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ABSTRACT: Realistic relaxed configurations of triaxially strained graphene
quantum dots are obtained from unbiased atomistic mechanical simulations. The
local electronic structure and quantum transport characteristics of y-junctions based
on such dots are studied, revealing that the quasi-uniform pseudomagnetic field
induced by strain restricts transport to Landau level- and edge state-assisted
resonant tunneling. Valley degeneracy is broken in the presence of an external field,
allowing the selective filtering of the valley and chirality of the states assisting in the
resonant tunneling. Asymmetric strain conditions can be explored to select the exit
channel of the y-junction.
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Endowed with the strongest covalent bonding in nature,
graphene exhibits the largest tensional strength ever

registered (E ≃ 1 TPa) and a record range of elastic
deformation for a crystal, which can be as high as 15−20%.1,2
Such outstanding mechanical characteristics are complemented
by an unusual coupling of lattice deformations to the electronic
motion, that can be captured by the concept of a
pseudomagnetic field (PMF) arising as a result of nonuniform
local changes in the electronic hopping amplitudes.3−5 Since
electrons in graphene respond to these local PMFs precisely as
they would to a real magnetic field, this specific strain-induced
perturbation is not screened by the free electrons in the same
way that the usual displacement field coupling can be.
Consequently, the ability to manipulate the strain distribution
in graphene opens the enticing prospect of strain-engineering
its electronic and optical properties, as well as of enhancing
interaction and correlation effects.6−11 The recent experimental
confirmation that PMFs in excess of 300 T are possible with
modest deformations in structures spanning only a few
nanometers12,13 brings this prospect of strongly impacting
graphene’s electronic properties by strain closer to fruition.
Despite this recent experimental evidence for strong PMF-

induced Landau quantization, to the best of our knowledge no
measurements or calculations have been performed to assess
the transport characteristics of such nanostructures. The ability
to produce very large and fairly homogeneous PMFs within a
few nanometers suggests the possibility of creating pseudo-
magnetic quantum dots, where confinement is driven by the
PMF. Here we undertake a theoretical study to probe the
electronic and quantum transport properties of a representative

graphene-based strained y-junction particularly suited to the
generation of quasi-uniform PMFs.6 We assess the quantum
transport characteristics of such structures, revealing the
Landau level- (LL) assisted character of the tunneling
mechanism, as well as the interplay with an external field that
breaks the valley degeneracy.

Calculation Methodology. In order to capture the
microscopic details as realistically as possible, we employed a
combined atomistic, electronic, and transport calculation
procedure, which provides a set of unbiased results at all
these levels. The microscopic configuration of each carbon
atom is obtained by a fully relaxed molecular mechanics (MM)
approach which, together with Monte Carlo approaches,14

constitutes one of the most unbiased ways to describe
deformation fields in nanostructures. Knowledge of the position
of each atom allows us to extract the π-band bandstructure of
the relaxed lattice via a tight-binding (TB) approach, as well as
to calculate the quantum transport properties across the
structure via a nonequilibrium Green’s function (NEGF)
approach. In this way, one unveils the local electronic structure
from which we can extract, for example, the local PMFs and
local current distribution, without approximations, using a
system with more than 6000 atoms.
The deformed configurations of an hexagonal graphene

monolayer were obtained using standard MM simulations at 0
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K with LAMMPS.15 For definiteness, we shall focus here on the
system shown in Figure 1 with 6144 atoms and a side length, L

= 7.87 nm, but we stress that the results do not show variance
among specific sizes and can be straightforwardly rescaled to
larger or smaller dimensions.16,17 The carbon interactions were
modeled via the AIREBO potential18 with a cutoff at 0.68 nm,
which has been shown to capture accurately the mechanical
properties of carbon-based nanostructures, including bond
breaking, deformation, and various elastic moduli.19−21 Addi-
tional details are discussed in the Supporting Information.17

