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Global phase space of coherence and entanglement in a double-well Bose-Einstein condensate
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Ultracold atoms provide an ideal system for the realization of quantum technologies but also for the study of
fundamental physical questions such as the emergence of decoherence and classicality in quantum many-body
systems. Here, we study the global structure of the quantum dynamics of bosonic atoms in a double-well trap
based upon the Bose-Hubbard Hamiltonian and analyze the conditions for the generation of many-particle
entanglement and spin squeezing which have important applications in quantum metrology. We show how the
quantum dynamics is determined by the phase-space structure of the associated mean-field system and where
true quantum features arise beyond this “classical” approximation.
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Maintaining and controlling the coherence of quantum sys-
tems over time is one of the major challenges in contemporary
physics. Low-temperature quantum gases trapped in optical
lattices are an important instance of this challenge, for they
provide versatile testbeds both for idealized models of exotic
solid-state systems and for applications in quantum optics
and quantum information processing [1–4]. A Bose-Einstein
condensate (BEC) loaded in two linearly coupled wells, called
a “BEC dimer” or “bosonic Josephson junction” [5], is a
particularly appealing case, as its quantum behavior is both
theoretically tractable [6–9] and experimentally accessible. In
particular, BEC dimers have been shown to allow coherent
manipulation of quantum states even on an atom chip, enabling
matter-wave interferometry [10], long phase coherence times
and number squeezing [11–13], and proposed chip-based
gravity detectors [14]. Related questions have been addressed
in the context of the mathematically equivalent Lipkin-
Meshkov-Glick model [15].

For large atom numbers, the coarse dynamics of the BEC
dimer is well described by a “classical” mean-field approx-
imation. Recent experiments have precisely mapped out the
classical phase-space structure [16,17], showing macroscopic
quantum oscillations as well as the emergence of self-trapped
states through a “classical” bifurcation. Recent theoretical
studies have focused on strategies to prepare highly entangled
Einstein-Podolsky-Rosen (EPR) states in the dimer [18–21].
These truly quantum phenomena appear to depend on the
structure of the associated classical phase space [6–9,18], but
what is the exact correspondence?

Here, we introduce a global phase-space (GPS) picture of
the dynamics of the quantum dimer, focusing on entanglement,
spin squeezing, and decoherence. Our global picture shows
that both the time evolution of entanglement and coherence
depend fundamentally on the initial coherent state. We find
that self-trapping (ST) supports many-particle entanglement.
To link quantum and classical aspects of the dynamics,
we approach the problem from three perspectives. First,
for the full quantum problem, we numerically integrate
the two-site Bose-Hubbard model. Second, we recall that
the standard mean-field treatment of the dimer—the two-
site Gross-Pitaevski equation (GPE)– -corresponds to an
integrable classical dynamical system, and we discuss the

nature of the trajectories in this system. Third, we use a re-
cently developed semiclassical “Liouville dynamics approach”
(LiDA) [22], which we argue is intermediate between the
fully quantum and the classical systems. Comparing these
three perspectives, our GPS approach provides an intuitive
understanding of the quantum observables mentioned above
and insights into true quantum effects beyond the mean-field
or semiclassical approaches.

Quantum and semiclassical dynamics. The coherent dy-
namics of the BEC dimer is given by the two-mode Bose-
Hubbard Hamiltonian (BHH)

H = −J (â†
1â2 + â

†
2â1) + U

2

(
â
†2
1 â2

1 + â
†2
2 â2

2

)
, (1)

where âj denotes the annihilation of one bosonic atom in state
j . The modes can be realized by two sites in a double-well trap
[23,24] or two internal states of the atoms [17]. The tunneling
rate J and the on-site interaction U can be tuned individually,
e.g., via a Feshbach resonance or by changing the trapping
potential [1,13,17,25–27]. We set h̄ = 1, thus measuring all
energies in frequency units and assume J = 10 s−1, which is a
common experimental setting [13,17,27], and a total number of
N = 40 atoms. We study the symmetric quantum dimer. In the
presence of a small asymmetry of the double well, the classical
fixed points (see below) would be slightly shifted. Since we
qualitatively and quantitatively map EPR entanglement and the
condensate fraction to the purely classical dynamics (using
LiDA), it is strongly expected that our general findings are
valid in the presence of a small asymmetry.

