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goal is to provide a reasonably global picture 
of LHC calculations (with rules of thumb)  

over 1500 downloads 
so far 
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Five lectures 

1.  Introduction to pQCD-May 10 
2.  Higher order calculations-May 17 
3.  Parton distributions-May 24 
4.  Jet algorithms-June 1 
5.  On to the LHC-June 7 



Caveat 
  I’m not a theorist 

  I don’t even play one on TV 
  So my lectures are not going to 

be in as much technical detail as 
a theorist would  
◆  because I probably wouldn’t 

get the details right 
◆  and I like the intuitive “rules-

of-thumb” approach better 
  But there are references that do 

go into such detail, as for 
example the book to the right 
◆  often termed as the “pink 

book” 

I’m an 
experimentalist; 
note the hard-hat 



We’ll look back on early LHC trouble in 15 years and laugh 

LHC vs time: a wild guess … 

L=1035 

you are here (even though it’s now 2010); first W’s, first Z 



Understanding cross sections at the LHC 

  But before we can laugh, we 
have to understand the 
Standard Model at the LHC 

  We’re all looking for BSM 
physics at the LHC 

  Before we publish BSM 
discoveries from the early 
running of the LHC, we want 
to make sure that we 
measure/understand SM 
cross sections 
◆  detector and 

reconstruction algorithms 
operating properly 

◆  SM backgrounds to BSM 
physics correctly taken 
into account 

◆  and, in particular, that 
QCD at the LHC is 
properly understood 



Cross sections at the LHC 
  Experience at the Tevatron is 

very useful, but scattering at 
the LHC  is not necessarily 
just “rescaled” scattering at 
the Tevatron 

  Small typical momentum 
fractions x for the quarks and 
gluons in many key searches 
◆  dominance of gluon and 

sea quark scattering 
◆  large phase space for 

gluon emission and thus 
for production of extra jets 

◆  intensive QCD 
backgrounds 

◆  or to summarize,…lots of 
Standard  Model to wade 
through to find the BSM 
pony 



Cross sections at the LHC 
  Note that the data from HERA 

and fixed target cover only 
part of kinematic range 
accessible at the LHC 

  We will access pdf’s down to 
10-6 (crucial for the underlying 
event) and Q2 up to 100 TeV2 

  We can use the DGLAP 
equations to evolve to the 
relevant x and Q2 range, but… 
◆  we’re somewhat blind in 

extrapolating to lower x 
values than present in the 
HERA data, so uncertainty 
may be larger than currently 
estimated 

◆  we’re assuming that DGLAP 
is all there is; at low x BFKL 
type of logarithms may 
become important (more later 
about DGLAP and BFKL) 

BFKL?


DGLAP 



Understanding cross sections at the LHC 

PDF’s, PDF luminosities 
and PDF uncertainties 

Sudakov form factors 
underlying event 
and minimum 
bias events 

LO, NLO and NNLO calculations    
  K-factors    

jet algorithms and jet reconstruction 

benchmark cross  
sections and pdf 
correlations 

I’ll try to touch on all of these topics in these lectures. 
Most experimenters are/will still mostly use parton shower 
Monte Carlo for all predictions/theoretical comparisons 
at the LHC. I’ll try to show that there’s more than that.  



Some definitions 
  The fundamental challenge to 

interpret experimentally 
observed final states is that 
pQCD is most easily applied to 
the short-distance degrees of 
freedom, i.e. to quarks and 
gluons, while the long-distance 
degrees of freedom seen in the 
detectors are color-singlet 
bound states 

  The overall scattering process 
evolves from the incoming long-
distance hadrons in the beams, 
to the short-distance scattering 
process, to the long-distance 
outgoing final states 

  The separation of these steps is 
essential both conceptually and 
calculationally 



