
QCD at the LHC 
Joey Huston 
Michigan State University 

Lecture 2 



NLO calculations 
  NLO calculation requires 

consideration of all diagrams 
that have an extra factor of αs 
◆  real radiation, as we have 

just discussed 
◆  virtual diagrams (with 

loops) 
  For virtual diagram, have to 

integrate over loop momentum  
◆  but result contains IR 

singularities (soft and 
collinear), just as found for 
tree-level diagrams 

O(αs) virtual corrections in NLO  
cross section arise from 
interference between tree level and 
one-loop virtual amplitudes 

vertex  
correction 

self-energy 
corrections 

If we add the real+virtual contributions, we find that the singularities will cancel, 
for inclusive cross sections. We have to be more clever for differential distributions.   



Advantages of NLO 
  Less sensitivity to unphysical 

input scales, i.e. renormalization 
and factorization scales 

  First level of prediction where 
normalization (and sometimes 
shape) can be taken seriously 

  More physics 
◆  parton merging  gives structure in 

jets 
◆  initial state radiation 
◆  more species of incoming partons 

  Suppose I have a cross section σ 
calculated to NLO (O(αs

n)) 
  Any remaining scale dependence 

is of one order higher (O(αs
n+1)) 

◆  in fact, we know the scale 
dependent part of the O(αs

n+1) 
cross section before we perform 
the complete calculation, since 
the scale-dependent terms are 
explicit at the previous order  

LO has 
monotonic 
scale 
dependence 

non- 
monotonic 
at NLO 

Inclusive jet prod 
 at NNLO 

we know A and B, not C 



Predictions tend to be more reliable at higher ET 

For fixed fixed ET 
slices, note 
the parabolic 
type shape for the  
curve 



Back to  W production to NLO 

  In 4-dimensions, the contribution 
of the real diagrams can be 
written (ignoring diagrams with 
incoming gluons for simplicity) 

◆  where 

  Note that the real diagrams 
contain collinear singularities,     
u->0, t->0, and soft singularities, 
z->1 
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and ˆ s + ˆ t + ˆ u = Q2

…thanks to Keith Ellis for the  
next few slides 

and don’t sweat the details; I just 
want you to see in general terms 
how a NLO calculation is 
carried out 

^ ^ 



Aside: dimensional regularization 
  Suppose we have an integral of the form, typical of the integrals in a NLO 

calculation 

  We get infinity if we integrate this in 4  dimensions, so go to 4-2ε 
dimensions 

  Using 
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Dimensional regularization, continued 
  Find 

◆  singular bits, plus finite bits as ε->0, plus log singularity as m->0 

  Define MS scheme: subtract (absorb) 1/ε pole, γE, and ln(4π) bits 
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Now do the dimension trick for the real part  

  Problem: if I work in 4 
dimensions, I get divergences 

  Solution: working in 4-2ε 
dimensions, to control the 
divergences (dimensional 
reduction) 

  with 
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We get 1/ε terms from individual soft and collinear singularities 
We get 1/ε2 terms for overlapping IR singularities. 
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Ditto for the virtual part 

  where 
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We also get UV divergences when the loop momenta 
go off to infinity. The summation of these singularities 
leads to the running of the strong couplings, i.e. we 
define the sum of all such contributions (scales >µUV) 
as the physical renormalized coupling, αs.  

from soft and  
collinear bits 



Now add real and virtual 

  Notice that the ε2 terms cancel 
  The divergences that are proportional to the branching probabilities are universal 
  We can factorize them into the parton distributions, performing mass factorization by 

subtracting the counter-term (MSbar scheme) 

  To get 

  Plus a similar correction for incoming gluons 
  That works for the total cross section, but we need differential distributions for comparisons to 

data, so we need a general subtraction procedure at NLO, using Monte Carlo techniques  
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In general 
  That works for the total cross section, but we need differential distributions for 

comparisons to data, so we need a general subtraction procedure at NLO, using 
Monte Carlo techniques  

  For incoming partons a and b, producing m outgoing partons 

  We have to construct a series of counter-terms 

  Where σB denotes the appropriate color and spin projection of the Born level cross 
section, and the counter-terms are independent of the details of the process under 
consideration 
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the singular parts of the matrix elements for real 
emission, corresponding to soft and collinear 
emission, can be isolated in a process 
independent manner; of course it gets a lot more 
complicated for large m  
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Catani-Seymour subtraction 

  These counter-terms cancel all non-integrable singularities in dσreal, so that 
one can write 

