
Second Exam, PY541, Solutions

1) At room temperature, T is much greater than the rotational temperature but much less than the vibrational
temperature. From the equipartition theorem, CV gets a contribution of (3/2)k from center of mass translational
kinetic energy and k from rotational energy. (Recall that, for a diatomic molecule there are only 2 rotation modes.)
So CV /N = 5k/2 at room temperature. At T=20,000K we are well above the vibrational temperature so vibrational
modes contribute an additional k to the heat capacity: cV /N ≈ 7k/2.

2)

Zin = 1 + 3e−∆/kT . (1)

Note that factor of 3=(2J+1) due to the degeneracy of the J=1 states. The general formula for the heat capacity
from internal degrees of freedom for an ideal gas is:
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In this case:
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and hence:
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This vanishes as 3(∆2/kT 2)e−∆/kT for kT << ∆ and as 3∆2/16kT 2 for kT >> ∆. N.B. This is the internal heat
capacity only. There is an additional contribution from center of mass motion of (3/2)k per atom.

3a) Using the general formula for the average number of particles for µ = 0,

N =
∑

i

1

eβεi − 1
, (5)

now summing over both sets of single particle states with energies p2/2m and p2/2m + ∆ and replacing the sums by
integrals, I obtain:
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b) Tc is simply obtained from Eq. (6) by setting T = Tc, since Tc is the temperature at which the density that will
fit into the system without macroscopic occupation of the groundstate equals the actual density. We must solve this
equation for Tc as a function of N/V = n. This is difficult to do in general but it simplifies when kTc << ∆. The
first term in Eq. (6) has the value given in the exam. The second term can be approximated by dropping the (−1)
term in the denominator since the exponential term is very large. The p-integral then becomes a familiar Gaussian:

n ≈ 2.315(2mkT )3/2/4π2h̄3 + e−∆/kT (mkT )3/2/[(2π)3/2h̄3]. (7)

Since the second term in this equation is already small, we may use the lowest order approximation for Tc in it. This
gives:

n ≈ 2.315[(2mkT )3/2/4π2h̄3]
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(8)

Now solving for T gives:

Tc ≈ Tc0

[

1 + .383e−∆/kTc0

]−2/3

≈ TC0[1 − .255e−∆/kTc0 ]. (9)