The system was triaxially stretched by in-plane displacement
increments of 10−3 nm along each of the three arms shown in
Figure 1. Following each strain increment, graphene was
allowed to relax according to the conjugate gradient algorithm,
until relative changes in the system energy from one increment
to the next were smaller than 10−7. Because the strain thus
generated is nonuniform, we introduce the nominal strain εeff =
(d − d0)/d0, where d0(d) is the distance from the center to the
edge of the hexagon before (after) stretching, as illustrated in
Figure 1. Nominal strains ranging from 0 to 18% are considered
below.
Once the relaxed configurations were obtained at each value

of strain, the atomic positions were used as the basis for

electronic structure and quantum transport calculations.
Specifically, we used the relaxed atomic positions as input to
the exact diagonalization of the π-band TB Hamiltonian for
graphene, using the parametrization Vppπ(l) = t0e

−3.37(l/a−1) to
describe the dependence of this Slater-Koster parameter on the
C−C distance l (t0 = 2.7 eV and a ≃ 0.142 nm). This
approximation was shown to describe with good accuracy both
the threshold deformation for the Lifshitz band insulator
transition at large deformations,22,23 and the behavior of Vppπ(l)
or the optical conductivity when directly compared to ab initio
calculations.8,24 Here we do not consider electron−electron
interactions.
One property that we extract from this procedure is the exact

(within this TB model) local density of states (LDOS), from
which we can map the local PMF distribution by fitting the
resonant LDOS at each atom to the Landau level (LL)
spectrum expected for graphene5,25
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An example of typical LDOS spectra is shown in Figure 2a.
Equation 1 is used to obtain the local Bs distribution
throughout the system by fitting the slope of En versus √n
seen in the numerical LDOS at various strains, as shown in
Figure 2b. Notice how the n = 0 LL is absent in the LDOS of
one of the sublattices, similarly to data recently reported in
experiments with artificial honeycomb lattices.26

To complement this exact numerical calculation of Bs at each
lattice point, we used another approach for comparison and
control. It hinges upon the strain-induced perturbation to the
continuum Dirac equation that is applicable at low
energies.4,6,27 In this approach one uses Bs = ∂xAy − ∂yAx,
where the fictitious vector potential for an electron (charge −e)
is given by
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and β = −a((∂ ln Vppπ(l))/(∂l)) ≈ 3.37, the same used in our
TB parametrization. The key here is to obtain the space-
dependent strain tensor εij(r). It can be obtained directly from
the displacements during the MM calculation and affords an
alternative method to extract Bs(r) in the entire system more
expeditiously. We shall refer to this as the “displacement
approach” and use it to map the PMF distribution, thus
assessing the range of validity of this “displacement approach +

Figure 1. Real-space distribution of the PMF Bs (Tesla) under εeff =
15% obtained by mapping the tight-binding-derived LDOS at each
atom. Inset: diagram of the triaxial loading and contact scheme. L ≃ 8
nm.

Figure 2. (a) LDOS at two representative neighboring sites (Figure 1) for εeff = 15%. Peak positions versus sgn(n)(|n|)1/2, extracted from spectra
such as (a), and for different εeff. Straight lines are fits to eq 1 from which we extract the local Bs at the site where the LDOS was sampled.
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Dirac equation” in comparison with the direct TB on the
deformed lattice.17

PMF Distribution. Recent experiments show in a
spectacular way how strain can impact the electronic properties
of graphene by confirming the existence of strain-induced LLs
corresponding to fields from 300 to 600 T in graphene
nanobubbles.12,13 Our approach of sampling the LDOS and
fitting the LL resonances to eq 1, as illustrated in Figure 2, is
the theoretical analog of the STM analysis done in those
experiments. The real space PMF distribution for εeff = 15% is
shown in Figure 1 and follows the general predictions of
Guinea et al.6 Most notably, the PMF is nearly uniform in most
of the inner portion, which is a consequence of the trigonal
loading conditions. This field uniformity is crucial to have well-
defined LLs at nominal strains as small as 3%. To quantify the
dependence of the field on the nominal strain we plot the
maximum, Bs

max at the center of the hexagon in Figure 3,

showing that for the parameter β used here and at small εeff
each 1% of nominal strain increases Bs

max by ≈ 40 T. Direct
comparison of the curves generated by the two methods
mentioned above shows that Bs obtained using the displace-
ment approach begins overestimating Bs beyond εeff ∼ 5%. This
is expected insofar as eq 2 results from an expansion of Vppπ(l)
to linear order in εeff and hence is bound to overestimate the
rate of change of Vppπ (and thus Bs) at higher deformations. On
the basis of our data at low εeff, we extract the scaling Bs

max =
Cεeff/L with C ≃ 3 × 104 T nm. This relation can be used to
obtain Bs for systems with any L and εeff. For large εeff, the data
in Figure 3 must be taken into account to correct for the
overestimate. The magnetic lengths, Bs