  The phase space integration in the first term can now be performed 
numerically in 4 dimensions 

  The integral in the 2nd term can be done easily and analytically 
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Consider matrix element counter-event for W production 

  In soft limit (p5->0), we have  

  The eikonal factor can be associated with radiation from a given leg by 
partial fractioning 

  Including the collinear contributions, singular as p1
.p5->0, the matrix 

element for the counter-event has the structure 

  where 
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These are the Catani-Seymour dipoles 
(actually single collinear poles produced 
by partial fractioning); Keith Ellis thinks 
Catani and Seymour should be shot for 

        calling these 
        dipoles; maybe 
        we can take a  
        vote   

real corrections to W production 
at NLO 

eikonal factor; an approximation to 
the full matrix element valid when 
the gluon is soft 



  Programs that do NLO calculations, such as MCFM, are parton-level 
Monte Carlo generators in which (weighted) events and counter-events 
are generated 
◆  for complicated processes, such as W + 2 jets, there can be many 

counter-events (24), corresponding to the Catani-Seymour subtraction 
terms, for each event 

◆  only the sum of all events (events + counter-events) is meaningful, 
since many positive and negative weights need to cancel against each 
other; if too few events are generated, or if the binning is too small, 
can have negative results 

◆  in general, cannot connect these complex NLO matrix elements to 
parton showering…although that’s the dream/plan (see for example 
the Binoth Accord in the Les Houches 2009 writeup: arXiv:1003.1241) 

▲  processes such as W,Z,WW,ZZ,Higgs, ttbar, single top,… have 
been included in NLO parton shower Monte Carlo programs like 
MC@NLO, Powheg 

–  MC@NLO ~10% negative weights; Powheg almost zero 
▲  state of the art now is Z + 1 jet (I believe) 





MCFM 
  Many processes available at LO and NLO 

◆  note these are partonic level only 
  Option for ROOT output (see later) 
  mcfm.fnal.gov 

(2 jets now) 



State of the art 

  LO: well under control, even for multiparticle final states 
  NLO: well understood for 2->1, 2->2 and 2->3; first calculations of 2->4 (W

+3 jets, ttbb) 
  NNLO: known for inclusive and exclusive 2->1 (i.e. Higgs, Drell-Yan); work 

on 2->2 (Higgs + 1 jet) 

Relative 
order 

2->1 2->2 2->3 2->4 2-5 2->6 

1 LO 
αs NLO LO 
αs

2 NNLO NLO LO 
αs

3 NNLO NLO LO 
αs

4 NLO LO 
αs

5 LO 





Realistic wishlist 
  Was developed at Les Houches in 

2005, and expanded in 2007 and 
2009 

  Calculations that are important for the 
LHC AND do-able in finite time 

  In 2009, we added tttt, Wbbj, Z+3j, W
+4j plus an extra column for each 
process indicating the level of 
precision required by the experiments 
◆  to see for example if EW 

corrections may need to be 
calculated 

  In order to be most useful, decays for 
final state particles (t,W,H) need to be 
provided in the codes as well 

  Since the publication of Les Houches 
2009 in March, processes 6 and 7 
have been completed 

  V + 4 jets (process 10) is on the 
horizon 



If all else fails… 



Loops and legs 

2->4 is very impressive 

but just compare to the  complexity of the sentences that Sarah Palin uses  
.  

loops 

legs 



Some issues/questions 
  Once we have the 

calculations, how do we 
(experimentalists) use 
them?  

  Best is to have NLO 
partonic level calculation 
interfaced to parton 
shower/hadronization 
◆  but that has been done 

only for relatively simple 
processes and is very 
(theorist) labor intensive 

▲  still waiting for inclusive 
jets in MC@NLO, for 
example 

  Even with partonic level 
calculations, need public 
code and/or ability to 
write out ROOT ntuples 
of parton level events 
◆  so that can generate once 

with loose cuts and 
distributions can be re-
made without the need for 
the lengthy re-running of 
the predictions 

◆  what is done for example 
with MCFM for 
CTEQ4LHC 

▲  but 10’s of Gbytes for 
file sizes 



MCFM has ROOT output built in; 
standard Les Houches format has been developed 

store 4-vectors for final state particles 
+ event weights; use analysis script 
to construct any observables and their 
pdf uncertainties; in future will put scale 
uncertainties and pdf correlation info as 
well 