…and a word about jets 
  Most of the interesting physics 

signatures at the Tevatron and LHC 
involve final states with jets of 
hadrons 

  A jet is reconstructed from energy 
depositions in calorimeter cells and/or 
from charged particle track momenta, 
and ideally is corrected for detector 
response and resolution effects so 
that the resultant 4-vector 
corresponds to that of the sum of the 
original hadrons 

  The jets can be further corrected , for 
hadronization effects, back to the 
parton(s) from which the jet 
originated,or the theory can be 
corrected to the hadron level 

  The resultant measurements can be 
compared back to parton shower 
predictions, or to the short-distance 
partons described by fixed-order 
pertubative calculations 



…another word about jets 
  We pick out from the incident 

beam particles, the short-distance 
partons that participate in the 
hard collision 

  The partons selected can emit 
radiation prior to the short 
distance scattering leading to 
initial state radiation 

  The remnants of the original 
hadrons, with one parton 
removed, will interact with each 
other, producing an underlying 
event 

  Next comes the short-distance, 
large momentum transfer 
scattering process that may 
change the character of the 
scattering partons, and/or 
produce more partons 
◆  the cross section for this step is 

calculated to fixed order in pQCD 



…still another word about jets 
  Then comes another color 

radiation step, when many new 
gluons and quark pairs are added 
to the final state 

  The final step in the evolution to 
the long distance states involves 
a nonperturbative hadronization 
process that organizes the 
colored degrees of freedom 

  This non-perturbative 
hadronization step is 
accomplished in a model-
dependent fashion 



Back to the Standard Model 

The Standard Model 
has been extremely 
successful, although 
admittedly incomplete.  

In these lectures, we’re 
most interested in QCD 
and thus the force  
carrier of the strong force 
(the gluon) and its  
interaction with quarks 
(and with itself). 

Start with the QCD  
Lagrangian… 



The (Classical) QCD Lagrangian 

Acting on the triplet and octet fields, respectively, the covariant derivative is 

The matrices for the fundamental (tabB) and adjoint (TCDB) representations carry the 
information about the Lie algebra 

(fBCD is the structure 
constant of the group) 

…thanks to Steve Ellis for 
the next few slides 

� 

� 

CA = Ncolors = 3

CF =
Ncolors
2 −1
2Ncolors

=
4
3

describes the interactions of spin 
½ quarks with mass m, and 
massless spin 1 gluons 

field strength tensor derived from gluon field A; 
3rd term is the non-Abelian term (QCD=QED)  

nf flavors 

for SU(3) 



Feynman Rules: 
Propagators – (in a general gauge represented by the parameter λ; Feynman 
gauge is λ = 1; this form does not include axial gauges) 

Vertices –  
 Quark – gluon          3 gluons 

non-Abelian coupling; not present in QED 



Feynman Rules II: 

         4 gluons 



pQCD 101 - Use QCD Lagrangian to Correct the Parton Model 

  Naïve QCD Feynman diagrams exhibit infinities at nearly every turn, 
as they must in a conformal theory with no “bare” dimensionful 
scales (ignore quark masses for now).***  

First consider life in the Ultra-Violet – short distance/times or large 
momenta (the Renormalization Group at work):  

  The UV singularities mean that the theory 

  does not specify the strength of the coupling in terms of the “bare” 
coupling in the Lagrangian  

  does specify how the coupling varies with scale [αs(µ) measures the 
“charge inside” a sphere of radius 1/µ]  

***  Typical of any renormalizable gauge field theory.  This is one reason why String theorists 
want to study something else!   We will not discuss the issue of choice of gauge.  
Typically axial gauges (             ) yield diagrams that are more parton-model-like, so-called 
physical gauges. 



  use the renormalization group below some (distance) scale 1/m  
(perhaps down to a GUT scale 1/M where theory changes?) to sum 
large logarithms ln[M/µ] 

  use fixed order perturbation theory around the physical scale 1/µ ~ 
1/Q (at hadronic scale 1/m things become non-perturbative, above 
the scale M the theory may change) 

Short distance Long distance 

new physics??         perturbative               non-perturbative
    

Consider a range of distance/time scales – 1/µ 



Strong coupling constant αs 
An important component of all QCD cross sections   

Note there can be 
different conventions, 
i.e. βo can be defined 
so it’s positive, but 
then bo=+βo/4π  

I borrowed the next 
few slides from someone 
in ATLAS, but lost track who.  



