Statistical errors

Expressing a statistical estimate as A * g, the meaning normally is
- o0 represents one standard deviation of the computed mean value A
- under the assumption of normal-distributed fluctuations

Then, the probability of the true value being
- within [A-0,A+0] is 68%

- within [A-20,A+20] is 95%
- within [A-30,A+30] is 99.7%
For M independent samples A::
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But the “error bar” is the standard
- \/F - (A)Q deviation of the mean of {Aj}



The mean value fluctuates less than the width oa of the distribution
- imagine taking the number of samples M to infinity:

B 1 & A — A2 will approach a constant value
OA = \ M Z( —4) - the standard deviation of the distribution
y N — oacannot be the
Z will approach a constant value proper statistical

- the actual value <A> of A error of A
M
Variances add: variance of the sum ), 4iis M o4
- standard deviation of the sumis v Mo 4

- divide by M; standard deviation of the mean is o4 /v M
- here M should be replaced by M-1 (reflecting infinite uncertainty if M=1)
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Data binning
The statistical error (“error bar”) has its conventional meaning only
if the values {Ai} are normal distributed

- typically they obey some completely different distribution

Apply central limit theorem to obtain normal distributed “bin averages”

A bin average is based on M samples as before, but now B of them
- B different mean values (estimates of A): A;. A5,..., Ap

M
. 1 _ : : :
A, = T E_l Aps A, is value #i belonging to bin b

Regardless of the distribution of individual values
- if M is large enough, the bin averages are normal-distributed

Use standard formulas with the bin data:
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Emergence of normal distribution

- example: sampling f=1circle in square

- lets just consider the estimate of the mean <f>
For each sample, the probabilities of f=0,1 are:

P(f=1)=wn/4, P(f=0)=1-7/4
For N samples, the possible , - {O i 2 N -1
average values A are "N'N’ "7 N

the probabilities of these averages are

P (A - %) - m!(NNi m)! (g)m (1 N %)N_m

H=1 N=2 N=23




Evolution of P(A)
from N=1 to 100
Note: We can think of the N=1
probability distribution of
a continuum of A values
P(<x>)
P(A) is a sum of delta-functions;
reflects discrete set of possible
values
For large N, a small broadening of
the deltas (e.g., bars or Gaussians)
give a continuous distribution :
N N! T\ ™ m\ N—-m S(A
PUA) =3 v (1) (1=7)  sa—m/m)



Modified circle integration
Function with singularity. Inside circle of radius 1:

) =r~, =22+ y? integrable if a < 2
I = / dy / def(x,y), flx,y)=r"° ifr<1, f(z,y)=0,ifr>1

1
Distribution of radius r inside circle: P(r)=2r (O<sr<1) / r)dr = 2 / rdr =1
0

Distribution of function values |nS|de the circle:

P(f)df = P(r) d}

T 2
P(f) = S 2 p1=2/ag(f _q (— —1)5
(f) =51 (f =1+ (5 -1)o)
Distribution of average A of f based on N samples:

P(A) = / Ty / T AR P(f) - PUOSIA — (fu -+ fa)/N]

outside:

df_—f 1=2/a gf P(f)=0—-n/4)(f)




P(A) = / T / T ARP(fy) - PROSIA — (fi -+ f)/N

0
Should become normal distribution for large N
What is large enough (e.g., to use for data binning)? a=3/2

How can we compute the

Y zf—1—2/0f
probability distribution? o

-- N=1
— N=1000

Monte Carlo sampling 5(f)
- we can get P(A)
- not just <A>
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There is a delta fktn at A=0 0.5
in the N=1000 result, with a
very small amplitude
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For N=1000, there is still a “fat tail” 0 2
- larger N needed to approximte normal distribution



What happens if the function is not integrable?
Example: boarderline case: f(r) =7r %, a =2

- singularity at r=0, log divergence vs lower cut-off ro

27 [ d
/ dqb/ Tr—; — —2rln(ry) = 27 In(1/ro)
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How is the divergence
manifested in MC sampling?

Rare-event behavior
- due to fat tails in P(A)

Occasional very large f
values give huge contributions
to A, cause spikes in A(N)

The overall behavior of <A(N)>,
i.e., the peak of the of distribution
of P(A(N)), shows a log behavior

< 150

Four independent simulations
- partial averages based on N samples
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Numerical integration on a mesh vs MC sampling
Scaling of the computational effort:
- may depend on the dimensionality and the required precision ¢

Mesh-based method: time ~ M(c)P x g(e)
- where g(c) depends on integrand and method

Monte Carlo sampling method: ¢ ~ N-1/2, time ~ ¢2 x h(f)
- where h(f) depends on the function f

- time scaling not explicitly dependent on the dimensionality D
Which type of method is better?

- for given desired precision ¢

The above scaling forms show that MC sampling should be
better above some dimensionality D

- in practice, mesh-based methods are difficult even for D=3

- MC sampling can work well even in very high dimensions

- unless the integrand is strongly varying (low probability
of hitting contributing parts of the volume




Romberg integration
Idea: Use two or more trapezoidal integral estimates, extrapolate

- step sizes (decreasing order) ho, hy, ..., hm, integral estimates lo, |1, ..., Im

- use polynomial of order n to fit and extrapolate to h=0

- error for given h scales as h2 (+ higher even powers only)

- use polynomial P(x) with x=h?

Simplest case: 2 points (m=1), using ho=(b-a)/no and hi1=ho/2 (x1=x0/4)

01 2 ny = 272,0
0 o 0 0 0 o 0 0 0 0 0 ¢
0 1 To
Function evaluation once only for each point needed
lo = I +€vg, I =Ix+e€xo/d reducing h by 50%
4 1 - i
o Io=c-@—ZI, + O(hé) [O(:vg)] error should be 1/4 of previous

3 3 - ¢ is unknown factor, eliminated
Computation cost doubled, error reduced by two powers of ho!
Generalizes easily to the case of m estimates