, associated with these
large PMFs can easily become comparable to the system size,
and thus a strong interplay between magnetic and spatial
confinement is expected. In particular, the small size of the
quantum dot implies that most low energy states will not be
“condensed” into LLs,28 and in addition resonant transport
behavior can be seen in these structures as a result of tunneling
assisted by the magnetically confined states in the central
region. This is characterized next.
Quantum Transport. To calculate the quantum transport

characteristics of the strained hexagon we coupled three
unstrained semi-infinite metallic AC graphene nanoribbons to
the sides of the ZZ hexagon where the load is applied (cf. inset
of Figure 1), thereby creating a y-junction. There is no barrier

between the metallic contacts and the central region, and the
only perturbation to the electronic motion arises from the
strain-induced changes in the nearest neighbor hoppings inside
the hexagon. The width of the contacts coincides with the side,
L, of the hexagon. In a multicontact device the current in the p-
th contact is expressed using the Landauer-Büttiker formalism
as Ip = (2e2)/(h)∑q[TqpVp − TpqVq].

29 With no loss of
generality, a bias voltage V1 is applied to contact 1, while
contacts 2 and 3 are grounded. In this configuration I1 = (2e2)/
(h)[T21 + T31]V1, I2 = −(2e2)/(h)T21V1 and I3 = −(2e2)/(h)
T31V1, reducing the calculations to the transmission coefficient
between contact 1 and 2: T21 (T31 = T21 under symmetric
loading). The transmission coefficient is given by Tqp =
Tr[ΓqG

rΓpG
a], where the Green’s functions are Gr = [Ga]† = [E

+ iη − H − Σ1 − Σ2 − Σ3]
−1, the coupling between the contacts

and the device is Γq = i[Σq − Σq
†], and Σq is the self-energy of

contact q, all of them calculated numerically.30

Figure 4a shows the transmission coefficient T21 (=T31 under
symmetric loading) as a function of the Fermi energy, EF, for

the y-junction of Figure 1. The smooth (blue) curve is the
transmission in the absence of strain, and the resonant trace
(black) the transmission for εeff = 10%. The unstrained
junction’s transmission is characterized by a threshold and a
broad resonance around E/t0 ≈ 0.063, and a set of broad
resonances and antiresonances on a smooth background as E
increases. The resonance at the threshold marks the
fundamental mode of the hexagonal cavity which, from the
geometry, is estimated to appear at E ≈ ℏvF(π/√2L) = 0.06t0.

Figure 3. Dependence of Bs
max on εeff obtained by the tight-binding and

displacement approaches discussed in the text.

Figure 4. (a) Transmission coefficient T21(T31) versus EF for εeff = 0
and 10%. The inset shows a close-up of the total DOS of the strained
dot in the low energy region. A LDOS map (white is zero) of selected
transmission resonances for εeff = 10% is shown in (b) for E = 0.018t0,
and (c) for E = 0.16t0. (d) A transverse section of (b) along the
vertical direction through the center of the hexagon, showing the
profile of the LDOS and the PMF (displacement approach). R̃ marks
the distance to the center.
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Spatial mapping of the LDOS (not shown) at this energy
confirms this.
Upon stretching, the following three different regions can be