Proposed common ntuple output 

  A generalization of the 
FROOT format used in 
MCFM 

  Writeup in NLM 
proceedings 



K-factors 
  Often we work at LO by necessity (parton shower 

Monte Carlos), but would like to know the impact of 
NLO corrections 

  K-factors (NLO/LO) can be a useful short-hand for this 
information 

  But caveat emptor; the value of the K-factor depends on 
a number of things 
◆  PDFs used at LO and NLO 
◆  scale(s) at which the cross sections are evaluated 

  And often the NLO corrections result in a shape 
change, so that one K-factor is not sufficient to modify 
the LO cross sections 



K-factor table from CHS paper 

K-factors 
for LHC 
slightly  
less  
K-factors 
at  
Tevatron 

K-factors 
with NLO 
PDFs at 
LO are  
more  
often 
closer  
to unity 

Shapes of 
distributions

may be 
different at 

NLO than at 
LO, but

sometimes it 
is still

useful to 
define a

K-factor.


Note the 
value 

of the K-
factor 
depends

critically on 
its 
definition.




Go back to K-factor table 
  Some rules-of-thumb 
  NLO corrections are larger for 

processes in which there is a great 
deal of color annihilation 
◆  gg->Higgs 
◆  gg->γγ

◆  K(gg->tT) > K(qQ -> tT) 
◆  these gg initial states want to 

radiate like crazy (see Sudakovs) 
  NLO corrections decrease as more 

final-state legs are added 
◆  K(gg->Higgs + 2 jets)                  

<  K(gg->Higgs + 1 jet)                
< K(gg->Higgs) 

◆  unless can access new initial 
state gluon channel  

  Can we generalize for uncalculated 
HO processes? 

  What about effect of jet vetoes on K-
factors? Signal processes compared 
to background. Of current interest. 

Ci1 + Ci2 – Cf,max 

Simplistic rule 

Casimir color factors for initial state 

Casimir for biggest color 
representation final state can  
be in  

L. Dixon 



Shape dependence of a K-factor 
  Inclusive jet production probes 

very wide x,Q2 range along 
with varying mixture of 
gg,gq,and qq subprocesses 

  PDF uncertainties are 
significant at high pT 

  Over limited range of pT and y, 
can approximate effect of NLO 
corrections by K-factor but not 
in general 
◆  in particular note that for 

forward rapidities, K-factor 
<<1 

◆  LO predictions will be 
large overestimates 

◆  this is true for both the 
Tevatron and for the LHC 



Aside: Why K-factors < 1 for inclusive jet prodution?  
  Write cross section indicating explicit 

scale-dependent terms 
  First term (lowest order) in Eq. 3 leads 

to monotonically decreasing behavior 
as scale increases (the LO piece) 

  Second term is negative for µ<pT, 
positive for µ>pT 

  Third term is negative for factorization 
scale M < pT 

  Fourth term has same dependence as 
lowest order term 

  Thus, lines one and four give 
contributions which decrease 
monotonically with increasing scale 
while lines two and three start out 
negative, reach zero when the scales 
are equal to pT, and are positive for 
larger scales 

  At NLO, result is a roughly parabolic 
behavior 

(1) 
(2) 

(3) 
(4) 



Why K-factor for inclusive jets < 1?  
  First term (lowest order) in (3) leads to 

monotonically decreasing behavior as 
scale increases 

  Second term is negative for µ<pT, 
positive for µ>pT 

  Third term is negative for factorization 
scale M < pT 

  Fourth term has same dependence as 
lowest order term 

  Thus, lines one and four give 
contributions which decrease 
monotonically with increasing scale 
while lines two and three start out 
negative, reach zero when the scales 
are equal to pT, and are positive for 
larger scales 

  NLO parabola moves out towards 
higher scales for forward region 

  Scale of ET/2 results in a K-factor of 
~1 for low ET, <<1 for high ET for 
forward rapidities at Tevatron, and at 
the LHC 



Consider  the W + 3 jets process 



Now consider W + 3 jets 
Consider a scale of mW  for W + 1,2,3 jets. We 
see the K-factors for W + 1,2 jets in the table  
below, and recently the NLO corrections for W + 3  
jets have been calculated, allowing us to estimate  
the K-factors for that process.  

Is the K-factor (at mW) at the LHC surprising? 



Is the K-factor (at mW) at the LHC surprising? 

The K-factors for W + jets (pT>30 GeV/c) 
fall near a straight line, as do the K-factors 
for the Tevatron. By definition, the K-factors 
for Higgs + jets fall on a straight line. 

