
The Schrodinger equation in discretized real space
Example of grid-based method for 2D and 3D problems

Basis of states localized in small volume element
➢ large number of such states neded in 2D and 3D
➢ the resulting N*N matrix is too big to be fully diagonalized
➢ special methods exist for lowest states of sparse matrices
 - N up to several million (even 10s or 100s of millions)

Cubic d-dimensional space elements;

Label by coordinate or number

Non-overlapping
(orthonormal basis)

Coordinate of element

Strictly speaking, these are not
valid wave functions (discontinuous)
However, we will obtain a
scheme that gives the correct
physics in the limit

Size of the basis in a box with side L:
Matrix elements of Hamiltonian
The potential energy is diagonal

Kinetic energy

How do we deal with the non-differentiability?

(we could also in principle use
some continuous localized functions)

Using central difference operator in place of derivatives
➢ Can we do this when the functions are not smooth?
➢ We will show that it in fact produces correct results
Work in one dimension for simplicity
- Can be directly generalized to higher dimensionality
Replace second derivatives of the basis functions by

Produces non-zero values in the neighboring elements

 The kinetic energy matrix elements are

This means that when K acts on a state

Non-zero matrix elements of the full Hamiltonian

Generalizes to 2D and 3D; kinetic energy “hops” localized
particle between nearest-neighbor volume elements

denotes a neighbor of j (2,4,6 neighbors in 1D, 2D, 3D)

Proof of correct continuum limit for free particle in a box
1D for simplicity (generalizes easily)

Periodic box of length L; energy eigenstates

Discretized space, N cells; we will prove that the eigenstates are

Energy:

Discrete coordinate limits momentum;

so only N different momenta

Acting with kinetic energy on proposed state:

Shifting the indexes in the j +/- 1 terms by +/- 1

Energy eigenvalues are
Taylor expand for small

Agrees with continuum result to leading order, i.e., the way
we treated the kinetic energy in the discretized space was ok.

3D:

Note that the discretized energy is lower than the true energy

CuO2 layers in the cuprate
 high-Tc superconductors

Discrete space (lattice) arises naturally in solids (crystals)

Using localized atomic-like orbitals (Wannier orbitals),
called the tight-binding method, is often a good starting
point for describing the electronic band structure

The hopping matrix elements
can be obtained in band-structure
calculations; can be non-zero also
between non-nearest-neighbor sites

Tight-binding models form the
basis of many calculations
including also electron-electron
and electron-phonon interactions

Lanczos diagonalization
Real-space discretized Hamiltonian is large in terms of N*N
➢ but number of non-zero elements is ~N, not N2

➢ sparse matrix eigenvalue problem
➢ can use special methods for extremal eigenvalues/states
The Lanczos method is a Krylov space method
➢ space spanned by vectors
Idea: operate on expansion in energy eigenstates

For large m state with largest |Ek| dominates the sum
➢ Acting multiple times with H projects out extremal state
Get ground state by acting with
➢ we will assume that a suitable constant has been included
Idea is to diagonalize H in space of all
➢ can give low-lying states for small m (e.g., 100-500)

Lanczos basis states
Particular orthogonal basis of states
➢ leads to a tridiagonal Hamiltonian matrix
➢ starts from arbitrary state
First, orhogonal but not normalized basis

Chose constant such that the two states are orthogonal

Next state; make it orthogonal to the two previous ones:

One can show that these states are orthogonal to all previous ones

Hamiltonian acting on a state

This corresponds to a tri-diagonal matrix, non-zero elements are

Normalized states

Algorithm for constructing the basis and the Hamiltonian
For the Hamiltonian, we need only the factors

where
To obtain a new state we need the previous two:

We have to store two states and the one we are working on.

We do not have to store H; act with it “on the fly”

(numbers fn(j), j=1,...,N stored)

Need change in element index as particle “hops” between neigbors

(V includes diag part of K)

1D test: Open chain (hard-wall box), x=[-1,1] (L=2), V=0
Calculated energies as a function of Lanczos basis size M

10 165.47488 1116.18787 3077.75501
20 36.464497 268.910471 744.48445
30 15.339143 155.724962 332.96633
40 11.382975 86.779071 196.57548
50 9.172055 47.562526 146.64266
60 7.387181 27.980120 86.13795
70 4.460574 16.659015 62.67232
80 2.961753 14.353851 55.00397
90 2.219407 13.280460 41.92692
100 1.696802 12.229263 27.56645
110 1.416573 11.376356 22.04370
120 1.320332 10.941645 20.09118
130 1.288321 10.732066 19.15900
140 1.276327 10.613516 18.51138
150 1.262146 10.191426 14.60174
160 1.234164 6.045649 11.09876
170 1.224724 5.160069 11.01756
180 1.222428 4.974962 11.00148
190 1.221635 4.905657 10.99395
200 1.221430 4.885423 10.99108

Exact 1.233701 4.934802 11.10330

N=200

Very poor
convergence

Almost the full
Hilbert space has
to be included to
get good energies

Deviations at M=200
reflect discretization
error (negative)

Convergence of the ground state wave function

Lanczos method is not suitable for this type of calculation in 1D
➢ The basis must be of same size as the original one

2D test: Open box (=hard-wall), x,y=[-1,1], V=0
Energy as a function of Lanczos basis size M

N=200*200

Convergence
after on the
order of
iterations

20 146.53700 731.057995 1807.662851
40 36.89144 197.708305 466.352106
60 19.78221 88.403669 216.571047
80 14.33864 52.011927 120.846453
100 11.36276 33.130912 78.125621
120 9.836334 25.714048 59.319176
140 9.093991 21.690312 43.007222
160 8.460393 17.444110 31.878198
180 7.719381 13.667132 26.425252
200 6.494491 10.987755 22.538540
240 5.310526 9.837896 18.969252
280 3.925524 7.766020 11.142274
320 2.815453 6.526244 10.305297
360 2.482839 6.177734 9.963101
400 2.447032 6.119496 9.841073
440 2.443210 6.108594 9.789598
480 2.442875 6.106960 9.772831

Exact 2.467401 6.168503 9.869604

The method
works better
 in 2D

