
QCD at the LHC 
Joey Huston 
Michigan State University 

Lecture 3 



Why stop at NLO?  
  NNLO is even better, but also 

more complicated 
  Expect (even further) reduced 

scale dependence 
  And in some cases, extra 

cross section contributions, 
such as for Higgs production 

  Have only been carried out for 
a few processes to date 

  Would really like to have it for 
inclusive jet production, for 
example 
◆  currently > 8 year project 



Higgs: LO->NLO->NNLO 

Note that 
the NLO 
result is 
not covered 
by the LO 
error band 



All-orders approaches 
  Rather than systematically 

calculating to higher and 
higher orders in the 
perturbative expansion, can 
also use a number of all-
orders approaches 

  In resummation, dominant 
contributions from each order 
in perturbation theory are 
singled out and resummed by 
use of an evolution equation 

  Near boundaries of phase 
space, fixed order calculations 
break down due to large 
logarithmic corrections, and 
these contributions can 
become important. 
Resummation takes them into 
account. 

  Consider W production 
◆  one large logarithm 

associated with production 
of vector boson close to 
threshold  

◆  takes form of      
αs

nlog2n-1(1-z)/(1-z)    
where z=Q2/s-1 

◆  other large logarithm is 
associated with recoil of 
vector boson at very small 
pT 

◆  logarithms appear as       
αs

nlog2n-1(Q2/pT
2) 

In both cases there is a restriction of  
phase space for gluon emission and  
thus the logs become large and are 
crucial for an accurate prediction 



All-orders approaches 
  These are the leading logs (LL) 

(highest power of log for each  
power of αs) 

  These are the next-to-leading 
logs (NLL) (next highest power of 
log…) 
◆  …and so on 

  We know the structure of the 
LL’s, NLL’s, NNLL’s 

  But we don’t know the cij factors 
until we do the finite order 
calculation 

  LO gives us the LL 
  NLO gives us the NLL 

◆  …and so on 
  The accuracy of the resummation 

improves with the addition for 
further higher order information  

  A resummation program like 
ResBos has NNLL accuracy 

•  Remember the expression we 
had after adding gluons on to the 
W + 1 jet process 

•  each gluon added yields an 
additional factor of αs and two 
new logarithms 

•  qT resummation is resumming the 
effects of logs of Q2/pT

2 

•  note that qT resummation does 
not change the size of the cross 
section; it just modifies the pT 
distribution of the W 



All-orders approaches 
  Expression for W boson 

transverse momentum in 
which leading logarithms have 
been resummed to all orders 
is given by 

Note that distribution 
goes to zero as pT->0;  
no divergence 

•  Remember the expression we 
had after adding gluons on to the 
W + 1 jet process 

•  each gluon added yields an 
additional factor of αs and two 
new logarithms 

•  qT resummation is resumming the 
effects of logs of Q2/pT

2 

•  note that qT resummation does 
not change the size of the cross 
section; it just modifies the pT 
distribution of the W 

You could get the same predictions by 
using PDFs in which the transverse 
momentum (kT) has not been integrated out 



Parton showers 
  A different, but related 

approach for re-summing 
logarithms, is provided by 
parton showering 

  By the use of the parton 
showering process, a few 
partons produced in a hard 
interaction at a high-energy 
scale can be related to 
partons at an energy scale 
close to ΛQCD.  

  At this lower energy scale, a 
universal non-perturbative 
model can then be used to 
provide the transition to 
hadrons 

  Parton showering allows for 
evolution, using DGLAP 
formalism, of parton 
fragmentation function 

  Successive values of an 
evolution variable t, a 
momentum fraction z and an 
azimuthal angle φ are 
generated, along with the 
flavors of the partons emitted 
during the parton shower 

…plus 
similar for 
initial state 



Parton shower evolution 

  On average, emitted gluons 
have decreasing angles with 
respect to parent parton 
directions 
◆  angular ordering, an 

aspect of color coherence 
  The evolution variable t can 

be the virtuality of the parent 
parton [old Pythia and old 
Sherpa], E2(1-cosθ) where E is 
the energy of the parent 
parton and and θ is the 
opening angle between the 
two partons [Herwig], or the 
square of the transverse 
momentum between the two 
partons [new Pythia] 



Sudakov form factors 
  Sudakov form factors form the basis 

for both resummation and parton 
showering 

  We can write an expression for the 
Sudakov form factor of an initial state 
parton in the form below, where t is 
the hard scale, to is the cutoff scale 
and P(z) is the splitting function 

