
Solving the time dependent Schrodinger equation

This has the formal solution

For an eigenstate the time dependence is just a phase

We can expand an arbitrary state in eigenstates, and thus

But to use this we need to know all the eigenstates.
What to do if this is not possible?



Split-operator (Trotter approximation) method 

For any operators A, B:

Time evolution operator

If we use this formula for large but finite n, there is a small error 

Introduce time step in time evolution

Why is this useful?
Only diagonal operations (multiplications)  if we switch back and
forth between real space and momentum space wave functions



The potential energy is diagonal in real space:

The kinetic energy is diagonal in momentum space

If we go back and forth between real and momentum space wave 
functions, the time evolution is obtained just by multiplications
Fourier transforms:



We need to calculate a series of many Fourier integrals
How can the FT be carried out efficiently?
One dimension: discrete Fourier transform in periodic box

It looks like these transforms each require N2 operations
Fast Fourier transform (FFT): only Nlog(N) operations
Read about how the FFT works (e.g., Numerical Recipes)
Available in Julia in package FFTW



Basic FFT functions available  in FFTW

FT: f=fft(g)

Inverse FT: g=ifft(f)

Not using conventional physics normalization
-i f initially is normalized to 1, g will be normalized to N
-but after the inverse transform, f is still normalized to 1
Note that the summation over n is for n=1,...,N.
The function is periodic: 
n=N/2+1,...,N can correspond to negative function arguments.



Propagation of a Gaussian wave packet
Momentum space wave function corresponding to a Gaussian
wave packet centered at x=0 with average momentum k0, width a

Start in momentum space (packet around x=0, momentum >0)

 psi=Vector{ComplexF64}(undef,nn) 
 dk=pi/ll     
 for i=-div(nn,2)+1:div(nn,2) 
    k=i*dk    
    i>0 ? j=i : j=i+nn 
    psi[j]=exp(-(a0*(k-k0)/2)^2) 
 end 
 psi=ifft(psi) 
 psi=normalize(nn,ll,psi)

- nn x-points, box from –ll to ll (length L = 2*ll)



Prepare time evolution operators: 
- time-step dt,  
- potential implemented in a function

    vdt=Vector{ComplexF64}(undef,nn) 
    kdt=Vector{ComplexF64}(undef,nn) 
    dx::Float64=2*ll/nn 
    dk::Float64=2*pi/(2*ll) 
    for i=-div(nn,2)+1:div(nn,2) 
       x::Float64=i*dx 
       k::Float64=i*dk 
       i>0 ? j=i : j=i+nn 
       vdt[j]=exp(-dt*im*potential(x,ll)) 
       kdt[j]=exp(-dt*im*0.5*k^2) 
    end



Fourier transform psi to real space:
Evolve with potential factor: psi .= psi .* vdt
Fourier transform psi to momentum space: 

Evolve with kinetic factor: psi .= psi .* kdt

Repeat as many times as desired

Convergence checks
- as a function of space/momentum discretization
- as a function of time-step

function evolvestep(vdt,kdt,psi) 
    psi .*= vdt 
    psi=fft(psi) 
    psi .*= kdt 
    psi=ifft(psi) 
    return psi 
 end



Wave packet incident on repulsive square potential barrier

L=40, N=1024, V=50 for 3 < x<7, a=1, k0=10, Δt=0.001



Wave packet incident on attractive square potential barrier

L=40, N=1024, V=-50 for 3 < x<7, a=1, k0=10, Δt=0.001



Wave packet incident on a repulsive triangular potential barrier

            L=40, N=1024, a=1, k0=10, Δt=0.001
        potential between x=3 and x=13, Vmax=10



Wave packet incident on a repulsive triangular potential barrier

                 L=40, N=1024, k0=10, Δt=0.001
           potential between x=3 and x=13, Vmax=5



Wave packet incident on a repulsive triangular potential barrier

L=40, N=1024, V=-50 for 3 < x<7, a=1, k0=10, Δt=0.001
          potential between x=3 and x=13, Vmax=7.5


