Statistical errors

Expressing a statistical estimate as A $\pm \sigma$, the meaning normally is

- σ represents one standard deviation of the computed mean value A
- under the assumption of normal-distributed fluctuations

Then, the probability of the true value being

- within [A- σ ,A+ σ] is 68%

- within [A-2 σ ,A+2 σ] is 95%

- within [A-3 σ ,A+3 σ] is 99.7%

For M independent samples Ai:

$$\bar{A} = \frac{1}{M} \sum_{i=1}^{M} A_i$$

The estimated standard deviation of the distribution of values {A_i}

But the "error bar" is the standard deviation of the mean of {A_i}

The mean value fluctuates less than the width σ_A of the distribution

- imagine taking the number of samples M to infinity:

$$\sigma_A = \sqrt{\frac{1}{M}\sum_{i=1}^M (A_i - \bar{A})^2} \quad \text{will approach a constant value} \quad \text{- the standard deviation of the distribution}$$

$$\bar{A} = \frac{1}{M} \sum_{i=1}^{M} A_i$$

 $ar{A} = rac{1}{M} \sum_{i=1}^{M} A_i$ will approach a constant value - the actual value <A> of A

 σ_A cannot be the proper statistical error of A

Variances add: variance of the sum $\sum_{i=1}^{M} A_i$ is $M\sigma_A^2$

- standard deviation of the sum is $\sqrt{M}\sigma_A$
- divide by M; standard deviation of the mean is σ_A/\sqrt{M}
- here M should be replaced by M-1 (reflecting infinite uncertainty if M=1)

$$\sigma = \sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M} (A_i - \bar{A})^2} = \sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M} (A_i^2 - \bar{A}^2)} = \sqrt{\frac{\bar{A}^2 - (\bar{A})^2}{M-1}}$$

Data binning

The statistical error ("error bar") has its conventional meaning only if the values {A_i} are normal distributed

- typically they obey some completely different distribution

Apply central limit theorem to obtain normal distributed "bin averages"

A bin average is based on M samples as before, but now B of them

- B different mean values (estimates of A): $ar{A}_1, ar{A}_2, \dots, ar{A}_B$

$$ar{A}_b = rac{1}{M} \sum_{i=1}^M A_{b,i}$$
 A_{b,i} is value #i belonging to bin b

Regardless of the distribution of individual values

- if M is large enough, the bin averages are normal-distributed Use standard formulas with the bin data:

$$\bar{A} = \frac{1}{B} \sum_{b=1}^{B} \bar{A}_b \quad \sigma = \sqrt{\frac{1}{B(B-1)} \sum_{b=1}^{B} (\bar{A}_b - \bar{A})^2} = \sqrt{\frac{1}{B(B-1)} \sum_{b=1}^{B} (\bar{A}_b^2 - \bar{A}^2)} = \sqrt{\frac{\overline{A^2} - (\bar{A})^2}{B-1}}$$

Emergence of normal distribution

- example: sampling f=1circle in square
- lets just consider the estimate of the mean <f> For each sample, the probabilities of f=0,1 are:

$$P(f=1) = \pi/4, \quad P(f=0) = 1 - \pi/4$$

For N samples, the possible average values A are $A \in \left\{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\right\}$

$$A \in \left\{0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}, 1\right\}$$

the probabilities of these averages are

$$P\left(A = \frac{m}{N}\right) = \frac{N!}{m!(N-m)!} \left(\frac{\pi}{4}\right)^m \left(1 - \frac{\pi}{4}\right)^{N-m}$$

Evolution of P(A) from N=1 to 100

Note: We can think of the probability distribution of a continuum of A values

P(A) is a sum of delta-functions; reflects discrete set of possible values

For large N, a small broadening of the deltas (e.g., bars or Gaussians) give a continuous distribution

$$P(A) = \sum_{m=0}^{N} \frac{N!}{m!(N-m)!} \left(\frac{\pi}{4}\right)^m \left(1 - \frac{\pi}{4}\right)^{N-m} \delta(A - m/N)$$

Modified circle integration

Function with singularity. Inside circle of radius 1:

$$f(r) = r^{-\alpha}, \quad r = \sqrt{x^2 + y^2} \quad \text{integrable if } \alpha < \mathbf{2}$$

$$I = \int_{-1}^{1} dy \int_{-1}^{1} dx f(x, y), \quad f(x, y) = r^{-\alpha}, \text{ if } r \le 1, \quad f(x, y) = 0, \text{ if } r > 1$$

