
Solutions Problem Set 5
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The first term gives usual result for B = 0:
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where δ(x) is the Dirac δ-function. Then,
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and for T → 0 it gives,
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There is another correction to M from δεF , calculated in the previous problem. Using the lowest order result for
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3) Suppose 2 eB
hc Ap < N < 2 eB

hc A(p+1) where A is the area of the system and p is a non-negative integer. Lowest p

Landau levels are filled [n = 0, 1, 2, . . . (p−1)], with (2eB/hc)A electrons each and the (p+1)st level (n=p) is partially
filled.
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This result is valid for: (N/A)hc
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FIG. 1:

At B = (N/A)hc
2ep ,
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N [−(p + 1/2) + (p + 1)] = 1/2

eh̄N
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So M(B) looks like the graph shown above. Note that the sawteeth get closer and closer together as B is reduced. A
jump occurs each time a Landau level is completely filled. Such oscillations also occur in 3 dimensions and are called
de Haas-van Alphen oscillations.
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The compresibility is,
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