the non-interacting energy E0 = 1/π
2
∑
i

∫
Ei(p)dp an

exchange term which can be written as (energies are given
per unit area, and the spin and valley degeneracy factor
of 4 is accounted):

Eex =−2
∑
i,jα

∫
p,q

χαij(q,p)χ
α
ji(p,q)ni(q)nj(p)Vα(q−p),

(1)
where α=±1 correspond to the symmetric/antisymmetric
representations of the Coulomb interaction:

V±(k) = 2πe2(1± exp{−kd})/[2ε(k+βm)], (2)

ni(q) is the occupation number of band i, and χ
α
ij(q,p)

are overlap matrices which contain information of the
change of basis [7]. Screening is taken into account
through the TF approximation by introducing a screen-
ing length in (2) that is proportional to the density
of states. In (2) β is the parameter that controls the
value of the TF screening length; the HF theory is
obtained by taking β = 0. Within the Random Phase
Approximation (RPA), βRPA = 4g(1+EF /m), being
g= e2/�c̃ the dimensionless coupling constant, and EF
the Fermi energy. For experimentally realized densities
(ne ≈ 1011–1013cm−2) and g= 0.5 (ε= 3.9 for SiO2), β ≈
1–5. The energy of a quasiparticle in the i-th band is given
by εi(q) = δE/δni(q)|ni=n0i , where δni(q) = ni(q)−n0i (q),
being n0i (k) the occupation number of the non-interacting
system. E[δni] is the total energy E =E0+Eex.
We can therefore write εi(q) =Ei(q)+∆Ei(q) with
∆Ei(q) =−4

∫
q

∑
α,j χ

α
ij(q,p)χ

α
ji(p,q)n

0
j (p)Vα(q−p) the

correction to the non-interacting band Ei(q).
We consider the case of electron doping such as that the

chemical potential does not reach the uppermost band,
which is usually the experimentally realized situation3.
Therefore, our results are valid for Fermi energies up
to
√
2t⊥, which corresponds to densities smaller than

ne ≈ 1013 cm−2. We look then at the correction to the first
band, which we write as ∆E1(q) =D+(q, kF )+D−(q,Λ)
to distinguish intra-band (D+) from inter-band (D−)
contributions. The expressions for D± can be easily
derived from ∆E1(q). kF is the Fermi wave vector and
Λ a cutoff of the order of the inverse lattice spacing
(Λ≈ 1 Å−1 ≈ 7 eV).
Figure 1 shows the quasiparticle band within the HF

theory (solid line) for a typical value of the Fermi vector.
Figure 1(a) depicts the correction due to the intra-band
transitions, D+. Its behavior, as expected, is qualitatively
very similar to that of a 2DEG [25]. In particular, the
inflection point seen at q≈ kF is due to the special
role of kF which separates a domain with an avoidable

3The case of hole doping is analogous, except for a small
asymmetric term [11] which we discuss later.
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Fig. 1: Quasiparticle dispersion, ε1(q) (in eV), as a function
of the momentum q (in units of Λ). Inset: intra- (D+) and
inter- (D−) band contributions. Full line: β = 0 (HF); dashed
line: β = 1; dash-dotted line: β = 2; dash–double-dotted line:
β = 5; dotted line: non-interacting value. Curves have been
shifted for comparison (kF /Λ= 0.03 and g= 0.5).
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Fig. 2: v∗(q) (in units of c̃) as a function of q (in units of the
cutoff Λ) for kF /Λ= 0.03. Dotted line: non-interacting value.
Solid line: HF. Dashed line: TF with β = 1; dash-dotted line:
β = 2; dash–double-dotted line: β = 5. Inset: zoom-in near the
Fermi vector and the logarithmic fit to the divergence (dashed
line) for HF.

singularity q� kF from a singularity free domain for
q > kF . While D+ diminishes with kF , the correction due
to D− is independent of it. The latter is shown in fig. 1(b).
As can be seen from the figure, for typical electronic
densities, the correction due to inter-band interactions
is roughly two orders of magnitude bigger than that of
the intra-band. Notice, from fig. 1, that the quasiparticle
dispersion, however, inherits the inflection point from D+
at q= kF . The renormalized band velocity is given by
v∗(q) = |∂ε/∂q|, which is plotted in fig. 2. Due to the sharp
inflection point in ∆E1 at kF , the effective quasiparticle
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Fig. 3: Left: m∗ (in units of the bare mass m) as a function of
the electron density ne (in units of electrons per cm

−2). Right:
c̃∗ (in units of the bare velocity c̃) as a function of ne, for
different β (g= 0.5).