Nothing special about mW; just a typical choice. 

The only way to know a cross section to NLO,  
say for W + 4 jets or Higgs + 3 jets, is to 
calculate it, but in lieu of the calculations, 
especially for observables that we have 
deemed important at Les Houches,  
can we make some rules of thumb?  

Related to this is: 
- understanding the reduced 
scale dependences/pdf uncertainties for  
cross section ratios we have been discussing 
-scale choices at LO for cross sections  
uncalculated at NLO 



Is the K-factor (at mW) at the LHC surprising? 

The K-factors for W + jets (pT>30 GeV/c) 
fall near a straight line, as do the K-factors 
for the Tevatron. By definition, the K-factors 
for Higgs + jets fall on a straight line. 

Nothing special about mW; just a typical choice. 

The only way to know a cross section to NLO,  
say for W + 4 jets or Higgs + 3 jets, is to 
calculate it, but in lieu of the calculations, 
especially for observables that we have 
deemed important at Les Houches,  
can we make rules of thumb?  

Related to this is: 
- understanding the reduced 
scale dependences/pdf uncertainties for the 
cross section ratios we have been discussing 
-scale choices at LO for cross sections  
calculated at NLO 
-scale choices at LO for cross sections  
uncalculated at NLO 

Will it be 
smaller still for 
W + 4 jets? 

To understand this further, we have to discuss jet algorithms 



Jet algorithms at LO 
  At (fixed) LO, 1 parton = 1 jet 

◆  why not more than 1? I have 
to put a ΔR cut on the 
separation between two 
partons; otherwise, there’s a 
collinear divergence. LO 
parton shower programs 
effectively put in such a cutoff 

◆  Remember the collinear 
singularity 

  But at NLO, I have to deal with 
more than 1 parton in a jet, and 
so now I have to talk about how 
to cluster those partons 
◆  i.e. jet algorithms 
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Jet algorithms at NLO 
  At NLO, there can be two 

partons in a jet, life becomes 
more interesting and we have 
to start talking about jet 
algorithms to define jets 
◆  the addition of the real and 

virtual terms at NLO 
cancels the divergence.  

  A jet algorithm is based on some 
measure of localization of the 
expected collinear spray of 
particles 

  Start with an inclusive list of 
particles/partons/calorimeter 
towers/topoclusters 

  End with lists of same for each jet 
  …and a list of particles… not in 

any jet; for example, remnants of 
the initial hadrons 

  Two broad classes of jet 
algorithms 
◆  cluster according to proximity 

in space: cone algorithms 
◆  cluster according to proximity 

in momenta: kT algorithms 



What do I want out of a jet algorithm?  

  It should be fully specified, 
including defining in detail any 
pre-clustering, merging and 
splitting issues 

  It should be simple to implement 
in an experimental analysis, and 
should be independent of the 
structure of the detector 

  It should be boost-invariant 
  It should be simple to implement 

in a theoretical calculation 
◆  it should be defined at any order 

in perturbation theory 
◆  it should yield a finite cross 

section at any order in 
perturbation theory 

◆  it should yield a cross section that 
is relatively insensitive to 
hadronization effects 

  It should be IR safe, i.e. adding a 
soft gluon should not change the 
results of the jet clustering 

  It should be collinear safe, i.e. 
splitting one parton into two 
collinear partons should not 
change the results of the jet 
clustering 



Jet algorithms 
  The algorithm should behave in a similar manner (as much as 

possible) at the parton, particle and detector levels. Note that 
differences between levels can unavoidably creep in.  



Some kinematic definitions 



Some kinematic definitions 
To satisfy listed requirements for jet algorithms, use pT,y and φ to characterize jets 



(Legacy) cone algorithms 

  The cone algorithm is most often 
used in hadron-hadron colliders 
◆  perhaps most intuitive 
◆  draw a cone of radius R in η-φ 

space 

  But where to start the cone? 
◆  use ‘seeds’ (towers, particles, 

partons…) of energy ~1 GeV to 
save computing time 

◆  combine seed towers with other 
towers within a radius R of the 
seed tower 

◆  re-calculate jet centroid using 
new list of towers… inside cone 

◆  lather, rinse, iterate until a stable 
solution is found 

  But you may end up with 
overlapping jet cones (starting 
from different jet seeds) 

  So need to come up with a 
provision for splitting/merging 
◆  merge 2 jets if overlap energy is 