Distribution of radius r inside circle: P(r)=2r ($0 \le r \le 1$) $\int_0^1 P(r)dr = 2\int_0^1 rdr = 1$

Distribution of function values inside the circle:

outside: $\frac{|A_m|}{|A_m|}$

$$P(f)df = P(r) \left| \frac{dr}{df} \right| df = \frac{2}{\alpha} f^{-1-2/\alpha} df$$

$$P(f) = \frac{\pi}{4} \frac{2}{\alpha} f^{-1-2/\alpha} \Theta(f-1) + \left(\frac{\pi}{4} - 1\right) \delta(f)$$

Distribution of average A of f based on N samples:

$$P(A) = \int_0^\infty df_N \cdots \int_0^\infty df_1 P(f_N) \cdots P(f_1) \delta[A - (f_1 + \cdots + f_N)/N]$$

$$P(A) = \int_0^\infty df_N \cdots \int_0^\infty df_1 P(f_N) \cdots P(f_1) \delta[A - (f_1 + \cdots + f_N)/N]$$

Should become normal distribution for large N What is large enough (e.g., to use for data binning)?

How can we compute the probability distribution?

Monte Carlo sampling

- we can get P(A)
- not just <A>

 $\frac{2}{\alpha}f^{-1-2/\alpha}$ $\delta(f)$ $\frac{\mathcal{E}}{\partial d}$ in at A=0 alt, with a de

A

 $\alpha = 3/2$

There is a delta fktn at A=0 in the N=1000 result, with a very small amplitude $(1-\pi/4)^{1000}$

For N=1000, there is still a "fat tail"

- larger N needed to approximte normal distribution

What happens if the function is not integrable?

Example: boarderline case: $f(r) = r^{-\alpha}, \alpha = 2$

- singularity at r=0, log divergence vs lower cut-off r₀

$$\int_0^{2\pi} d\phi \int_{r_0}^{\Phi} \frac{rdr}{r^2} = -2\pi \ln(r_0) = 2\pi \ln(1/r_0)$$

Four independent simulations
- partial averages based on N samples

How is the divergence manifested in MC sampling?

Rare-event behavior

- due to fat tails in P(A)

Occasional very large f values give huge contributions to A, cause spikes in A(N)

The overall behavior of <A(N)>, i.e., the peak of the of distribution of P(A(N)), shows a log behavior

Numerical integration on a mesh vs MC sampling

Scaling of the computational effort:

- may depend on the dimensionality and the required precision ε

Mesh-based method: time ~ $M(\varepsilon)^D \times g(\varepsilon)$

- where $g(\varepsilon)$ depends on integrand and method

Monte Carlo sampling method: $\varepsilon \sim N^{-1/2}$, time $\sim \varepsilon^{-2} \times h(f)$

- where h(f) depends on the function f
- time scaling not explicitly dependent on the dimensionality D
 Which type of method is better?
- for given desired precision ε

The above scaling forms show that MC sampling should be better above some dimensionality D

- in practice, mesh-based methods are difficult even for D=3
- MC sampling can work well even in very high dimensions
 - unless the integrand is strongly varying (low probability of hitting contributing parts of the volume

Romberg integration

Idea: Use two or more trapezoidal integral estimates, extrapolate

- step sizes (decreasing order) h₀, h₁, ..., h_m, integral estimates l₀, l₁, ..., l_m
- use polynomial of order n to fit and extrapolate to h=0
- error for given h scales as h2 (+ higher even powers only)
- use polynomial P(x) with $x=h^2$

Simplest case: 2 points (m=1), using $h_0=(b-a)/n_0$ and $h_1=h_0/2$ ($x_1=x_0/4$)

Function evaluation once only for each point needed

$$I_0 = I_\infty + \epsilon x_0, \quad I_1 = I_\infty + \epsilon x_0/4$$
 reducing h by 50%
$$\to I_\infty = \frac{4}{3}I_1 - \frac{1}{3}I_0 + O(h_0^4) \ [O(x_0^2)]$$
 reducing h by 50%
$$- \text{error should be 1/4 of previous}$$

$$- \epsilon \text{ is unknown factor, eliminated}$$

Computation cost doubled, error reduced by two powers of h₀! Generalizes easily to the case of m estimates