  Similar form for the final state but 
without the pdf weighting 

  Sudakov form factor resums all 
effects of soft and collinear gluon 
emission (so again the double logs), 
but does not include non-singular 
regions that are due to large energy, 
wide angle gluon emission 

  Gives the probability not to radiate a 
gluon greater than some energy 

  We can draw explicit (approximate) 
curves for the Sudakov form factors 



Sudakov form factors 
  The Sudakov form factor 

decreases (the probability of 
radiating increases) as the pT 
of the radiated gluon 
decreases, as the hardness of 
the interaction increases, or 
as the x value of the incoming 
parton decreases (more 
phase space for gluon 
radiation) 



Sudakov form factors: quarks and gluons 

so quarks don’t radiate 
as much; it’s the CF  
compared to CA 



Let’s take a specific example 
  Consider gg fusion 

production of a 120 
GeV Higgs (so use 
Q=100 GeV) at 7 TeV 

  The x values of each 
of the incoming gluons 
are in the range from 
0.01 to 0.03 

  For an ISR jet (gluon) 
with a pT of 20 GeV/c 
or greater, the 
Sudakov form factor is 
on the order of 0.7, i.e. 
there is a 30% chance 
of radiating such a 
gluon 

  Since there are two 
incoming gluons, 
chance of having a jet 
> 20 GeV/c is ~0.5  



Note 
  We can only observe emissions 

above a certain resolution scale 
  Below this resolution scale, 

singularities cancel, leaving a 
finite remnant 

  (some of) the virtual corrections 
encountered in a full NLO 
calculation are included by the 
use of Sudakov suppression 
between vertices 

  So a parton shower Monte Carlo 
is not purely a fixed order 
calculation, but has a higher order 
component as well 

  This is a statement that you’ll 
often hear 



Merging ME and PS approaches 
  Parton showers provide an excellent 

description in regions which are 
dominated by soft and collinear gluon 
emission 

  Matrix element calculations provide a 
good description of processes where 
the partons are energetic and widely 
separated and also take into account 
interference effects between 
amplitudes 
◆  but do not take into account 

interference effects in soft and 
collinear emissions which cannot 
be resolved, and thus lead to 
Sudakov suppression of such 
emissions 

  Hey, I know, let’s put them 
together, but we have to be 
careful not to double-count 
◆  parton shower producing same 

event configuration already 
described by matrix element 

◆  Les Houches Accord (which I 
named) allows the ME program 
to talk to the PS program 



Merging ME and PS approaches 
  A number of techniques to combine, 

with most popular/correct being 
CKKW 

◆  matrix element description used to 
describe parton branchings at large 
angle and/or energy 

◆  parton shower description is used for 
smaller angle, lower energy emissions 

  Division into two regions of phase 
space provided by a resolution 
parameter dini 

  Argument of αs at all of the vertices is 
taken to be equal to the resolution 
parameter di (showering variable) at 
which the branching has taken place 

  Sudakov form factors are inserted on 
all of the quark and gluon lines to 
represent the lack of any emissions 
with a scale larger than dini between 
vertices 

◆  parton showering is used to produce  
additional emissions at scales less 
than di 

  For typical matching scale, ~10% of 
the n-jet cross section is produced by 
parton showering from n-1 parton ME 

see Alpgen, Madgraph, Sherpa,… 
MLM approach (which I also named) is an 
approximation to the full CKKW  
procedure 



Best of all worlds: from CHS 
NLO + parton 
shower MC 

Powheg is a program/technique that results in no negative weight 
events (or a few); many new processes have been added 

But it’s still very time(theorist)-consuming to add a new process, and 
most of the processes so far are 2->1, 2->2 

with MC@NLO, 
a small fraction 
(~10%) of the 
events have  
a negative  
weight (-1) 

trick is to find out 
what parton  
shower does at NLO,  
so as not to double-count 



t-tbar in MC@NLO 
  At low pT for the t-tbar system, the cross section is described (correctly) by 

the parton shower, which resums the large logs near pT~0 
  At high pT, the cross section is described (correctly) by the NLO matrix 

element 



Hadrons and PDFs 
  The proton is a dynamical object; the structure observed depends on the 

time-scale (Q2) of the observation 
  But we know how to calculate this variation (DGLAP) 
  We just have to determine the starting points from fits to data 

the higher the value of Q2, 
the more detail we examine 



Parton distribution functions and global fits 

  Calculation of production 
cross sections at the LHC 
relies upon knowledge of pdf’s 
in the relevant kinematic 
region 

  Pdf’s are determined by global 
analyses of data from DIS, DY 
and jet production 