It’s important that the β function is negative 

An important component of all QCD cross sections   



αs and Λ


- 

� 

µ 2

Λ2

� 

µ 2

Λ2



see www-theory.lbl.gov/~ianh/alpha/alpha.html 

usually working 
in this range, 
so αs<0.2  

@ scale of mZ, world average 
for αs is 0.118 (NLO) and  
0.130 (LO); αs(NNLO_~αs(NLO) 
It’s more common now to quote 
αs at a scale of mZ than to quote Λ




Factorization 
  Factorization is the key to 

perturbative QCD 
◆  the ability to separate the 

short-distance physics and 
the long-distance physics 

  In the pp collisions at the 
LHC, the hard scattering cross 
sections are the result of 
collisions between a quark or 
gluon in one proton with a 
quark or gluon in the other 
proton 

  The remnants of the two 
protons also undergo 
collisions, but of a softer 
nature, described by semi-
perturbative or non-
perturbative physics 

The calculation of hard scattering processes 
at the LHC requires: 
(1) knowledge of the distributions of the  
quarks and gluons inside the proton, i.e.  
what fraction of the momentum of the  
parent proton do they have  
->parton distribution functions (pdf’s) 
(2) knowledge of the hard scattering cross 
sections of the quarks and gluons, at LO, 
NLO, or NNLO in the strong coupling  
constant αs 



Parton distributions 
  The momentum of the proton 

is distributed among the 
quarks and gluons that 
comprise it 
◆  about 40% of the 

momentum is with gluons, 
the rest with the quarks 

  We’ll get back to pdf’s for 
more detail later, but for now 
notice that the gluon 
distribution dominates at small 
momentum fractions (x), while 
the (valence) quarks dominate 
at high x 



Factorization theorem 

� 

∝
1
pT
2



Factorization theorem 
confinement confinement 

� 

∝
1
pT
2



Factorization theorem 
confinement confinement 

� 

∝
1
pT
2



Go back to some SM basics: Drell Yan 
  Consider Drell-Yan production 

◆  write cross section as  

◆  where X=l+l-  
  Potential problems appeared 

to arise from when 
perturbative corrections from 
real and virtual gluon 
emissions were calculated 
◆  but these logarithms were the 

same as those in structure 
function calculations and thus 
can be absorbed, via DGLAP 
equations in definition of 
parton distributions, giving 
rise to logarithmic violations 
of scaling 

◆  can now write the cross 
section as 

where xa is the momentum fraction 
of parton a in hadron A, and xb the  
momentum fraction of parton b in  
hadron B, and Q is a scale that  
measures the hardness of the  
interaction 



…but 
  Key point is that all logarithms 

appearing in Drell-Yan 
corrections can be factored into 
renormalized (universal) parton 
distributions 
◆  factorization 

  But finite corrections left behind 
after the logarithms are not 
universal and have to be 
calculated separately for each 
process, giving rise to order αs

n 
perturbative corrections 

  So now we can write the cross 
section as  

  where µF is the factorization scale 
(separates long and short-
distance physics) and µR is the 
renormalization scale for αs 

  choose µR=µF~Q 

An all-orders cross section has no 
dependence on µF and µR; a residual  
dependence remains (to order αs

n+1) for 
a finite order (αs

n) calculation 

also depends on µR and 
µF, so as to cancel scale 
dependence in PDF’s and αs,  
to this order 