The mean-field counterpart of the Bose-Hubbard dimer is a
two-mode GPE. This equation can be rewritten as an integrable
classical Hamiltonian system with the Hamiltonian [28]

Hcl(z,ϕ) = �z2

2
−

√
1 − z2 cos(ϕ). (2)

The mean-field (classical) phase space consists of the two
conjugate variables, the relative phase ϕ = ϕ1 − ϕ2 ∈ [0,2π )
between the two wells and the population imbalance z =
(N1 − N2)/N ∈ [−1,1], where N1,2 denote the number of
atoms in each well and N = N1 + N2 is the total atomic
population [28]. The classical trajectories follow the lines
of constant (conserved) energy Hcl(z,ϕ) = const. They are
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FIG. 1. (Color online) Global phase space of the Bose-Hubbard dimer for (a) � = 5, (b) � = 1.5, (c) � = 0.5. The color code shows the
condensate fraction ct (ϕ,z) at t = 1 s as a function of the initial state |ϕ,z〉. Lines of equal condensate fraction mimic the classical trajectories
(black lines), despite the clear qualitative differences for the three values of � shown. Strong deviations such as S-symmetry breaking and
enhanced condensate fraction near the unstable fixed point F2 = (π,0) are clearly beyond the classical mean-field description.

determined by the initial position (ϕ0,z0) in phase space
and the ratio of the interaction and the tunneling energy
� = UN/(2J ).

The GPE implicitly assumes a pure BEC at all times.
Some quantum features beyond this rough approximation,
in particular, the quantum mechanical spreading over time,
can be included if a quantum state |�〉 is represented by a
(quantum) phase-space density such as the Husimi function
Q(ϕ,z) = |〈ϕ,z|�〉|2 instead of a single trajectory. Here, |ϕ,z〉
denotes an atomic coherent state [29], which is nothing but
a pure BEC. The dynamics of the Husimi function follows
a classical Liouville equation with the Hamiltonian (2) plus
quantum correction terms vanishing as 1/N [22]. In the
semiclassical LiDA [22] we thus represent a quantum state
by an ensemble of trajectories, whose initial positions are
distributed according to the Husimi function of the initial
quantum state. With increasing atom number N the system
converges to the semiclassical limit, i.e., the differences
of the full quantum dynamics and the semiclassical LiDA
vanish.

Global phase-space structure. We analyze the global phase-
space structure of the Bose-Hubbard dimer with special respect
to its classical and quantum properties. Therefore, we consider
the dynamics of an initially pure BEC as a function of the
parameters z0 and ϕ0 with a focus on the condensate purity
and entanglement. The purity is measured by the condensate
fraction ct defined as the maximum eigenvalue of the reduced
single-particle density matrix ρij = 〈a†

i aj 〉/N [9,22,30]. A
related GPS approach was introduced in terms of the phase-
space entropy [31].

The GPS of the Bose-Hubbard dimer is shown in Fig. 1,
where the condensate fraction ct (ϕ,z) at time t = 1 s is plotted
as a function of the initial state |ϕ0,z0〉 for three different
values of �. The corresponding classical mean-field dynamics
is overlaid as solid black lines. For � < 1, the atoms show
Rabi oscillations between the wells with stable fixed points at
F1 = (0,0) and F2 = (π,0). According to the average phase ϕ̄,
the oscillations are referred to as “zero-phase” or plasma oscil-
lations (ϕ̄ = 0) around F1 and “π -phase” oscillations (ϕ̄ = π )
around F2. The classical dynamics undergoes a bifurcation
at � = 1, separating the Rabi (0 < � < 1) and Josephson
(� > 1) regimes. The fixed point F2 becomes hyperbolically
unstable for � > 1, bifurcating into two self-trapping (ST)

fixed points at FST = (π,zST), where zST = ±
√

1 − 1/�2 [28].
In addition to π -phase ST with average phase π [Fig. 1(b)],
also “running phase” ST appears for � > 2 [see Fig. 1(a)].

The GPS for the condensate fraction ct (ϕ,z) in Fig. 1 shows
that lines of equal ct (ϕ,z) mimic the classical trajectories,
thus reflecting zero- and π -phase oscillations and fixed
points as well as ST. A drastic drop in the condensate
fraction is observed especially near the classical separatrices,
demonstrating deviations from a pure BEC and thus the failure
of a mean-field description. Notably, this loss of coherence
is not strongest at the unstable fixed point (see Fig. 1).
Furthermore, the quantum dynamics breaks the symmetry
S : (ϕ,z) → (ϕ,−z), as ct (S(ϕ,z)) �= ct (ϕ,z). In the classical
limit S is preserved: Hcl(S(ϕ,z)) = Hcl(ϕ,z). Of course, both
the classical and the quantum dynamics are symmetric with
respect to (ϕ,z) → (−ϕ,−z). which means relabeling wells
1 ↔ 2 without changing the initial state.

