
PY541: Solutions to Practice Problems

1) To study the isothermal compressibility we can study the partial derivative, (∂P/∂V )T,N . We then recall that
the way we studied the singularity of the specific heat at Tc was by studying the singular behavior of the chemical
potential and inserting this into the formula for the energy, expressed as an integral over single particle states which
depended on µ. We must do the same thing here, beginning with the formula for the pressure as an integral over
energies. It is convenient to use the form obtained after an integration by parts:

P = (2/3)(E/V ) = (2/3)
(2m)3/2

4π2h̄3

∫

∞

0

dε
ε3/2

eβ(ε−µ)
− 1

. (1)

From this formula we can see immediately that ∂P/∂V = 0 below Tc. This follows from the fact that µ = 0 below Tc

and therefore P is independent of V , for a given T . From this formula, all the V dependence of P comes from µ. As
we approach Tc from above, µ approaches a constant (zero) so its derivative vanishes, implying that ∂P/∂V → 0. We
already calculated the behavior of µ near Tc in class when we studied the singularity in CV so we can just use this
result. A good starting point is obtained by differentiating Eq. (1) with respect to V :

∂P

∂V T,N
= (2/3)

(2m)3/2

4π2h̄3 β

∫

∞

0

dε
ε3/2eβ(ε−µ)

(

eβ(ε−µ)
− 1

)2 ·

(

∂µ

∂V

)

T,N

. (2)

Since we want this derivative near Tc we can set µ = 0 and T = Tc inside this integral. We can use the approximate
expression for µ near Tc:

µ ≈

(4πh̄)3

(2m)3(kT )2
[N/V − n∗(T )]2, (3)

where:

n∗(T ) ≡ 2.315
(2mkT )3/2

4π2h̄3 . (4)

Thus, close to Tc we see that:

(

∂µ

∂V

)

T,N

=
(4πh̄)3

(2m)3(kTc)2

(

−2N

V 2

)

[N/V − n∗(T )]. (5)

The last factor in this equation tells us how this partial derivative vanishes as we approach Tc:

[N/V − n∗(T )] = n∗(Tc) − n∗(T ) ≈ 2.315(3/2)
(2mk)3/2T

1/2
c

4π2h̄3 (T − Tc). (6)

Thus we see that ∂P/∂V vanishes linearly in T−Tc and therfore its inverse, which gives the isothermal compressibility,
diverges with an exponent p = 1. To calculate the coefficient, A we must assemble all the various factors that we have
encountered here. In particular, we need to do the integral in Eq. (2). Having set µ = 0 inside this integral we can
rescale it giving:

∫

∞

0

dε
ε3/2eβ(ε)

(

eβ(ε)
− 1

)2 = β−5/2

∫

∞

0

dx
x3/2ex

(ex
− 1)

2 . (7)

The value of this integral, a dimensionless constant, can be found in Pathria, for example. I don’t bother to go
through all the algebra to determine A. I note, however, that we can express it entirely in terms of n and constants
h̄ and m. The only quantity with the correct dimension, those of 1/P , is h̄2/(mn1/3). Thus the factor A must be a
numerical constant times this quantity.

2) The exact formula for the T = 0 paramagnetic magnetization (i.e. the spin part) for an ideal Fermi gas
is:

M = V
µ∗

6π2h̄3 (2m)3/2[(εF + µ∗B)3/2
− (εF − µ∗B)3/2]. (8)
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Naively, all we need to do is to expand this out to order B3:

M ≈ V
µ∗

6π2h̄3 (2m)3/2[3ε
1/2
F µ∗B − (1/8)(µ∗B)3/ε

3/2
F ]. (9)

(Here I use the binomial expansion.)
However, there is a trick here because εF depends weakly on B and this must also be taken into account. εF is

determined, as usual, by the thermodynamic equation for the number of particles:

N = V
1

6π2h̄3 (2m)3/2[(εF + µ∗B)3/2 + (εF − µ∗B)3/2]. (10)

Expanding this equation to order B2 gives:

n ≈

1

6π2h̄3 (2m)3/2[2ε
3/2
F + (3/4)(µ∗B)2/ε

1/2
F ]. (11)

Solving approximately for εF gives:

εF ≈ (3π2n)2/3 h̄2

2m
−

1

4

(µ∗B)2

(3π2n)2/3

2m

h̄2 . (12)

Including this correction to εF in the first term in Eq. (9) gives the cubic term in M :

M (3) = −

V 2µ∗(µ∗B)3m3

3π2nh̄6 . (13)

3a) Bose condensation arises if the density remains finite at µ → 0 without macroscopic occupation of the
groundstate. For this dispersion relation, the density is:

n =

∫

d3p

(2πh̄)3
1

eβ(Ap4
−µ)

− 1
. (14)

Suppose we let µ → 0 in this integral. Then it diverges as:
∫

d3p

p4
(15)

at p → 0. Thus the density diverges as µ → 0 for this dispersion relation, unlike the normal situation where ε ∝ p2.
Thus Bose condensation would not occur in this case.
b) The groundstate energy is now given by:

E0 = V

∫

d3p

(2πh̄)3
Ap4, (16)

where the integral is resticted, as usual, to the Fermi sphere, p < pF . Thus:

E0 =
AV p7

F

14π2h̄3 . (17)

The usual relationship between pF and the density applies:

pF = (3π2n)1/3h̄, (18)

so:

E0 =
AV (3n)7/3π8/3h̄4

14
. (19)

The pressure at T = 0 is:

P = −

(

∂E0

∂V

)

N

=
2A(3n)7/3π8/3h̄4

21
. (20)

Note the unusual power of n which is determined by the power of p in the energy-momentum relation.
Here I have ignored the spin of the fermions. If they have a spin degeneracy g=(2S+1), then Eqs. (16) and (17)

pick up a factor of g on the right hand side and n gets divided by g in Eq. (18). This finally results in a factor of
1/g4/3 in the pressure.


