
The Schrodinger equation in discretized real space
Example of grid-based method for 2D and 3D problems

Basis of states localized in small volume element
➢ large number of such states neded in 2D and 3D
➢ the resulting N*N matrix is too big to be fully diagonalized
➢ special methods exist for lowest states of sparse matrices
     - N up to several million (even 10s or 100s of millions) 

Cubic d-dimensional space elements;

Label by coordinate or number

Non-overlapping
(orthonormal basis)

Coordinate of element



Strictly speaking, these are not
valid wave functions (discontinuous)
However, we will obtain a
scheme that gives the correct
physics in the limit

Size of the basis in a box with side L:
Matrix elements of Hamiltonian
The potential energy is diagonal

Kinetic energy

How do we deal with the non-differentiability?

(we could also in principle use 
some continuous localized functions)



Using central difference operator in place of derivatives
➢ Can we do this when the functions are not smooth?
➢ We will show that it in fact produces correct results
Work in one dimension for simplicity
- Can be directly generalized to higher dimensionality
Replace second derivatives of the basis functions by

Produces non-zero values in the neighboring elements



 The kinetic energy matrix elements are 

This means that when K acts on a state

Non-zero matrix elements of the full Hamiltonian

Generalizes to 2D and 3D; kinetic energy “hops” localized
particle between nearest-neighbor volume elements

denotes a neighbor of j (2,4,6 neighbors in 1D, 2D, 3D)



Proof of correct continuum limit for free particle in a box
1D for simplicity (generalizes easily)

Periodic box of length L;  energy eigenstates

Discretized space, N cells;  we will prove that the eigenstates are

Energy: 

Discrete coordinate limits momentum;

so only N different momenta



Acting with kinetic energy on proposed state:

Shifting the indexes in the j +/- 1 terms by +/- 1

Energy eigenvalues are
Taylor expand for small 

Agrees with continuum result to leading order, i.e., the way
we treated the kinetic energy in the discretized space was ok.

3D:

Note that the discretized energy is lower than the true energy



CuO2 layers in the cuprate 
  high-Tc superconductors

Discrete space (lattice) arises naturally in solids (crystals)

Using localized  atomic-like orbitals (Wannier orbitals),
called the tight-binding method, is often a good starting
point for describing the electronic band structure

The hopping matrix elements
can be obtained in band-structure
calculations; can be non-zero also
between non-nearest-neighbor sites

Tight-binding models form the
basis of many calculations
including also electron-electron
and electron-phonon interactions



Lanczos diagonalization
Real-space discretized Hamiltonian is large in terms of N*N
➢ but number of non-zero elements is ~N,  not N2 

➢ sparse matrix eigenvalue problem
➢ can use special methods for extremal eigenvalues/states
The Lanczos method is a Krylov space method
➢ space spanned by vectors 
Idea: operate on expansion in energy eigenstates

For large  m state with largest |Ek| dominates the sum
➢ Acting multiple times with H projects out extremal state
Get ground state by acting with
➢ we will assume that a suitable constant has been included
Idea is to diagonalize H in space of all
➢ can give low-lying states for small m (e.g., 100-500)



Lanczos basis states
Particular orthogonal basis of states
➢ leads to a tridiagonal Hamiltonian matrix
➢ starts from arbitrary state
First, orhogonal but not normalized basis 

Chose constant such that the two states are orthogonal

Next state; make it orthogonal to the two previous ones:



One can show that these states are orthogonal to all previous ones

Hamiltonian acting on a state

This corresponds to a tri-diagonal matrix, non-zero elements are

Normalized states



Algorithm for constructing the basis and the Hamiltonian
For the Hamiltonian, we need only the factors

where 
To obtain a new state we need the previous two:

We have to store two states and the one we are working on.

We do not have to store H;  act with it “on the fly”

(numbers fn(j), j=1,...,N stored)

Need change in element index as particle “hops” between neigbors

(V includes diag part of K)



1D test: Open chain (hard-wall box), x=[-1,1] (L=2), V=0
Calculated energies as a function of Lanczos basis size M

10     165.47488   1116.18787  3077.75501 
20     36.464497   268.910471   744.48445 
30     15.339143   155.724962   332.96633 
40     11.382975    86.779071   196.57548 
50      9.172055    47.562526   146.64266 
60      7.387181    27.980120    86.13795 
70      4.460574    16.659015    62.67232 
80      2.961753    14.353851    55.00397 
90      2.219407    13.280460    41.92692 
100     1.696802    12.229263    27.56645 
110     1.416573    11.376356    22.04370 
120     1.320332    10.941645    20.09118 
130     1.288321    10.732066    19.15900 
140     1.276327    10.613516    18.51138 
150     1.262146    10.191426    14.60174 
160     1.234164     6.045649    11.09876 
170     1.224724     5.160069    11.01756 
180     1.222428     4.974962    11.00148 
190     1.221635     4.905657    10.99395 
200     1.221430     4.885423    10.99108 

Exact   1.233701     4.934802    11.10330

N=200

Very poor
convergence

Almost the full
Hilbert space has
to be included to
get good energies

Deviations at M=200
reflect discretization
error (negative)



Convergence of the ground state wave function

Lanczos method is not suitable for this type of calculation in 1D
➢ The basis must be of same size as the original one 



2D test: Open box (=hard-wall), x,y=[-1,1], V=0
Energy as a function of Lanczos basis size M

N=200*200

Convergence
after on the
order of
iterations 

20    146.53700   731.057995  1807.662851 
40     36.89144   197.708305   466.352106 
60     19.78221    88.403669   216.571047 
80     14.33864    52.011927   120.846453 
100    11.36276    33.130912    78.125621 
120    9.836334    25.714048    59.319176 
140    9.093991    21.690312    43.007222 
160    8.460393    17.444110    31.878198 
180    7.719381    13.667132    26.425252 
200    6.494491    10.987755    22.538540 
240    5.310526     9.837896    18.969252 
280    3.925524     7.766020    11.142274 
320    2.815453     6.526244    10.305297 
360    2.482839     6.177734     9.963101 
400    2.447032     6.119496     9.841073 
440    2.443210     6.108594     9.789598 
480    2.442875     6.106960     9.772831 

Exact  2.467401     6.168503     9.869604

The method
works better
 in 2D