The correspondence of quantum and classical phase-space
structure is more than a qualitative coincidence. In Figs. 2(a)
and 2(b) we compare the quantum results (based upon the
BHH) for the minimum condensate fraction with the prediction
of the semiclassical LiDA. The good agreement reveals that
the loss of quantum coherence ct (ϕ,z) can be mostly attributed
to the classical spreading of Husimi function. Around a stable
fixed point neighboring trajectories remain close for all times,
such that there is no spreading.

But why does the quantum coherence remain reasonably
high near the unstable fixed point? We recall that Eq. (2) can
be mapped to a pendulum with variable length l(z) = √

1 − z2

and angular velocity z = ϕ̇. Within that picture, the unstable
fixed point F2 = (π,0) is reached when the pendulum is in its
upright position with no angular velocity. Close to F2, the
classical dynamics slows down asymptotically (“freezes”);
therefore spreading near the unstable fixed point is slow.
Moreover, the pendulum slows down when moving towards F2

and accelerates when moving away, which breaks S symmetry.
On the contrary, close to the separatrix (corresponding to the
energy of F2), the classical dynamics leads to delocalization
in phase space, which induces decoherence of a many-particle
state [22,31].

To study to what extent these features can be captured in
a time-independent framework, we analyze the overlap of
|ϕ,z〉 with an eigenstate |En〉 of the Bose-Hubbard dimer.
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FIG. 2. (Color online) The GPS approach reveals features of
quantum dynamical origin beyond the classical mean-field descrip-
tion and the semiclassical LiDA. (a), (b) Sections through the GPS
for � = 5 comparing quantum results (red/gray curves) with LiDA
(green/light gray curves). The mean-field (MF) description assumes
a pure BEC (blue/dark gray dashed line). (a) Shown is the condensate
fraction min[ct (0.85π,z)] in the time interval 0 < t < 0.5 s. The point
(0.85π,0) is near the hyperbolic fixed point. The LiDA reproduces
S-symmetry breaking, but deviates from the quantum results near the
hyperbolic fixed point and the separatrices (dashed vertical lines).
(b) For min[ct (0,z)] the LiDA deviates from the quantum dynamics
for |z| � 0.8, i.e., near the separatrices (which are located at z =
±0.8, dashed lines) (c), (d) Large ct in the vicinity of the classical fixed
points is reproduced qualitatively by a time-independent measure.
The color code shows A(ϕ,z) = maxn |〈ϕ,z|En〉| for (c) � = 5 and
(d) � = 1.5.

Figures 2(c) and 2(d) show the maximum overlap A(ϕ,z) =
maxn |〈ϕ,z|En〉| for the same parameters as in Figs. 1(a)
and 1(b). The overlap is high at the stable fixed points and
minimal along most parts of the separatrix (cf. Refs. [32–34]).
This reveals one possible mechanism to maintain long-time
coherence of a BEC: If the overlap approaches unity, the initial
state is almost stationary such that the condensate fraction
remains virtually constant. This is consistent with (but the
converse of) the results reported in Refs. [22,31], where it was
shown that delocalization in phase space induces decoherence
of a quantum state. Moreover, there is as well an eigenfunction
localized around the unstable fixed point F2, which explains the
surprisingly slow decoherence at this point. However, several
quantum features depicted in the GPS, such as the symmetry
breaking, are not reproduced by A(ϕ,z), indicating that these
are of dynamical origin.

Entanglement. A distinguishing feature of experiments with
two-mode BECs is that the quantum state can be manipulated
with astonishing precision. In particular, the atoms can be
strongly entangled, with applications in precision quantum
metrology [13,35,36]. For the important special case of EPR
entanglement, a simple criterion reads E > 0, where E =
|〈â†

1â2〉|2 − 〈â†
1â1â

†
2â2〉 [19,20]. The GPS picture for the EPR

entanglement is shown in Figs. 3(a) and 3(b). The measure
Et (ϕ,z) again closely mimics the classical phase-space trajec-
tories. At time t = 1 s, entanglement E > 0 is found only near
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FIG. 3. (Color online) Global phase-space structure of EPR
entanglement and spin squeezing for � = 5. (a) EPR entanglement
E > 0 is found at t = 1 s solely around the ST fixed points.
(b) The entanglement parameter Et (ϕ,z) and (c) the semiclassical
approximation Esc(ϕ,z) at t = 1 s. A movie in the Supplemental
Material [37] shows the complete time evolution of the GPS in
time steps of 0.025 s. (d) Time evolution of EPR entanglement and
(e) spin squeezing for an initially pure BEC |ϕ,z〉 = |0,0.2〉. The
semiclassical approximation Esc reproduces the overall behavior up
to an offset. A revival of entanglement is observed at t ≈ 3 s. (e)
Spin squeezing (ξ 2 < 1) is found to be in excellent agreement with
the EPR entanglement result (E > 0) at t ≈ 3 s. (f) The ST fixed
point (ϕ,z) = (π,zST) in the GPS corresponds to an entangled state
(red/gray line). Close to the ST fixed point for (ϕ,z) = (π,0.95), E
decays and revives after t ≈ 1 s (green/light gray line).

the classical ST fixed points. Movies showing the evolution
of Et (ϕ,z) for t ∈ [0,3] s can be found in the Supplemental
Material [37]. Strikingly, the GPS for entanglement unveils
the following behavior: If entanglement appears on time scales
that are long compared to the period of the plasma oscillations,
then entanglement is concentrated around the fixed points in
phase space.

