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The ATLAS detector at the Large Hadron Collider, CERN has been under construction for more than a decade.
It is now largely complete and functional. This paper will describe the state of the major subsystems of ATLAS.
Results from the brief single beam running period in 2008 will be shown. In addition, results from a long period
of cosmic ray running will be shown. These results show that ATLAS is prepared to make major new physics
discoveries as soon as we get colliding beams in late 2009.

1. Introduction

The ATLAS detector at CERN is one of two large
general purpose detectors at the Large Hadron Col-
lider (LHC) [1], a 7 TeV on 7 TeV proton accelerator.
It was designed to have excellent tracking, calorimetry
and muon spectroscopy over the entire energy range
of the LHC allowing discovery of any new physics in
that range. Particular discovery potentials include de-
tails of the Standard Model and beyond, such as dis-
covery of the Higgs boson, Super Symmetry (SUSY)
and extra dimensions. More complete discussion of
the physics discovery potential of ATLAS is given in
reference [2].

The ATLS detector, under construction for well
over a decade, was ready to record collision events on
September 10, 2008 when the LHC started up. Single
beams were circulated around the accelerator and re-
sulting events were recorded in the detector. As is well
known, about one week later, the machine had prob-
lems in a superconducting splice between two dipole
magnets that resulted in a shutdown of the machine
before any beam collisions occurred. This shutdown
is still continuing and ATLAS has used this time to
fix minor problems with the detector and commission
the subsystems with cosmic ray events. This paper
will describe the current state of each subsystem and
present results of these cosmic ray events showing that
ATLAS now fully ready for collision data expected
later this year.

2. Overview of the ATLAS Detector

The ATLAS detector is large in more than one way:
the outer dimensions (a cylinder 44m long and 25m
in diameter) and the collaboration: over 2500 scien-
tists from nearly 200 institutes in 37 countries. An
overview schematic of the detector is shown in Fig-
ure 1 where the major subsystems are labelled.

The outermost part of ATLAS is the muon spec-
trometer and its associated superconducting toroidal
magnets which give ATLAS its name: A Toroidal
LHC Apparatus. The key design in the muon spec-

Figure 1: A schematic view of the ATLAS detector.

trometer is minimal material provided by having air-
core toroidal magnets. Inside of the muon spectrom-
eter is a solenoid magnet providing a 2 Tesla field
for the inner detector tracking. Next, moving inward
is the calorimeter system consisting of three different
technologies. The Hadronic calorimeter is a scintillat-
ing tile/iron structure covering η < 1.7. In the endcap
region 1.5η < 3.2 hadronic calorimetry is provided by
a Copper/Liquid Argon structure providing four lon-
gitudinal samples. Forward hadronic calorimetry is
provided by a Tungsten/Liquid Argon structure cov-
ering 3.2 < η < 4.9 with three longitudinal sam-
ples. Electromagnetic calorimetry is provided by a
Lead/Liquid Argon detector η < 2.5 with three lon-
gitudinal samples together with a preshower detector
in the η < 1.8 region. Inside of the calorimeter is the
inner detector consisting of semiconductor tracker, a
transition radiation tracker(TRT) and a pixel detector
shown in Figure 2. The pixel readout has 80 million
channels, another one of the superlatives in ATLAS.
The TRT provides e − π separation over the energy
range 0.5 < E < 150 GeV.

Complete details of the ATLAS detector are given
in reference [3]
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Figure 2: A schematic view of the ATLAS inner detector.

3. Single Beam events

During the brief single beam running in September,
2008, ATLAS recorded many events from beam halo
(interactions with gas in the beam pipe) and so called
beam-splash events produced when the beam was run
into a collimator approximately 150m upstream of the
detector. The beam splash events provided rather
spectacular event display pictures, such as shown in
figure 3, but also allowed time synchronization be-
tween the subsystems and the LHC machine.

Figure 3: ATLAS Event display for a ”splash” event.

4. Cosmic Ray Running in 2008-9

Since the end of the beam in Sept. 2008, ATLAS
has been accumulating cosmic ray events in all sub-
systems of the detector. Figure 4 shows the running
periods and the state of the magnets during each run.
Over 200 million events have been recorded.

Figure 4: Cosmic Ray Running Since the initial turn-on.

The following sections will review the status of each
ATLAS subsystem and show results from these cosmic
ray runs.

