Chaotic Motion
- here “motion” could refer to some general time-evolution
- dynamical system governed by some differential equation(s)

In the theory of dynamical systems, chaos (deterministic chaos) involves
- aperiodic motion
- sensitive dependence on initial condition (“butterfly effect”)
+ in practice unpredictable long-time behavior
- chaotic motion is not completely random
+ there is some structure in phase space
- universality; many systems exhibit same type of chaos
Chaos theory and nonlinear dynamics is a big field
- here we just discuss basic aspects in the context of Newton’s equations
To have chaos in one-dimensional Newtonian dynamics, we need:
- dissipation (frictional forces)
- periodic driving (energy not conserved)

In higher dimensions (or > 1 “particle”), these external factors are not needed




Example: Damped, driven pendulum
Mass m in gravitational field, rod of length / assumed massless

V(z) = mgl[l — cos (x)] F = —kmsin(x), k = gl

Harmonic motion for small angles x
- we keep full potential; x « [0,27)

adding driving and damping
- both could be achieved by some
mechanism at end of rod

The equation of motion for the angle is
Z(t) = —ksin (z) — yv + Q sin (2t)
When we solve, x « [-,00]. We can bring back to x « [0,27) if needed

This is a standard example in which chaotic motion can be studied

- still not all aspects are completely understood (very rich behavior)

- same equation can be realized with other systems (incl. experimens)
- we will study some basic aspects and learn how to analyze data



Phase space trajectories and attractors

Solving the equation numerically, short enough time step
- graphing the trajectory in phase space, [x(t),v(t)]

First, no driving (Q=0), initial condition x=1,v=0

k=1, v=0.1
1_'|‘I'|' = i e

Q5 & T e, % —

| i ;’/ / — \\ \
05 '_W 7 B f‘l a/ // ,/'_"\\\\\ \\‘\ \

rj BN o )
1 | '

Wi 4 (@)

- e A R
-0.5——\) - A \ A

- . - ) 4

T I R IO R B i il
0 20 40 60 80 100 0.5 0.0 0.5 1.0
: x(1)

Damped oscillations; eventually x—0, v—0
- (x=0,v=0) is the unique attractor of the motion in this case
- the spiral in phase space is transient motion (leading to the attractor)

x(t)
v(t)




Next, adding driving (Q>0), same initial conditions as before

- now the pendulum cannot come to rest
For the chosen parameters, periodic motion eventually sets in

k=1,7v=01,0=1,Q=2
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- the attractor (limit cycle) here is a loop in phase spece
- after transient motion; the attractor is approached asymptotically for t =+

In general there can be different attractors depending on initial conditions
- basins of attraction (one for each attractor) in phase space



Period doubling (bifurcation)
The period of the motion can be any integer multiple of the driving period
Sequence of period doublings can occur versus Q; 7p = 27/Q, 47 /Q, 87/, . ..

Q=1.06000 v Q=1.07500 v Q=1.08100 v
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Same initial conditions, evolved a long time before saving path
- transient has decayed away

Infinite sequence of bifurcations for some Q values

- depending on other parameter values

- also depends on initial conditions (basins of attraction)



Example; dependence on boundary conditions
- different starting (xo,vo) combinations

k=1,v=1/2,Q2=2/3
Q=108000 v Q=108000 v

left case: attractor breaks parity symmetry
- there is another attractor obtained by x—-x, v—-v

right case: attractor is invariant under parity transformation

3 attractors in total for these parameters and energy
- 3 basins of attraction in (xo,vo) space




Example: same initial conditions, different Q values
- other parameters fixed, same values as before

Q=1.40000 v




Visualizing basins of attraction; Poincare sections
Reducing the complexity of the phase space by graphing “cuts”
- e.g., plot velocity each time the pendulum gues through x=0 from above

- do this versus some system parameter, e.g., Q

Note 1: In some cases the
transient may have been
long-lived, showing up as
“unexpected” vertical lines

Note 2: different types

of “dense regions”; how
they look in a plot depends
on the simulation time

Here we can see sequences of period doublings
- transitions to aperiodic motion; chaos



There are several interesting aspects, we focus on period doubling
Blow-up of Q=1.83-1.87 region
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More careful work can show infinite sequence of period doublings
- “route to chaos”



Bifurcations and chaos in a simpler setting - the Logistic map
Iterative map with a control parameter:

Tpi1 = pr,(l—2x,) x0€(0,1)
After transient, settles into periodic or aperiodic (chaotic) sequences

- bifurcations exactly as for pendulum (and many other systems)
1.0

0.0

0.%

3.0 x 4.0 3.82 x 3.87
Universal behavior can be demonstrated rigorously (Feigenbaum)
- by analyzing differential equations



Attractor in the chaotic regime (often called “strange attractor”)
Running a very long time, some fractal density patterns emerge

Q=1.20000

Also, Julia animation
for the Lorenz attractor
(web site, examples)



Alternative way to visualize trajectories: Stroboscopic sampling
Plot a point [x(ti),v(ti)] for ti being a multiple of the driving period

t; = 1I'p =1i2mw /<) 1=0,1,2,...
set to = 0 after transient have decayed away
chaotic motion
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Periodic motion
Q=L1.14000 v Q=1.22000
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The strange attractor is more clearly fractal in this case



Stroboscopic sampling, the movie
- starring: red dots and blue dots (parity twins)

Q=0.98000 v 0