Fermi velocity, v∗(kF ), presents an unphysical logarith-
mic divergence: v∗(k∼ kF )∼−4g/π log(|k− kF |/Λ), as it
occurs for the 2DEG. For small momentum nevertheless,
q/kF � 1, the renormalized dispersion can be shown
to be parabolic: ε1(q)≈ q2/(2m̃), with m̃−1 =m−1+
g(5/kF − 1)/2.
As mentioned earlier, the divergence of the Fermi

velocity is an unpleasant feature of the HF approximation
which indicates the necessity of introducing screening in
the problem. The renormalized band ε1(q) is shown in
fig. 1 for different values of β. We see that the introduction
of screening eliminates the inflection point at kF . This
can be seen clearly in fig. 2, where it is shown that
the divergence in the quasiparticle velocity disappears for
finite β. The most striking feature of our calculations is
that the quasiparticle dispersion can be fitted by a non-
interacting–like dispersion:

ε1(k) = ε0+
√
(v∗F k)2+(m∗c̃∗2)2, (3)

where ε0 is a constant, andm
∗ and c̃∗ are the quasiparticle

mass and renormalized “light” velocity, respectively. We
find that this result is valid to high accuracy for a large
region of energy and momenta due to the fact that the
inter-band transitions largely dominate over the intra-
band ones4.
The results for m∗/m and c̃∗/c̃ are shown in fig. 3

as a function of the electronic density, ne = k
2
F /π, for

different values of the screening strength β. Note that,
for fixed β, c̃∗/c̃ increases monotonically with density,
whereasm∗/m has a minimum at a finite ne. Whilem∗/m
is renormalized to smaller values, c̃∗/c̃ is renormalized to
larger values. This has interesting consequences for the
NR-UR crossover mentioned earlier. The crossover energy

4Note that the quasiparticle Fermi velocity, v∗(kF ) is not
inversely proportional to the effective mass (as in the usual Fermi
liquid case), but to the quasiparticle energy.
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crossover density nc) as a function of electronic density ne
(in units of electrons per cm−2). Right: E∗c (in units of the
non-interacting crossover energy Ec) as a function of ne, for
different β (g= 0.5).

for the non-interacting problem is given by Ec =mc̃
2.

Analogously, for the interacting result we can define the
crossover energy as E∗c =m∗(c̃∗)2. This quantity is plotted
in fig. 4(b), which shows that E∗c >Ec for all the values of
the parameters (this is also true if we vary the coupling
constant 0.1� g� 2). However, the relevant parameter
to compare with experiment is the crossover electronic
density, nc = q

2
c/π= (mc̃)

2/π, that is, the density at which
the NR-UR crossover takes place. Figure 4(a) shows
the renormalized value of this quantity, n∗c = (m∗c̃∗)2/π,
in units of the non-interacting value nc. Indeed, it is
seen that n∗c <nc always, even though the renormalized
quasiparticles’ energy is higher.
Let us now consider the problem in the presence of a

transverse magnetic field B. For the non-interacting prob-
lem, the Landau levels are given by (restoring units) [33]:

E±n
ωc
=±
{
n+
1

2
+2r2− 1

2

[
1+16r4+16r2

(
n+
1

2

)]1/2}1/2
,

(4)

where n is a positive integer, ωc = c̃
√
2eB/c is the

cyclotron frequency, and r=mv2F /ωc. One can clearly
see that this problem has the NR-UR crossover as a
function of B discussed earlier. At low fields, r� 1, we
find E±n ≈±[ω2c/(2mc̃2)]

√
n(n+1), and the Landau level

energy is proportional to B as in the NR problem [21]; at
high fields, r� 1, one finds E±n ≈±ωc

√
n and, as in the

UR case, we find the Landau level energy proportional
to
√
B.