  Three major groups that 
provide semi-regular updates 
to parton distributions when 
new data/theory becomes 
available 
◆  MRS->MRST98->MRST99          

->MRST2001->MRST2002               
->MRST2003->MRST2004    
->MSTW2008 

◆  CTEQ->CTEQ5->CTEQ6            
->CTEQ6.1->CTEQ6.5           
->CTEQ6.6->CT09->CT10 

◆  NNPDF->NNPDF2.0 

gluon dominates 
at low x 



Global fits 
  With the DGLAP equations, 

we know how to evolve pdf’s 
from a starting scale Q0 to any 
higher scale 
◆  remember the divergences 

from the initial state that  we 
absorbed into the pdfs 

  …but we can’t calculate what 
the pdf’s are ab initio 
◆  one of the goals of lattice 

QCD 
  We have to determine them 

from a global fit to data 
◆  factorization theorem tells 

us that pdf’s determined 
for one process are 
applicable to another 

  So what do we need 
◆  a value of Qo (1.3 GeV for 

CTEQ, 1 GeV for MSTW) 
lower than the data used in 
the fit (or any prediction) 

◆  a parametrization for the pdf’s 
◆  a scheme for the pdf’s 
◆  hard-scattering calculations at 

the order being considered in 
the fit 

◆  pdf evolution at the order 
being considered in the fit 

◆  a world average value for αs 

◆  a lot of data 
▲  with appropriate 

kinematic cuts 
◆  a treatment of the errors for 

the experimental data 
◆  MINUIT 



Back to global fits 
  Parametrization: initial form 

◆  f(x)~xα(1-x)β


◆  estimate β from quark 
counting rules 

▲  β=2ns-1 with ns being the 
minimum number of 
spectator quarks 

▲  so for valence quarks in a  
proton (qqq), ns=2, β=3 

▲  for gluon in a proton (qqqg), 
ns=3, β=5 

▲  for anti-quarks in a proton 
(qqqqqbar), ns=4, β=7 

◆  estimate α from Regge 
arguments 

▲  gluons and anti-quarks have 
α~-1 while valence quarks 
have α~=1/2 

◆  but at what Q value are these  
arguments valid?  

  What do we know? 
1.  we know that the sum of  the 

momentum of all partons in the 
proton is 1 (but not for modified 
LO fits) 

2.  we know the sum of valence 
quarks is 3 
◆  and 2 of them are up quarks and 

1 of them is a down quark 
◆  we know that the net number of 

anti-quarks is 0, but what about 
dbar=ubar 

3.  we know that the net number of 
strange quarks (charm quarks/
bottom quarks) in the proton is 0 
◆  but we don’t know if s=sbar 

locally 
This already puts a lot of restrictions 

on the pdf’s   



Parametrizations 
  That simple parametrization 

worked for early fits, where 
the data was not very precise 
(nor very abundant), but it 
does not work for modern 
global fits, where a more 
flexible form is needed 
◆  the simple ansatz can be 

dangerous in that it can 
(falsely) tie together low x 
and high x behavior (other 
than by momentum sum 
rule) 

  In order to more finely tune 
parametrization,usually 
multiply simple form by a 
polynomial in x or some more 
complicated function 

  CTEQ uses for the quark and 
gluon distributions (CTEQ6.6) 

  For the ratio of dbar/ubar 

  How do we know this is flexible 
enough?  
◆  data is well-described (χ2/dof 

~1 for a NLO fit) 
◆  adding more parameters just 

results in those  parameters 
being unconstrained 

◆  but there is some remaining 
bias 

◆  note that with this form, the 
pdf’s are positive definite 
(they don’t have to be) 

� 

f (x) = x(a1 −1)(1− x)a2 ea3x[1+ ea4 x]a5

� 

d 
u 

= ea1 x(a2 −1)(1− x)a3 + (1+ a4x)(1− x)a5



Orders and Schemes 
  Fits are available at  

◆  LO 
▲  CTEQ6L or CTEQ6L1 

–  1 loop or 2 loop αs 

▲  in common use with 
parton shower Monte 
Carlos 

▲  poor fit to data due to 
deficiencies of LO ME’s 

◆  LO* 
▲  better for parton shower 

Monte Carlos  
◆  NLO 

▲  CTEQ6.1,CTEQ6.6,CT09 
▲  precision level: error pdf’s 

defined at this order 
◆  NNLO 

▲  more accurate but not all 
processes known 

  At NLO and NNLO, one needs to 
specify a scheme or convention for 
subtracting the divergent terms 