DGLAP equations 
  Parton distributions used 

in hard-scattering 
calculations are solutions 
of DGLAP equations (or 
in Italy the AP equations) 
◆  the DGLAP equations 

determine the Q2 
dependence of the pdf’s 

◆  the splitting functions have 
the perturbative expansions 

Thus, a full NLO calculation will 
contain both σ1 (previous slide) 
and Pab

(1) 
^ 

DGLAP equations sum leading powers of 
[αslogµ2]n generated by multiple gluon 
emission in a region of phase space where  
the gluons are strongly ordered in transverse 
momentum (log µ >> log (1/x)) 

For regions in which this ordering is not present 
(e.g. low x at the LHC), a different type of  
resummation (BFKL) may be needed 



Altarelli-Parisi splitting functions 

Note that the emitted gluon likes to be soft 

Here the emitted gluon can be 
soft or hard 

We’ll also encounter the A-P splitting functions 
later, when we discuss parton showering and  
Sudakov form factors 



Kinematics 
  Double differential cross 

section for production of a 
Drell-Yan pair of mass M and 
rapidity y is given by 

◆  where  

◆  and 

  Thus, different values of M 
and y probe different values of 
x and Q2 

� 

ˆ σ o =
4πα 2

3M 2



W/Z production 
  Cross sections for on-shell W/

Z production (in narrow width 
limit) given by 

  Where Vqq’ is appropriate 
CKM matrix element and vq 
and aq are the vector and axial 
coupling of the Z to quarks 

  Note that at LO, there is no αs 
dependence; EW vertex only 

  NLO contribution to the cross 
section is proportional to αs; 
NNLO to αs

2… 

LO->NLO is a large correction at the 
Tevatron 
NLO->NNLO is a fairly small (+)  
correction 

W/Z cross sections have small  
experimental systematic errors with 
theory errors (pdf’s/higher orders) also 
under reasonable(?) control 



W/Z pT distributions 
  Most W/Z produced at low pT, 

but can be produced at non-
zero pT due to diagrams such 
as shown on the right; note 
the presence of the QCD 
vertex, where the gluon 
couples (so one order higher) 

  Sum is over colors and spins 
in initial state, averaged over 
same in final state 

  Transverse momentum 
distribution is obtained by 
convoluting these matrix 
elements with pdf’s in usual 
way 

Note that 2->2 matrix elements are 
singular when final state partons are  
soft or collinear with initial state partons 
(soft and collinear->double logarithms) 

Related to poles at t=0 and u=0 

But singularities from real and virtual  
emissions cancel when all contributions 
are included, so NLO is finite 

^ ^ 



W/Z pT distributions 

 Back to the 2->2 
subprocess 

◆  where Q2 is the 
virtuality of the W 
boson 

 Convolute with pdf’s 



W/Z pT distributions 
  Transform into differential 

cross section 

◆  where we have one 
integral left over, the gluon 
rapidity 

  Note that pT
2=tu/s2 

◆  thus, leading divergence can 
be written as 1/pT

2 (Brems) 
  In this limit, behavior of cross 

section becomes 

  As pT of W becomes small, 
limits of yg integration are 
given by +/- log(s1/2/pT) 

  The result then is 

^ ̂ ^ 

…diverges unless we apply 
a pT

min cut; so we end up 
with a distribution that  
depends not only on αs but 
on αs times a logarithm: 
universal theme  



Rapidity distributions 
  Now look at rapidity distributions 

for jet for two different choices of 
pT

min 
  Top diagrams imply that gluon is 

radiated off initial state parton at 
an early time (ISR) 

  With collinear pole, this would 
imply that these gluons would be 
emitted primarily at forward 
rapidities 

  But the distributions look central 
  The reason is that we are binning 

in pT and not in energy, and the 
most effective place to convert 
from E to pT is at central rapidities 

  Suppose I re-draw the Feynman 
diagrams as shown to the right 
◆  is there a difference from 

what is shown at the top of 
the page?  