> f*pT (smaller jet) 
◆  f=0.50-0.75 

  Note: partons (at NLO) don’t 
know nothing about splitting/
merging 
◆  experience says f=0.75 is best 

streetlight 
approach 

typically use  
R~0.7 for  
inclusive  
measurements; 
R~0.4 for complex 
measurements,  
such as t-tbar 

� 

Rcone = Δη( )2 + Δφ( )2



Midpoint cone algorithm 
  But this type of cone algorithm is 

not infra-red safe, since the two 
partons in the figure on the right 
will/will not be clustered into a 
single jet depending on whether 
or not a soft gluon is present at 
the midpoint 
◆  also (in Run 1 at the 

Tevatron) used ET and η, 
rather than pT and y 

  Fundamental difference between 
data and fixed order pert QCD 
◆  data has “seeds” everywhere 

  So the Midpoint algorithm was 
devised 
◆  seeds were placed at the 

midpoints between nearby 
protojets 

◆  used in Run 2 at the Tevatron 

  this works for 2->3 final states (NLO 
inclusive), but not for 2->4 (NNLO 
inclusive) where I may cluster 3 
partons in 1 jet 



Seedless cone algorithm 
  Put seeds everywhere 
  Can be time-consuming 
  Enter the SISCone algorithm 

◆  Seedless Infrared Safe Cone 
jet algorithm 

◆  G. Salam, G. Soyez, arXiv:
0704.0292 

  …uses a geometric approach 
to find all distinct cones 

  …with a speed similar to that 
of the Midpoint algorithm 

  Still have the split/merge issue 
  …and the issue of dark towers 
  Differences with the midpoint 

algorithm typically of the order 
of 1 percent or so in practice 
◆  see later discussion, however 



kT (recombination) algorithms 

  Cluster particles 
nearby in 
momentum 
space first 

  The kT algorithm 
is IR and 
collinear safe 

  No overlapping 
of jets 

  No biases from 
seed towers 

  But the jets are 
sensitive to soft 
particles and the 
area can depend 
on pileup 

bad hair day 



The kT family of jet algorithms 
  p=1 

◆  the regular kT jet algorithm 
  p=0 

◆  Cambridge-Aachen 
algorithm 

  p=-1 
◆  anti-kT jet algorithm 
◆  Cacciari, Salam, Soyez ’08 
◆  also P-A Delsart ’07 
◆  soft particles will first 

cluster with hard particles 
before clustering among 
themselves 

◆  no split/merge 
◆  leads mostly to constant 

area hard jets 

 #1 algorithm for 
ATLAS, CMS � 

dij = min pT ,i
2p , pT , j

2p( ) ΔRij
2

D2

dii = pT ,i
2p



Jet algorithms at LO/NLO 
  Remember at LO, 1 parton = 1 jet 
  By choosing a jet algorithm with 

size parameter D, we are requiring 
any two partons to be > D apart 

  The matrix elements have 1/ΔR 
poles, so larger D means smaller 
cross sections 
◆  it’s because of the poles that 

we have to make a ΔR cut 
  At NLO, there can be two (or more) 

partons in a jet and jets for the first 
time can have some structure 
◆  we don’t need a ΔR cut, since 

the virtual corrections cancel 
the collinear singularity from 
the gluon emission 

◆  but there are residual logs 
that can become important if 
D is too small 

  Increasing the size parameter D 
increases the phase space for 
including an extra gluon in the jet, 
and thus increases the cross 
section at NLO (in most cases) 

z=pT2/pT1


d


For D=Rcone, 
Region I = kT 
jets, Region II 
(nominally) = 
cone jets; I say 
nominally 
because in data 
not all of Region 
II is included for 
cone jets 

not true for WbB, for example 



Jets at NLO continued 
  Construct what is called a Snowmass 

potential 

  The minima of the potential function 
indicates the positions of the stable 
cone solutions 
◆  the derivative of the potential 

function is the force that shows 
the direction of flow of the 
iterated cone 

  The midpoint solution contains both 
partons 



Is the K-factor (at mW) at the LHC surprising? 