  Basically the scheme specifies how 
much of the finite corrections to 
subtract along with the divergent 
pieces 
◆  most widely used is the modified 

minimal subtraction scheme (or 
MSbar) 

◆  used with dimensional 
regularization: subtract the pole 
terms and accompanying log 4π 
and Euler constant terms  

◆  also may find pdf’s in DIS scheme, 
where full order αs correction for F2 
in DIS absorbed into quark pdf’s 

� 

σ real+virt =
αs

2π
CF

µ 2

Q2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
ε

cΓ
2π 2

3
− 6

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ δ 1− z( ) − 2

ε
Pqq (z) − 2 1− z( ) + 4 1+ z2( ) ln 1− z( )

1− z
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

+

− 21+ z2

1− z
ln z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 



Scales and Masses 
  Processes used in global fits 

are characterized by a single 
large scale 
◆  DIS-Q2 

◆  lepton pair production-M2 

◆  vector boson production-MV
2 

◆  jet production-pT
jet 

  By choosing the factorization 
and renormalization scales to 
be of the same order as the 
characteristic scale 
◆  can avoid some large 

logarithms in the hard 
scattering cross section 

◆  some large logarithms in 
running coupling and pdf’s 
are resummed 

  Different treatment of 
quark masses and 
thresholds 
◆  fixed flavor number 

scheme (FFNS) 
◆  variable flavor number 

scheme (VFNS) 
▲  zero mass variable flavor 

number scheme (ZM-
VFNS) 

▲  general mass variable 
flavor number scheme 
(GM-VFNS) 



Data sets used in global fits (CTEQ6.6) 

1.  BCDMS F2
proton (339 data points) 

2.  BCDMS F2
deuteron (251 data points) 

3.  NMC F2 (201 data points) 
4.  NMC F2

d/F2
p (123 data points) 

5.  F2(CDHSW) (85 data points) 
6.  F3(CDHSW) (96 data points) 
7.  CCFR F2 (69 data points) 
8.  CCFR F3 (86 data points) 
9.  H1 NC e-p (126 data points; 1998-98 reduced cross section) 
10.  H1 NC e-p (13 data points; high y analysis)  
11.  H1 NC e+p (115 data points; reduced cross section 1996-97) 
12.  H1 NC e+p (147 data points; reduced cross section; 1999-00) 
13.  ZEUS NC e-p (92 data points; 1998-99) 
14.  ZEUS NC e+p (227 data points; 1996-97) 
15.  ZEUS NC e+p (90 data points; 1999-00) 
16.  H1 F2

c e+p (8 data points;1996-97) 
17.  H1 Rσc for ccbar e+p (10 data points;1996-97) 
18.  H1 Rσ

b for bbbar e+p (10 data points; 1999-00) 
19.  ZEUS F2

c e+p (18 data points; 1996/97) 
20.  ZEUS F2

C e+p (27 data points; 1998/00) 
21.  H1 CC  e-p (28 data points; 1998-99) 
22.  H1 CC e+p (25 data points; 1994-97) 
23.  H1 CC e+p (28 data points; 1999-00) 
24.  ZEUS CC e-p (26 data points; 1998-99) 
25.  ZEUS CC e+p (29 data points; 1994-97) 
26.  ZEUS CC e+p (30 data points; 1999-00) 
27.  NuTev neutrino  dimuon cross section (38 data points) 
28.  NuTev anti-neutrino dimuon cross section (33 data points) 
29.  CCFR neutrino dimuon cross section (40 data points) 
30.  CCFR anti-neutrino cross section (38 data points)  
31.  E605 dimuon (199 data points) 
32.  E866 dimuon (13 data points) 
33.  Lepton asymmetry from CDF (11 data points) 
34.  CDF Run 1B jet cross section (33 data points) 
35.  D0 Run 1B jet cross section (90 data points) 

  2794 data points from DIS, DY, 
jet production 

  All with (correlated) systematic 
errors that must be treated 
correctly in the fit 

  Note that DIS is the 800 pound 
gorilla of the global fit with many 
data points and small statistical 
and systematic errors 
◆  and fixed target DIS data still 

have a significant impact on the 
global fitting, even with an 
abundance of HERA data 

  To avoid non-perturbative effects, 
kinematic cuts on placed on the 
DIS data 
◆  Q2>5 GeV2 

◆  W2(=m2+Q2(1-x)/x)>12.25 GeV2 



Influence of data in global fit 

  Charged lepton DIS 

◆  each flavor weighted by its 
squared charge 

◆  quarks and anti-quarks enter 
together 

◆  gluon doesn’t enter, in lowest 
order, but does enter into the 
structure functions at NLO 