the pT requirement of the gluon  
serves as the cutoff 



Now on to W + 2 jets 
  For sake of simplicity, 

consider Wgg 
  Let p1 be soft 
  Then can write  

◆  where tA and tB are 
color labels of p1 and 
p2 

  Square the matrix 
amplitude to get 

so the kinematic structures obtained 
from the Feynman diagrams are 
collected in the function D1,D2 and D3, 
which are called color-ordered  
amplitudes 

using tr(tAtBtBtA)=NCF
2    and tr(tAtBtAtB)=-CF/2 



W + 2 jets 

  Since p1 is soft, can write D’s 
(color-ordered amplitudes) as 
product of an eikonal term and 
the matrix elements containing 
only 1 gluon 

◆  where εµ is the polarization 
vector for gluon p1 

  Summing over gluon 
polarizations, we get 

◆  where 



Color flow 

  The leading term (in number of 
colors) contains singularities 
along two lines of color flow-one 
connecting gluon p2 to the quark 
and the other connecting it to the 
anti-quark 
◆  sub-leading term has 

singularities along the line 
connecting the quark and 
anti-quark 

  It is these lines of color that 
indicate preferred direction for 
emission of additional gluons 
◆  needed by programs like 

Pythia/Herwig for example 
◆  sub-leading terms don’t 

correspond to any unique 
color flow 



Eikonal factors 
  Re-write 

  As 

  It is clear that the cross section 
diverges either as cosθa->1 
(gluon is collinear to parton a) or 
as E->0 
◆  similar for parton b 

  Each divergence is logarithmic 
and regulating the divergence by 
providing a fixed cutoff (in angle 
or energy) will produce a single 
logarithm from collinear 
configurations and another from 
soft ones 
◆  so again the double logs 



Logarithms 
  You can keep applying this 

argument at higher orders of 
perturbation theory 

  Each gluon that is added 
yields an additional power of 
αs, and via the eikonal 
factorization outlined, can 
produce an additional two 
logarithms 

  So can write the W + jets 
cross section as  

◆  where L represents the 
logarithm controlling the 
divergence, either soft or 
collinear 

◆  note that αs and L appear 
together as αsL 

  Size of L depends on criteria 
used to define the jets (min 
ET, cone size) 

  Coefficients cij depend on 
color factors 

  Thus, addition of each gluon 
results in additional factor of 
αs times logarithms 

  In many (typically exclusive) 
cases, the logs can be large, 
leading to an enhanced 
probability for gluon emission 
to occur 

  For most inclusive cases, logs 
are small and αs counting may 
be valid estimator for 
production of additional jets 



Re-shuffling 

  re-write the term in brackets 
as 

  Where the infinite series has 
been resummed into an 
exponential form 
◆  first term in expansion is 

called leading logarithm 
term, 2nd next-to-leading 
logarithm, etc 

  Now can write out each 
contribution as a contribution 
in powers of αs and logarithms 

as jet definitions change, size of the logs 
shuffle the contributions from one jet 
cross section to another, keeping the sum 
over all contributions the same; for example, 
as R decreases, L increases, contributions shift 
towards higher jet multiplicities 

each gluon added has an additional 
factor of αs and two additional logs 
(soft and collinear) 
cij depend on color factors 

for W  + jets 



Re-shuffling 

At given fixed order in perturbation theory, results 
are independent of jet parameters and we can say 

• Configuration shown to the right 
can be reconstructed as an event 
containing up to 2 jets (0,1,2),  
depending on jet definition and  
momenta of the partons. 
• For a large value of Rcone, this is 
one jet; for a smaller value, it may 
be two jets  
• The matrix elements for this process 
contain terms proportional to 
αs log(pT3/pT4) and as log(1/ΔR34), 
so min values for transverse  
momentum and separation must be 
imposed 



NLO calculations 
  NLO calculation requires 

consideration of all 
diagrams that have an 
extra factor of αs 
◆  real radiation, as we have 

just discussed 
◆  virtual diagrams (with 

loops) 