The problem is not the NLO cross section; that is well-behaved.  
The problem is that the LO cross section sits ‘too-high’. The reason (one of them) 
for this is that we are ‘too-close’ to the collinear pole (R=0.4)  
leading to an enhancement of the LO cross section (double- 
enhancement if the gluon is soft (~20 GeV/c)). Note that at LO, 
the cross section increases with decreasing R; at NLO it decreases. 
The collinear dependence gets stronger as njet increases. 
The K-factors for W + 3 jets would be more normal (>1) if a larger  
cone size and/or a larger jet pT cutoff were used. But that’s a LO  
problem; the best approach is to use the appropriate jet sizes/jet pT’s   
for the analysis and  understand the best scales to use at LO (matrix  
element + parton shower) to approximate the  NLO calculation 
(as well as comparing directly to the NLO calculation).  

pT
jet 

For 3 jets, 
the LO 
collinear 
singularity 
effects are 
even more 
pronounced.  

x 

x 

pT
jet =20 GeV 

=30 GeV 
=40 GeV 

NLO 

LO 

cone jet of 0.4 

blue=NLO; red=LO 

20 GeV 

30 GeV 

40 GeV 

NB: here I have used CTEQ6.6 for both LO and NLO; CTEQ6L1  would shift LO curves up 



Is this the end of the complications?  

 We’ll see later that additional 
complications  are introduced by the fact 
that we don’t measure partons in our jets 
in ATLAS, but energy that is distributed 
over a wide area of the detector by parton 
showering, hadronization and showering 



W + jets at the Tevatron 
  At the Tevatron, mW is a 

reasonable scale (in 
terms of K-factor~1) 



W + 3 jets at the LHC 
A scale choice of mW would be in a region where LO >> NLO. In addition, such a  
scale choice (or related scale choice), leads to sizeable shape differences in the  
kinematic distributions. The Blackhat people found that a scale choice of HT  
worked best to get a constant K-factor for all distributions that they looked at.  
Note that from the point-of-view of only NLO, all cross sections with scales above  
~100 GeV seem reasonably stable. A CKKW-like scale also seems to work. Currently 
under investigation. 



CKKW 
  Applying a CKKW-like scale leads to better agreement 

for shapes of kinematic distributions 

0910.3671 Melnikov, Zanderighi 
See review of W + 3 jets in Les Houches 
2009 NLM proceedings 



Choosing jet size 

 Experimentally 
◆  in complex final 

states, such as W + n 
jets, it is useful to 
have jet sizes smaller 
so as to be able to 
resolve the n jet 
structure 

◆  this can also reduce 
the impact of pileup/
underlying event 

 Theoretically 
◆  hadronization effects 

become larger as R 
decreases 

◆  for small R, the ln R 
perturbative terms referred 
to previously can become 
noticeable 

◆  this restriction in the gluon 
phase space can affect the 
scale dependence, i.e. the 
scale uncertainty for an n-
jet final state can depend 
on the jet size,  

◆  …under investigation 

Another motivation for the use of multiple jet algorithms/parameters (i.e. SpartyJet) 
 in LHC analyses.  



Jet sizes and scale uncertainties: the 
Goldilocks theorm 

  Take inclusive jet production at the LHC for transverse 
momenta of the order of 50 GeV 

  Look at the theory uncertainty due to scale dependence 
as a function of jet size 

  It appears to be a minimum for cone sizes of the order 
of 0.7 
◆  i.e. if you use a cone size of 0.4, there are residual un-

cancelled virtual effects 
◆  if you use a cone size of 1.0, you are adding too much tree 

level information with its intrinsically larger scale uncertainty 
  This effect becomes smaller for jet pT values on the 

order of 100 GeV/c 
◆  how does it translate for multi-parton final states?  



Jet vetos and scale dependence: WWjet 
  Often, we cut on the 

presence of an extra jet 
  This can have the 

impact of improving the 
signal to background 
ratio 
◆  …and it may appear 

that the scale 
dependence is 
improved 

  However, in the cases I 
know about,  the scale 
dependence was 
anomalous at NLO 
without the jet veto, 
indicating the presence 
of uncancelled logs 

  The apparent 
improvement in scale 
dependence may be 
illusory 



 Consider tTbB 

here scale dependence 
looks ok at inclusive 
NLO 

useful to make 
a jet veto, but 
even a cut on 
the extra jet 
of 50 GeV/c 
can greatly 
increase the 
scale  
uncertainty 



Counter-example: W + 3 jets 

  Here the  NLO inclusive scale dependence looks ok 
  Looks even better with exclusive cuts 

0910.3671 Melnikov, Zanderighi 



Jets at NLO continued 
  Construct what is called a Snowmass 

potential 

  The minima of the potential function 
indicates the positions of the stable 
cone solutions 
◆  the derivative of the potential 

function is the force that shows 
the direction of flow of the 
iterated cone 

  The midpoint solution contains both 
partons 