◆  also enters through mixing in 
evolution equations so gluon 
contributes to the change of the 
structure functions as Q2 
increases 

◆  at low values of x 

◆  Q2 dependence at small x is 
driven directly by gluon pdf 

  At low x, structure functions increase 
with Q2; at high x decrease  

� 

F2(x,Q
2) = x ei

2[qi(x,Q
2) + q i(x,Q

2)]
i
∑

� 

Q2 dF2
dQ2 ≈

αs

2π
ei
2 dy

yx

1

∫ Pqg (y)G(
x
y
,Q2)∑



Influence of data in global fit 

 Neutrino DIS 

◆  additional  (parity-violating) 
structure function allows 
the separation of quarks 
and antiquarks but not a 
complete flavor separation 

◆  caveat: neutrino 
observables usually 
obtained using nuclear 
targets so there is added 
question of nuclear 
corrections 

� 

F2(x,Q
2) = x [qi(x,Q

2) + q i(x,Q
2)]

i
∑

� 

xF3(x,Q
2) = x [qi(x,Q

2) − q i(x,Q
2)]

i
∑



Some observations from DIS 

 DIS data provide strong constraints on 
the u and d distributions over the full 
range of x covered by the data 

 The combination 4*ubar + dbar is well-
constrained at small x 

 The gluon is constrained at low values of 
x by the slope of the Q2 dependence of F2 
◆  momentum sum rule connects low x and high 

x behavior, but loosely 



Inclusive jets and global fits 
  We don’t have many handles on the 

high x gluon distribution in the global 
pdf fits 

  Best handle is provided by the 
inclusive jet cross section from the 
Tevatron 

 At high ET (high x), gq is subdominant, but 
 there’s a great deal of freedom/uncertainty 
 on the high x gluon distribution 

• about 42% of the proton’s momentum is  
carried by gluons, and most of that  
momentum is at low x 

 The inclusion of the CDF/D0 inclusive jet cross 
 sections from Run 1 boosted the high x gluon 
 distribution and thus the predictions for the 
 high ET jet cross sections 
• The high x gluon has decreased due to influence  
of the Run 2 jet data 



Global fitting: best fit 
  Using our 2794 data points, we do  

our global fit by performing a χ2 
minimization 
◆  where Di are the data points and 

Ti are the theoretical predictions; 
we allow for a normalization shift 
fN for each experimental data set 

▲  but we provide a quadratic 
penalty for any normalization 
shift 

◆  where there are k systematic 
errors β for each data point in a 
particular data set 

▲  and where we allow the data 
points to be shifted by the 
systematic errors with the 
shifts given by the sj 
parameters 

▲  but we give a quadratic 
penalty for non-zero values 
of the shifts sj 

◆  where σi is the statistical error for 
data point i   

  For each data set, we calculate 

  For a set of theory parameters it  is 
possible to analytically solve for the 
shifts sj,and therefore, continually 
update them as the fit proceeds 

  To make matters more complicated, 
we may give additional weights to 
some experiments due to the utility of 
the data in those experiments (i.e. 
NA-51), so we adjust the χ2 to be 

  where wk is a weight given to the 
experimental data and wN,k is a weight 
given to the normalization   

� 

χ 2 =
fNDi − β ijs j

j=1

k

∑
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ − Ti
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

σ i
2 + s j

2

j=1

k

∑
i
∑

� 

χ 2 = wkχk
2 + wN ,k

1− fN
σ N

norm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k
∑

k
∑
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Minimization and errors 

  Free parameters in the fit are 
parameters for quark and 
gluon distributions 

  Too many parameters to allow 
all to remain free 
◆  some are fixed at 

reasonable values or 
determined by sum rules 

  20 free parameters for 
CTEQ6.1, 22 for CTEQ6.6,24 
for CT09, 26 for CT10 

  Result is a global χ2/dof on the 
order of 1 
◆  for a NLO fit 
◆  worse for a LO fit, since 

the LO pdf’s can not make 
up for the deficiencies in 
the LO matrix elements 

� 

f (x) = x(a1 −1)(1− x)a2 ea3x[1+ ea4 x]a5



PDF Errors: old way 
  Make plots of lots of pdf’s (no 

matter how old) and take spread 
as a measure of the error 

  Can either underestimate or 
overestimate the error 

  Review sources of uncertainty on 
pdf’s 
◆  data set choice 
◆  kinematic cuts 
◆  parametrization choices 
◆  treatment of heavy quarks 
◆  order of perturbation theory 
◆  errors on the data 