5. The Inner Detector

The ATLAS Inner Detector consists of three ma-
jor detector components: the pixel detector, the sil-
icon detector and the transition radiation tracker as
shown above in figure 2. The pixel detector currently
has approximately 98.4% live channels, a hit efficiency
of ≈ 99.8% and a noise occupancy of ≈ 10−10 The
Semiconductor Tracker has over 99% of its 6 million
channels operational. The noise efficiency is 4.4×10−5

in the barrel region and 5× 10−5 in the endcap. The
Transition Radiation Tracker(TRT) has 98% of its 52k
channels operational. The transition radiation aspects
of the TRT have been proven in the cosmic ray runs
as shown in figure 5 where the probability of a signal
above the high threshold is shown as a function of the
Lorentz gamma factor of the cosmic muon. Transition
radiation photons produced by high speed particles
cause a larger energy deposition in the straw tubes of
the TRT.

6. The Calorimeter System

The ATLAS Liquid Argon(LAr) Calorimeter sys-
tems, described above and shown in more detail in
figure 6, have approximately 0.02% dead channels and
0.003% noisy channels. The Hadronic Tile Calorime-
ter has 0.4% dead channels, which will be fixed at the
next shutdown. The electronic calibration systems for
all the calorimeter systems are fully operational.

An example of studies with cosmic rays is shown in
figure 7, where the response of the LAr barrel electro-
magnetic calorimeter is shown as a function of pseu-
dorapidity. Here the response is the most probable
value (MPV) determined by two different algorithms.



Proceedings of the DPF-2009 Conference, Detroit, MI, July 27-31, 2009 3

Figure 5: Muon identification in the Transition Radiation
Tracker.

Figure 6: The ATLAS calorimeter system.

The LArMuID algorithm is a variable size algorithm
- only cells above a given threshold are added to the
cluster. The 3x3 cluster algorithm is fixed in size.
Also shown are the true cluster response from Monte
Carlo simulation and the cell depth. The data match
the simulation and follow the cell depth as expected.
The uniformity of response agrees with the simulation
at the 2% level.

7. The Muon Spectrometer

The Muon Spectrometer in ATLAS has two differ-
ent technologies for the precision measurement and
two for the trigger as shown in figure 8. The Mon-
itored Drift Tube(MDT) system together with the
Cathode Strip Chambers (CSC) in the forward re-
gion provide a spatial resolution of 35 − 40 µm. The
MDT tubes are ”monitored” by a 12232 channel opti-
cal alignment system which provides position accuracy
of 30 µm. The MDT system has 0.2% dead channels
with an additional 0.5% recoverable, non operational
channels which will be fixed during the next shutdown.
The CSC system has 1.5% dead channels.

Figure 7: Signal response in the Liquid Argon Electro-
magnetic Calorimeter.

The muon trigger is provided by Resistive Plate
Chambers (RPC) in the barrel and Thin Gap Cham-
bers(TGC) in the endcap. These provide a spatial
resolution of 5 − 10mm and a time resolution < 25
ns. The RPC system has 95.5% channels operational
with an additional 3% recoverable during a shutdown.
The TGC system is 99.8% operational with less than
0.02% noisy channels.

Figure 8: The ATLAS Muon Spectrometer.

Overall, the muon system provides a stand alone
(that is, not combined with inner detector measure-
ments) resolution of ∆PT /PT < 10% up to 1 TeV.

A typical cosmic ray muon seen in the spectrometer
is shown in figure 9. As can been seen by the track
bending, the magnetic field was on for this event.

Effects of the muon alignment system can be seen in
figure 10 where the sagitta measured in the bend plane
of the magnet is shown from tracks that go through
one particular chamber in the muon barrel system.
The top plot in that figure shows the sagitta with just
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Figure 9: The ATLAS event display showing a cosmic ray
muon passing through the entire detector. Only the muon
chambers with hits are shown for visibility.

the nominal geometry for the chambers that the track
passes through. The middle plot shows the sagitta af-
ter corrections given by the optical alignment system.
The bottom plot shows the final distribution obtained
after applying corrections from track-based alignment.