identified in the curve of T21(E) in Figure 4a: (i) at low
energies the transmission is suppressed; (ii) at intermediate
energies the transmission develops a series of regularly spaced
sharp resonances; and (iii) at higher energies the transmission
shows unevenly spaced and rapidly oscillating peaks. To
characterize these different regimes we resort to the features of
the overall DOS, as well as the LDOS distribution, N(r,E) =
(−1/π) Im[Gr(r,r;E)], at representative energies. The DOS is
shown in the inset of Figure 4a and, even though there are
plenty of low energy states, only those above E ≈ 0.08 t0 have
an appreciable signature in the transmission. To understand
this absence of transmission we turn to Figure 4b, which plots a
real-space LDOS map of a state at E = 0.018t0, representative of
these low energy states that have no signature in the
transmission. Apart from the nonpropagating LDOS accumu-
lation at the ZZ edges, the significant LDOS amplitude is
distributed within an annulus of radius ≈4 nm and width ≈2.5
nm. Since the LDOS does not extend to the vicinity of the
contacts, revealing a small coupling between this state and the
modes of the contacts, the only possibility for transmission is
through tunneling. But since the spatial barrier for tunneling
into this confined state is rather large (≈2.5 nm), the resonant
peak in the transmission associated with this state has a
vanishingly small amplitude and is not seen on the scale of
Figure 4. A transverse cut of the LDOS in Figure 4b along the
vertical direction through the hexagon center is shown in
Figure 4 panel d.17 It reflects the wave function of a PMF-
induced Landau edge state confined to the hexagonal quantum
dot, analogous to the edge states in magnetic quantum dots.28

As the energy is progressively increased, the associated states
spread out, approaching the boundaries. Their coupling to the
contacts increases until the tunneling-assisted conductance
becomes of the order of the conductance quantum and the
associated transmission resonances become visible in the black
trace of Figure 4b.
The LDOS map in Figure 4c corresponds to E = 0.16t0 and

typifies the behavior at higher EF. It is clear that this state is
completely different from the one in Figure 4b, as its LDOS
spreads over the entire dot and is highly peaked at the center. It
corresponds to a state in the n = 1 LL. The rapid oscillations in
the transmission coefficient and DOS at that energy are also
consistent with this interpretation.31 An additional quantitative
confirmation is given as follows. If the state at E = 0.16t0
belongs to the n = 1 LL, its associated magnetic length will be
Bs
= √2ℏvF/En=1 ≃ 1.9 nm. The energy difference between

Landau edge states whose energy is between En=0 and En=1 can
be estimated by dividing the LL separation by the number of
edge states per LL: ΔE ≈ (En=1 − En=0) Bs

/2L0 ≈ 0.02t0, where

the factor L2 / B0 s
corresponds to the average number of edge

states between these two Landau levels.31 Inspecting the inset
of Figure 4a we verify that the level spacing below E ≃ 0.1t0 is
indeed ∼0.02t0. Moreover, given that this quantitative estimate
is consistent, we can extract the average magnetic field
determining the transport behavior, which is Bs

av = ℏ/e B
2

s
≃

164 T. This value, obtained independently and solely from the
transmission characteristics, expectedly corresponds to the
PMF in the region of maximum LDOS for this state, from
Figure 4d and, correcting for the overestimation in the PMFs

obtained from the displacement approach in Figure 3, that
would be ≈270/1.6 = 169 T.
Hence, transport in the strained junction is characterized by

LL-assisted resonant tunneling, analogously to a magnetic
quantum dot, with the novelty that here the Landau
quantization arises from the strain-induced PMF, Bs. Because
of the effective magnetic barrier, electrons injected from contact
1 can tunnel with a probability 0 < T < 1, which is enhanced
when there is significant LDOS in the contact region. The
maximum tunneling probability through a localized state is T =
1, irrespective of the number of open channels in the contacts.
This implies that between the LL n = 0 and n = 1 we expect
T21
max = 0.5 (0.5 because there are two symmetric exit channels).

However each LL with n ≠ 0 in graphene is doubly degenerate,
and hence T21

max = 1, which is consistent with the calculated
transmission seen in Figure 4a, where T21(E = 0.126t0) = 0.79,
for example.

Valley Splitting. The strain-induced PMF does not break
time-reversal symmetry (TRS) in the system, which in practice
means that a low energy electron around one of the zone-edge
valleys feels a PMF which is exactly the opposite to the one felt
by its TRS counterpart at the other inequivalent valley. This
leads to the degeneracy discussed above and, in addition, to the
result that the currents associated with the two valleys exactly
cancel each other. This degeneracy is lifted under a real
magnetic field, Bext, since the total field at each valley will be
different: Bext ± Bs. The corresponding LL splitting is given by
En
+ − En