  There are now more 
sophisticated techniques to deal 
with at least the errors due to the 
experimental data uncertainties 



PDF Errors: new way 
  So we have optimal values 

(minimum χ2) for the d=20 (22 
for CTEQ6.6, 26 for CT10) 
free pdf parameters in the 
global fit 
◆  {aµ},µ=1,…d 

  Varying any of the free 
parameters from its optimal 
value will increase the χ2 

  It’s much easier to work in an 
orthonormal eigenvector 
space determined by 
diagonalizing the Hessian 
matrix, determined in the 
fitting process  

� 

Huv =
1
2

∂χ 2

∂aµ∂aν

To estimate the error on an observable X(a), 
due to the experimental uncertainties of the 
data used in the fit, we use the Master Formula  

� 

ΔX( )2 = Δχ 2 ∂X
∂aµ

H −1( )
µ,ν
∑

µν

∂X
∂aν



PDF Errors: new way 
  Recap: 20 (22,26) 

eigenvectors with the 
eigenvalues having a range of 
>1E6 

  Largest eigenvalues (low 
number eigenvectors) 
correspond to best 
determined directions; 
smallest eigenvalues (high 
number eigenvectors) 
correspond to worst 
determined directions 

  Easiest to use Master Formula 
in eigenvector basis 

To estimate the error on an observable X(a), 
from the experimental errors, we use the 
Master Formula 

� 

ΔX( )2 = Δχ 2 ∂X
∂aµ

H −1( )
µ,ν
∑

µν

∂X
∂aν

where Xi
+ and Xi

- are the values for the  
observable X when traversing a distance  
corresponding to the tolerance T(=sqrt(Δχ2))  
along the ith direction 



PDF Errors: new way 
  What is the tolerance T?  
  This is one of the most controversial 

questions in global pdf fitting? 
  We have 2794 data points in the 

CTEQ6.6 data set (on order of 2000 
for CTEQ6.1) 

  Technically speaking, a 1-sigma error 
corresponds to a tolerance 
T(=sqrt(Δχ2))=1 

  This results in far too small an 
uncertainty from the global fit 
◆  with data from a variety of 

processes from a variety of 
experiments from a variety of 
accelerators 

  For CTEQ6.1/6.6, we chose a Δχ2 of 
100 to correspond to a 90% CL limit 
◆  with an appropriate scaling for 

the larger data set for CTEQ6.6 
  In the past, MSTW has chosen a Δχ2 

of 50 for the same limit so CTEQ 
errors were larger than MSTW errors  



Parametrization bias 

 It’s been shown by Jon Pumplin (arXiv:
0909.5176) that a large part of the need for a 
large value of Δχ2 is because of remaining 
parameterization biases present even with a 
very flexible parameterization 

 Comparisons with NNPDF (which has less bias) 
even more important 



What do the eigenvectors mean? 

  Each eigenvector corresponds 
to a linear combination of all 
20 (22,24) pdf parameters, so 
in general each eigenvector 
doesn’t mean anything? 

  However, with 20 (22,24,26) 
dimensions, often 
eigenvectors will have a large 
component from a particular 
direction 

  Take eigenvector 1 (for 
CTEQ6.1); error pdf’s 1 and 2 

  It has a large component 
sensitive to the small x 
behavior of the u quark 
valence distribution 

  Not surprising since this is the 
best determined direction 



What do the eigenvectors mean? 

  Take eigenvector 8 (for 
CTEQ6.1); error pdf’s 15 and 
16 

  No particular direction stands 
out 



What do the eigenvectors mean? 

  Take eigenvector 15 (for 
CTEQ6.1); error pdf’s 29 and 30 

  Probes high x gluon distribution 
creates largest uncertainty for high pT 
jet cross sections at both the Tevatron  
and LHC 



Aside: PDF re-weighting 
  Any physical cross section at a 

hadron-hadron collider depends on 
the product of the two pdf’s for the 
partons participating in the collision 
convoluted with the hard partonic 
cross section 

  Nominally, if one wants to evaluate 
the pdf uncertainty for a cross section, 
this convolution should be carried out 
41 times (for CTEQ6.1); once for the 
central pdf and 40 times for the error 
pdf’s 

  However, the partonic cross section is 
not changing, only the product of the 
pdf’s 

  So one can evaluate the full cross 
section for one pdf (the central pdf) 
and then evaluate the pdf uncertainty 
for a particular cross section by taking 
the ratio of the product of the pdf’s 
(the pdf luminosity) for each of the 
error pdf’s compared to the central 
pdf’s   

This works exactly for fixed order  
calculations and works well enough 
(see later) for parton shower Monte  
carlo calculations. 