8. Identifying Electrons in Cosmic Ray
Data

For this analysis, 3.5 million cosmic ray events
which passed the high-level trigger track reconstruc-
tion in the barrel inner detector were used. After
filtering for electromagnetic cluster candidates with
transverse energy above ∼3 GeV and with a loose
track match in φ(pointing downwards), about 11 000
candidates remain. These remaining events are re-
quired to satisfy medium electron cuts (lateral shower
shapes in first and second layers of EM calorime-
ter and track- cluster matching in φ for tracks with
at least 25 TRT hits) and are then split into two
categories: a) a sample consisting of 1229 muon
bremsstrahlung candidates, with only one track re-
constructed in the barrel inner detector b) a sample
consisting of 85 ionisation electron candidates, with
at least two tracks reconstructed in the barrel inner
detector

In figure 11, the red boxes correspond to candidates
satisfying additional cuts defined for standard tight
high−pT electron identification in ATLAS at η ∼ 0.
These cuts are pT and η-dependent and the ones ap-
plied to most of the events are illustrated by the
dashed red lines in figures 11 and 12: 0.8 < E/p < 2.5
and high to low-threshold TRT hit ratio > 0.08 (indi-
cating the detection of transition radiation produced
only by relativistic particles). Most of the events in
the muon bremsstrahlung sample have small E/p and

Figure 10: Track residuals in the Muon Spectrometer
showing the effect of alignment. a) nominal geometry with
no alignment. b) corrections from the optical alignment
system applied. c) contraints from track-based alignment
applied.

few high-threshold TRT hits (only muons above 100
GeV momentum are expected to produce transition
radiation). The events with low E/p and high TRT
ratio contain a large fraction of muons with combined
momentum measured in the muon spectrometer and
ID above 100 GeV. Only 19 of the 1229 events satisfy
the signal criteria. In contrast, in the electron ioni-
sation sample, a large fraction of events, 36 out of a
total of 85, satisfy the signal criteria. These events
are interpreted as high- energy δ-rays produced in the
inner detector volume by the incoming cosmic muons.

In figure 13, The red curve is the projection of a
two dimensional binned maximum likelihood fit to
the two dimensional plot in figure 12, excluding the
signal candidates. The shape of the projected dis-
tributions is obtained from the muon bremsstrahlung
sample, but the parameters are fitted using the ioni-
sation sample. This fit is used as one of the methods
to estimate the background contamination to the sig-
nal. A clear excess of events with a large ratio of high
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Figure 11: Ratio of high to low-threshold TRT hits versus
E/p, where E is measured in the EM calorimeter and p in
the inner detector, for bremsstrahlung candidates.

Figure 12: Ratio of high to low-threshold TRT hits versus
E/p, where E is measured in the EM calorimeter and p in
the inner detector, for ionization electron candidates.

to low-threshold TRT hits is observed, indicating the
presence of an electron signal.

Figure 14, shows the Distribution of energy to mo-
mentum ratio for the electrons candidates.A clear ac-
cumulation of signal events around E/p = 1 is ob-
served, as expected for electrons.

A second independent method to estimate the
background uses the measured ratio of negatively
to positively charged muons coupled to the fact
that the electron ionisation signal should contain no
positrons: - the µ−/µ+ ratio obtained from the muon
bremsstrahlung sample is ∼ 0.70 - out of the 36 signal
candidates, four have a positive charge, leading to an
expectation of (6.8 ± 3.4) background events in the
signal sample, in good agreement with the estimate
from the first method. The final sample consists of
the 32 candidates with measured negative charge.

Figure 13: Distribution of the ratio of the high to low-
threshold TRT hits for the 85 ionisation electron candi-
dates (black) and for the 49 candidates failing the final
signal criteria (blue).

Figure 14: Distribution of the energy to momentum ratio,
E/p, for the electron candidates of figure 12, after apply-
ing the cut indicated on the ratio of high to low-threshold
TRT hits. The red curve shows the background, estimated
as explained in figure 13 and projected on the E/p distri-
bution. The background under the signal is estimated to
be (8.7 ± 3.1) events, using this first method described
above for figure 13.

9. Conclusions

Due to space limitations, some systems of ATLAS
have been neglected in this paper. Notably the trigger
system which has also been commissioned during this
period and is also ready for fist collisions. In addition,
the ATLAS distributed computing system, with its
world-wide computing infrastructure, a crucial com-
ponent of the analysis and data processing system,
has been undergoing continuous commissioning.

In summary, all the subsystems of ATLAS have
demonstrated capability sufficient to ensure physics
discoveries as soon as collision data is ready later this
year.
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