Just as in the case of a Fermi liquid, here the quasi-
particles carry electric charge e and couple to a magnetic
field via minimal coupling. Note that here, however,
the cyclotron mass is not protected by Kohn’s theorem
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Fig. 5: Landau level transition energies for different filling
factors ν = 4 (n: 0→ 1), ν = 8 (n: 1→ 2), ν = 12 (n: 2→ 3)
and ν = 12 (n: 2→ 3) as a function of B (in tesla). The
experimental data (dots) was taken from ref. [20]. The solid line
is the theoretical value for g= 0.5, and β = 4 for bare values
c̃≈ 0.76× 106m/s and t⊥ ≈ 0.33 eV. The dashed line shows the
fits obtained in ref. [20] for t⊥ = 0.35 eV.

since the dispersion is not parabolic [34]5. Hence, the
Landau level spectrum is the same as the non-interacting
problem, eq. (4), with the bare parameters, m and c̃,
replaced by renormalized ones, m∗ and c̃∗, respectively. In
fig. 5 we show the data from cyclotron resonance experi-
ments [20] for inter-Landau level transitions for different
filling factors ν = ne/nΦ (nΦ is the density of flux quanta
through the system) together with our results for g=
0.5, β = 4, c̃= 0.76× 106m/s ( c̃∗ = 1.2− 1.3× 106m/s)
and t⊥ ≈ 0.33 eV (t∗⊥ = 0.44–0.45 eV). These values were
obtained by fitting our renormalized theory to the experi-
mental data, taking β, g, and the bare m and c̃ as free
parameters, and are in agreement with recent infrared
spectroscopy data [35]. The variation of c̃∗ and m∗ with
the electronic density was taken into account, however, we
took the screening strength β as fixed, since our treatment
is not self-consistent. Nevertheless, as a double check, the
value obtained for g is the expected for BLG on SiO2 and
β falls within the expected range for such densities. One
can see that our results are in fair quantitative agreement
with the experimental data, giving support to the idea
that this system can be described by a Dirac liquid of
quasiparticles with a dispersion given by (3). There is a
small electron-hole asymmetry due to inter-band interac-
tions (and therefore independent of density), which results
in smaller values of t∗⊥ (∼ 10%) and c̃∗ (∼ 5%) for hole
doping. This difference, however, is not enough to explain
the asymmetry observed in [20]. As was mentioned above,

5Kohn’s theorem might be expected to be asymptotically valid
in the NR limit. However, given the renormalization of the UR-NR
crossover to lower electronic densities, this would be the case only
at very low densities. In the dilute limit inhomogeneities [5], Wigner
crystallization [11,13] and ultimately the trigonal warping term [21]
would also be relevant.
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the screening strength β was fitted to a constant value for
all four plots in fig. 5, and it should be taken as the best
average β that gives a reasonable good fit for all the data
range. For a better agreement with the data it would be
probably necessary to include self-consistently the depen-
dence of β with the electronic density but this goes beyond
the scope of the present paper.
We have studied the effect of electron-electron interac-

tions on the electronic properties of a graphene bilayer
within the Hatree-Fock-Thomas-Fermi theory by taking
into account the full four-bands model of BLG. We have
shown that the quasiparticles can be described by a
non-interacting, Lorentz-like dispersion with renormal-
ized parameters which depend on the electronic density.
The fact that the Lorentz invariance of the dispersion
is recovered for a large range of energies is an unex-
pected result since there is no evident symmetry behind
it. It is important to note that this result is due to the
dominance of inter-band transitions, which are missing
in the usual Fermi liquid picture. Since this contribu-
tion is independent of electronic density, the accuracy of
the effective description increases with decreasing density.
Further investigation is needed to determine if corrections
beyond HF lead to deviations from the Lorentz dispersion.
Furthermore, we have tested our calculations by compar-
ing our results with recent cyclotron resonance experi-
ments and found quantitative agreement between theory
and experiment. Our results are also in agreement with
recent ab initio calculations [36].
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