Most experiments now have code to easily 
do this… 
and many programs will do it for you (MCFM)  

� 

f ia /A (xa,Q
2) f ib /B (xb ,Q

2)
f 0a /A (xa,Q

2) f 0b /B (xb ,Q
2)

fi is the error pdf and f0 the central pdf 



A very useful tool 
Allows easy calculation and comparison of pdf’s 



Let’s try it out 

Up and down quarks dominate at high x, gluon at low x. 
As Q2 increases, note the growth of the gluon distribution, and to a lesser extent 
the sea quark distributions.  



Uncertainties 

uncertainties  
get large at 
high x 

uncertainty for 
gluon larger 
than that for 
quarks 

pdf’s from one 
group don’t 
necessarily 
fall into 
uncertainty  
band of another 
…would be nice 
if they did 



Uncertainties and parametrizations 

  Beware of extrapolations to x values smaller than data available in 
the fits, especially at low Q2 

  Parameterization may artificially reduce the apparent size of the 
uncertainties 

  Compare for example uncertainty for the gluon at low x from the 
recent neural net global fit to  global fits using a parametrization 

Q2=2 GeV2 

note gluon can range 
negative at low x 



Correlations 
  Consider a cross section X(a) 
  ith component of gradient of X is 

  Now take 2 cross sections X and Y  
◆  or one or both can be pdf’s 

  Consider the projection of gradients of 
X and Y onto a circle of radius 1 in the 
plane of the gradients in the parton 
parameter space 

  The circle maps onto an ellipse in the 
XY plane  

  The angle φ between the gradients of 
X and Y is given by 

  The ellipse itself is given by 

• If two cross sections/pdf’s are very 
correlated, then cosφ~1 
• …uncorrelated, then cosφ~0 
• …anti-correlated, then cosφ~-1 



Correlations 
  Consider a cross section X(a) 
  ith component of gradient of X is 

  Now take 2 cross sections X and Y  
◆  or one or both can be pdf’s 

  Consider the projection of gradients of 
X and Y onto a circle of radius 1 in the 
plane of the gradients in the parton 
parameter space 

  The circle maps onto an ellipse in the 
XY plane  

  The angle φ between the gradients of 
X and Y is given by 

  The ellipse itself is given by 

• If two cross sections/pdf’s are very 
correlated, then cosφ~1 
• …uncorrelated, then cosφ~0 
• …anti-correlated, then cosφ~-1 



Correlations between pdf’s 

Pavel Nadolsky 

Homework assignment: which pdf’s and why? 





αs uncertainties 
  Another uncertainty is that due to the variation in the value of αs 

  MSTW has recently tried to better quantify the uncertainty due to 
the variation of αs, by performing global fits over a finer range, 
taking into account  correlations between the values of αs and the 
PDF errors 

  Procedure is a bit complex   

  In many cases, no simple scaling between 68% and 90% CL 



αs(mZ) and uncertainty: a complication 
  Different values of αs and of 

its uncertainty are used 
  CTEQ and NNPDF use the 

world average (actually 0.118 
for CTEQ and 0.119 for 
NNPDF), where MSTW2008 
uses 0.120, as determined 
from their best fit 

  Latest world average (from 
Siggi Bethke->PDG) 
◆  αs (mZ) = 0.1184 +/- 

0.0007 
  What does the error 

represent?  
◆  Siggi said that only one of 

the results included in his 
world average was outside 
this range 

◆  suppose we say that 
+/-0.002 is a reasonable 
estimate of the uncertainty 

G. Watt Mar 26 PDF4LHC meeting 



αs(mZ) and uncertainty 
  Could it be possible for all global PDF groups to use the 

world average value of αs in their fits, plus a prescribed 
90% range for its uncertainty (if not 0.002, then perhaps 
another acceptable value)?  

  After that, world peace 
  For the moment, we try determining uncertainties from 

αs over a range of +/- 0.002 from the central value for 
each PDF group; we also calculate cross sections with 
a common value of αs=0.119 for comparison purposes 



My recommendation to PDF4LHC/Higgs working group 

  Cross sections should be calculated with MSTW2008, CTEQ6.6 and 
NNPDF 

  Upper range of prediction should be given by upper limit of error prediction 
using prescription for combining αs uncertainty with error PDFs 
◆  in quadrature for CTEQ6.6 and NNPDF 
◆  using eigenvector sets for different values of αs for MSTW2008 
◆  (my suggestion)  as standard, use 90%CL limits 
◆  note that this effectively creates a larger αs uncertainty range 