  For virtual diagram, have 
to integrate over loop 
momentum  
◆  but result contains IR 

singularities (soft and 
collinear), just as found for 
tree-level diagrams 

O(αs) virtual corrections in NLO  
cross section arise from 
interference between tree level and 
one-loop virtual amplitudes 

vertex  
correction 

self-energy 
corrections 



Advantages of NLO 
  Less sensitivity to unphysical 

input scales, i.e. renormalization 
and factorization scales 

  First level of prediction where 
normalization can be taken 
seriously 

  More physics 
◆  parton merging  gives structure in 

jets 
◆  initial state radiation 
◆  more species of incoming partons 

  Suppose I have a cross section σ 
calculated to NLO (O(αs

n)) 
  Any remaining scale dependence 

is of one order higher (O(αs
n+1)) 

◆  in fact, we know the scale 
dependent part of the O(αs

n+1) 
cross section before we perform 
the complete calculation, since 
the scale-dependent terms are 
explicit at the previous order  

LO has 
monotonic 
scale 
dependence 

non- 
monotonic 
at NLO 

Inclusive jet prod 
 at NNLO 

we know A and B, not C 



Predictions tend to be more reliable at higher ET 

at fixed ET, note 
the parabolic 
type shape for the  
curve 



Jet algorithms at LO 
  At (fixed) LO, 1 parton = 1 jet 

◆  why not more than 1? I have 
to put a ΔR cut on the 
separation between two 
partons; otherwise, there’s a 
collinear divergence. LO 
parton shower programs 
effectively put in such a cutoff 

◆  remember 

  But at NLO, I have to deal with 
more than 1 parton in a jet, and 
so now I have to talk about how 
to cluster those partons 
◆  i.e. jet algorithms 

� 

log 1
ΔR34

⎛ 
⎝ ⎜ 

⎞ 
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Jet algorithms at NLO 
  At (fixed) LO, 1 parton = 1 jet 

◆  why not more than 1? I 
have to put a ΔR cut on 
the separation between 
two partons; otherwise, 
there’s a collinear 
divergence. LO parton 
shower programs 
effectively put in such a 
cutoff 

  At NLO, there can be two 
partons in a jet, life becomes 
more interesting and we have 
to start talking about jet 
algorithms to define jets 
◆  the addition of the real and 

virtual terms at NLO 
cancels the divergence.  

  A jet algorithm is based on some 
measure of localization of the 
expected collinear spray of 
particles 

  Start with an inclusive list of 
particles/partons/calorimeter 
towers/topoclusters 

  End with lists of same for each jet 
  …and a list of particles… not in 

any jet; for example, remnants of 
the initial hadrons 

  Two broad classes of jet 
algorithms 
◆  cluster according to proximity 

in space: cone algorithms 
◆  cluster according to proximity 

in momenta: kT algorithms 



What do I want out of a jet algorithm?  

  It should be fully specified, 
including defining in detail any 
pre-clustering, merging and 
splitting issues 

  It should be simple to implement 
in an experimental analysis, and 
should be independent of the 
structure of the detector 

  It should be boost-invariant 
  It should be simple to implement 

in a theoretical calculation 
◆  it should be defined at any order 

in perturbation theory 
◆  it should yield a finite cross 

section at any order in 
perturbation theory 

◆  it should yield a cross section that 
is relatively insensitive to 
hadronization effects 

  It should be IR safe, i.e. adding a 
soft gluon should not change the 
results of the jet clustering 

  It should be collinear safe, i.e. 
splitting one parton into two 
collinear partons should not 
change the results of the jet 
clustering 



Jet algorithms 
  The algorithm should behave in a similar manner (as much as 

possible) at the parton, particle and detector levels 



Some kinematic definitions 



Some kinematic definitions 
To satisfy listed requirements for jet algorithms, use pT,y and φ to characterize jets 


