Quantum Mechanics

Numerical solutions of the Schrodinger equation

 Integration of 1D and 3D-radial equations

e Variational calculations for 2D and 3D equations
e Solution using matrix diagonalization methods

* Time dependence



Brief review of quantum mechanics

In classical mechanics, a point-particle is described by its
position x(t) and velocity v(t)

 Newton’s equations of motion evolve x,v as functions of time

In quantum mechanics, X and v cannot be precisely known
simultaneously (the uncertainty principle). A particle 1s
described by a wave function W(x.t)

e the probability of the particle being in a volume dx is
P(x,t)dx o< |V (x,t)|*dx

e The Schrodinger equation evolves W(x.t) in time
e There are energy eigenstates of the Schrodinger equation
- for these, only a phase changes with time

U, (x,t) =V, (. (i))(f.i_"'tE“/h‘, h~1.05-107%*Js

= Finding the energy eigenstates (stationary states)
1S an important task




Time dependent Scrodinger equation

0

zhE\IJ(az, t) = HWU(x,t) -> stationary HVY(z) = EV(x)
Stationary Scrodinger equation in three dimensions
h .
- Q—anz‘l’@ LV (2)W(F) = BEY(F)
m

Spherical symmetric potentials; separable

, f 1 f
Uy 2@ =Rpn(r)Yr . (0,0) = ;UL,n.YL.L: (¢, O)

Radial wave function

he o d? N L(L + 1)h?
2m dr? 2mr?

Similar to purely one-dimensional problems

he A2V (x)

2m  dr?

+ V(z)V(x) = EV(x)



Numerov’s method (one dimension)

Stationary Schrodinger equation

he d>(x)

2m  dr?

+ V(z)V(x) = EV(x)

Can be written as (also radial function in three dimensions)

U (z) = f(z)¥(x)

Discretization of space: A,. Consider Taylor expansion

U(A, ) + Z : —F (0

Add expansions for =+ AI

U(Ag) + U(=Ay) = 20(0) + ATT"(0) + S AT (0) + O(AT)

Second derivative determined by the Schrodinger equation
How to deal with the fourth derivative?



Central difference operator
09(0) = 9(Az/2) — g(—Az/2)

629(0) = d[0g(0)] = g(Az) — 29(0) + g(—A,)

() = 750%9(x) + O(A2)

We can rewrite the previous equation X

U(Ay) + U (=Ay) = 20(0) + AT"(0) + S AT (0) + O(AT)
using the second central difference, giving

52W(0) = AW (0) + %Ai\l/(‘”(()) + O(A%)
Approximate the fourth derivative

ALTD(0) = AZ[W"(0)]" = AZ6297(0) + O(A)
leads to the general result |

52U (0) = A2W"(0) + EA?U(S?\IJ”(O) + O(A%)



52U (0) = AZW"(0) + %Aﬁ(SQ\If”(O) + O(AY)
Schrodinger equation V" (z) = f(z)V(z) gives

W (0) = A2£(0)¥(0) + A5 [F(0)(0)] + O(AY)
More compact notation: 9n — g(nA;)

Uy — 20+ Wy = A2 fo¥g + 1—12A?B[f1\111 + oV —2fU0] + O(AY)
Introduce function ¢,, = ¥, (1 — A7 f,/12)

b1 =200 — ¢_1 + A7 fo¥o + O(A])

Julia implementation

for n=2:nx
phi2=dx2*fnl*psi(n-1)+2*phil-phi®
phi0=phil; phil=phi2
fnl=2*(potential (dx*n)-energy)
psi(n)=phil/ (1-dx2*fnl)

end



Boundary-value problems

The Schrodinger equation has to satisfy boundary conditions
> quantization, as not all energies lead to valid solutions

Example: Particle in a box (infinite potential barrier)
V(z) =0 (jz| <1), V(z)=oo (jz] >1)

Using h =1,m =1
U (x) =2[V(x) — E|V¥(x)

Boundary conditions: W(+1) = 0

U(x) = N cos (nmx/2), (n odd) T4n
U(x) = Nsin(nmx/2), (n even) 8

How do we proceed in a numerical integration?



Choose valid boundary conditionas at x=-1

U(—1)=0, U(-1+A,)=A

A 1s arbitrary (not 0); normalize after solution found

“Shooting method”

Pick an energy E

> Integrate to x=1

> [s boundary condition
at x=1 satistied?

> If not, adjust E,
Integrate again

> Use bisection to refine

E = -5.0000000




Solving an equation using bisection (general)
We wish to find the zero of some function

J(E) =0
First find E, and E, bracketing the solution

f(E1) <0, [f(E2)>0

Then evaluate the function at the mid-point value

1
b3 = §(E1 + E»)

Choose new bracketing values:
if f(E3) <0, then ] = F3, E, = Ej
if f(E3) >0, then ] = F,, E; = Ej

Repeat procedure with the new bracketing values
~until f(E3) < €



Bisection search for the ground state
> First find E1, E2 giving different signs at x=+1
> Then do bisection within these brackets

E = 0.00000




More complicated example:
Box with central Gaussian potential barrier

E = 0.00000

Ground state
Search




First excited state

E = 10.00000




Potential well with non-rigid walls

Looking for bound state; W (x — +o00) — 0

Asymptotic solution: ¥(z) = Ae™ + Be . o = /2(V,, — F)

A=0 for x>0
B=0 for x<0

E = -5.0000000

Use the asymptotic /
form for two points

far away from the /
center of the well

Find E for which

the solution decays
to O at the other
boundary




Ground state search

E = -5.0000000

Using criterion:

W(l) = w(-1)