  Ditto for lower limit 
  So for a Higgs mass of 120 GeV at 14 TeV,it turns out that the gg cross 

section lower limit would be defined by the CTEQ6.6 lower limit (PDF+αs 
error) and the upper limit defined by the MSTW2008 upper limit (PDF+αs 
error) 
◆  with the difference between the central values primarily due to αs 

◆  I’ll come back to using the Higgs as an example in the last lecture 
  To fully understand similarities/differences of cross sections/uncertainties 

conduct a benchmarking exercise, to which all groups are invited to 
participate 

  In lecture #5 



NNLO addendum 
  NNLO is important for some cross sections (as we saw 

for gg->Higgs) 
  Not all processes used for global fits are available at 

NNLO (inclusive jet production for example) 
  Only global fit at NNLO currently is MSTW 
  Current paradigm is to apply NLO uncertainty band to 

NNLO predictions from MSTW 
◆  basically a factor of 2 increase over MSTW errors by 

themselves 



For CTEQ: αs series 
  Take CTEQ6.6 as base, and vary 

αs(mZ) +/-0.002 (in 0.001 steps) 
around central value of 0.118 

  Blue is the PDF uncertainty from 
eigenvectors; green is the uncertainty 
in the gluon from varying αs 

  We have found that change in gluon 
due to αs error (+/-0.002 range) is 
typically smaller than PDF uncertainty 
with a small correlation with PDF 
uncertainty over this range 
◆  as shown for gluon distribution on 

right 
  PDF error and αs error can be 

added in  quadrature 
◆  expected because of small 

correlation 
◆  in recent CTEQ paper, it has 

been proven this is correct 
regardless of correlation, within 
quadratic approximation to χ2 
distribution 

So the CTEQ prescription for calculating  
the total uncertainty (PDF+αs) involves  
the use of the 45 CTEQ6.6 PDFs and  
the two extreme αs error PDF’s  
(0.116 and 0.120) 

arXiv:1004.4624; PDFs available from 
LHAPDF 

This also means that one can naively scale 
between 68% and 90% CL. 



New from CTEQ-TEA (Tung et al)->CT10 PDFs  

  Combined HERA-1 data  
  CDF and D0 Run-2 inclusive 

jet data 
  Tevatron Run 2 Z rapidity from 

CDF and D0 
  W electron asymmetry from 

CDFII and D0II (D0 muon 
asymmetry) (in CT10W) 

  Other data sets same as 
CTEQ6.6 

  All data weights set to unity 
(except for CT10W) 

  Tension observed between 
D0 II electron asymmetry data 
and NMC/BCDMS data 

  Tension between D0 II 
electron and muon asymmetry 
data 

  Experimental normalizations are 
treated on same footing as other 
correlated systematic errors 

  More flexible parametrizations: 26 
free parameters (26 eigenvector 
directions) 

  Dynamic tolerance: look for 90% 
CL along each eigenvector 
direction 
◆  within the limits of the 

quadratic approximation, can 
scale between 68% and 90% 
CL with naïve scaling factor 

  Two series of PDF’s are 
introduced 
◆  CT10: no Run 2 W 

asymmetry 
◆  CT10W: Run 2 W asymmetry 

with an extra weight 



CT10/CT10W predictions 

No big changes with respect to CTEQ6.6 



LO PDFs 
  Workhorse for many 

predictions at the LHC are 
still LO PDFs 

  Many LO predictions at 
the LHC differ significantly 
from NLO predictions, not 
because of the matrix 
elements but because of 
the PDFs 

  W+ rapidity distribution is 
the poster child 
◆  the forward-backward 

peaking obtained at LO 
is an artifact 

◆  large x u quark 
distribution is higher at 
LO than NLO due to 
deficiencies in the LO 
matrix elements for DIS 



Modified LO PDFs 
  Try to make up for the 

deficiencies of LO PDFs by  
◆  relaxing the momentum 

sum rule 
◆  including NLO pseudo-

data in the LO fit to guide 
the modified LO 
distributions 

  Results tend to be in better 
agreement with NLO 
predictions, both in magnitude 
and in shape 

  Some might say that the PDFs 
then have no predictive 
power, but this is true for any 
LO PDFs 

  See arXiv:0910.4183; PDFs available 
from LHAPDF 

  See arXiv:0711.2473 for 
MRST2007lomod PDFs 



gg->Higgs 

 Higgs K-factor is too 
large to absorb into 
PDFs (nor would you 
want to) 

 Shape is ok with LO 
PDF’s, improves a bit 
with the modified LO 
PDFs 