− ≃ EnBext/Bs
av. In Figure 5a, we show explicitly this

splitting for the edge states detached from the n = 1 LL. Taking
the values estimated above for Bs

av ≃ 164 T, and En=1 ≃ 0.16t0,
the expected splitting under the external field is (E+ − E−)/t0 ≃
0.001BextT

−1. Direct inspection of Figure 5a shows that this is
indeed quantitatively verified. A different perspective over the
splitting of valley degeneracy is given in Figure 5b, which shows
the spectrum of the strained hexagon disconnected from the
contacts, as a function of Bext. When compared with the

Figure 5. (a) Detail of the splitting in the T21 resonances under an
external field Bext, for εeff = 10%. (b) Eigenenergies of the same
hexagon versus Bext, when disconnected from the contacts. (c)
Likewise but for εeff = 0, where LL condensation28 is more clearly
observed. In (b,c), straight lines mark the lowest LLs in the infinite
system, and the large range of Bext used in the horizontal axes is to
accommodate the very large PMF induced by strain.
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unstrained case in Figure 5c, one sees that the effect of the large
PMF induced by strain is to split the Landau fan, which is a
clear evidence of valley degeneracy breaking. Notice also that
this degeneracy breaking is visibly achieved under 10 T, as
shown in Figure 5a.
Another interesting consequence of breaking the valley

degeneracy is that, as Bext increases, the edge states in one valley
will shrink to a smaller radius than in Figure 4(b), whereas the
ones associated with the other will expand due to the opposite
evolution of the respective magnetic lengths. Therefore, by
increasing Bext one can spatially “expand” the edge states of one
valley [cf. Figure 4b] so that they start coupling more effectively
with the leads. This is reflected in Figure 5 by the asymmetry in
T12 of the split transmission resonances: the state which
increases in energy under Bext is the one whose B increases,
thereby facilitating the resonant tunneling process, and
displaying higher transmission than its counterpart associated
with the other valley. Consequently, with an external field one
can restrict the assisted tunneling to states from one or the
other valley. The current path will then have a well-defined
chirality depending on which valley is assisting the tunneling.
This suggests the possibility of exploring this chiral resonant
tunneling to channel the current from lead 1 selectively to lead
2 or 3.
Asymmetry, Disorder, and Lattice Orientation. The

triaxial strain profile of Figure 1 was chosen in this investigation
as it provides a nearly optimal PMF distribution within the
nanostructure.6 However, the magnitude of the PMF will
depend on the relative orientation of traction and crystal
directions, implying that the magnitude of the confining effects,
for example, is sensitive to that orientation. This is a general
feature of strain induced PMFs in graphene. Likewise,
nonsymmetric triaxial tension perturbs the PMF distribution
as well, which has consequences for the electronic behavior. For
a perspective on this, we discuss the transport behavior for
different lattice orientations, as well as asymmetric tension, in
the Supporting Information.17 An analysis of the consequences
of edge roughness17 shows that the LL-assisted tunneling is
sensitive to the amount of roughness at the boundaries, which
is expected since the large PMF at the center of the hexagon
forces the current to flow close to the boundary. In this sense,
the experimental exploration of the LL-assisted tunneling
described here is more straightforwardly observable in graphene
structures synthesized via bottom-up microscopic ap-
proaches,32,33 or artificial graphene structures,26,34 where the
effects of fabrication-induced disorder can be minimized. With
respect to the strain symmetry, we observe that extreme
deviations from symmetric traction deteriorate the LL-assisted
resonant tunneling that is possible under the conditions
discussed above. This arises because asymmetric strain displaces
the region of strong field toward one of the boundaries. This,
on the other hand, can be explored to selectively block one of
the output contacts in the y-junction, allowing control over
which of the two is the exit channel. A specific case is analyzed
in the Supporting Information.
Conclusion. The unparalleled elastic properties of graphene

and the unusual response of its electrons to deformations
captured by the PMF concept imply that nanostructures
deformed with the right symmetry can behave as magnetic
quantum dots. Conductance at low EF is limited to edge state-
assisted resonant tunneling, and the valley degeneracy can be
explicitly broken under an external field, allowing control over
which valley assists in the tunneling process. Since Bs can easily

reach hundreds of Tesla in experiments,12,13 such small
pseudomagnetic quantum dots are a viable prospect and
certainly warrant further investigation.
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