Given the apparent similarity of the GPS for E and the
condensate fraction c, we ask, how is E related to c? By
approximating 〈â†

1â1â
†
2â2〉 ≈ 〈â†

1â1〉〈â†
2â2〉 we find a semiclas-

sical measure Esc = |〈â†
1â2〉|2 − 〈â†

1â1〉〈â†
2â2〉 = N2(c2 − c).

The GPS for Esc in Fig. 3(c) shows a remarkable qualitative
agreement with the exact quantum results for E. In Fig. 3(d)
we report the temporal evolution of E and Esc of the state
|0.2,0〉, which shows surprisingly good agreement except for
an offset. However, as Esc � 0 by definition, it does not serve
as an entanglement criterion.
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Spin squeezing indicates a form of entanglement which
is particularly important for quantum metrology [13,35].
A state is spin squeezed if the quantum uncertainty in a
Bloch sphere representation is smaller than that of an atomic
coherent state, i.e., a pure BEC. This representation is defined
via the operators Ĵx = 1

2 (â†
2â1 + â

†
1â2), Ĵy = i

2 (â†
2â1 − â

†
1â2),

and Ĵz = 1
2 (â†

1â1 − â
†
2â2), which form an angular momentum

algebra [22,29,30]. A quantum state is spectroscopically
squeezed, if [36]

ξ 2 := N
(
�Ĵn1

)2

〈
Ĵn2

〉2 + 〈
Ĵn3

〉2 < 1. (3)

Here, Ĵni
= niĴ is the projection of the total angular momen-

tum operator Ĵ onto ni , where n1,2,3 are mutually orthogonal
unit vectors and �Ĵn is the uncertainty of Ĵn. In Fig. 3(e) we
report the dynamical evolution of ξ 2 for an initially pure BEC
|0.2,0〉, in excellent agreement with E(t) [Fig. 3(d)], including
the entanglement revival at t ≈ 3 s.

Discussion. While chaotic classical dynamics typically
leads to a fast (exponential) decay of the coherence of a
many-particle state [38], little is known about the coherence of
quantum self-trapped states, especially in higher dimensions,
where the classical counterparts are (quasi)periodic orbits,
although some insight is provided by semiclassical approaches
beyond the mean-field limit [39–41]. Figure 2 reveals one
aspect of the coherence of self-trapped states. For z near ±1 the
many-particle state is close to a pure condensate, whereas the
condensate fraction drops drastically well before the separatrix
(dashed line) is reached. Hence, ST is a mechanism to preserve
coherence of many-particle states, which is further confirmed
by the results reported in Figs. 1(a) and 1(b). In contrast, in

the vicinity of the separatrix, the condensate fraction falls off
sharply.

We have analyzed the connection between quantum ob-
servables of the BEC dimer and the structure of the underlying
classical phase space, including fixed points, separatrices, and
ST. The question remains: How well do our results carry
over beyond the Bose-Hubbard model? Recent numerical
studies beyond the Bose-Hubbard model (including higher-
lying states in the individual wells) [42,43] show that ST is
only present as long as the system remains coherent. Hence,
there is evidence that our results do reflect a fundamental
relation between ST and coherence of Bosonic quantum
systems.

In larger optical lattices, the self-trapped states correspond
to “discrete breathers” or “intrinsic localized modes” [44–49].
These correspond to classical trajectories which are practically
embedded on a two-dimensional torus in the high dimensional
phase space and are thus (quasi)periodic in time [45,46,50,51].
Thus, discrete breathers involve localization in phase space.
Moreover, discrete breathers become attractive fixed points in
presence of dissipation [45,52,53], and occur in a variety of
physical and biochemical systems [44,46,47]. Just as delocal-
ization in classical phase space leads to decoherence [22,31],
we expect that discrete breathers are candidates to support
long-lived coherent and possibly entangled many-body states
even in complex dissipative systems, such as biomolecular
systems.
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Phys. 1, 57 (2005).

[11] G. B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle,
D. E. Pritchard, M. Vengalattore, and M. Prentiss, Phys. Rev.
Lett. 98, 030407 (2007).
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