Numerical Integration and Monte Carlo Integration

Elementary schemes for integration over one variable

Multi-dimensional integration

- dimension-by dimension

Problems with multi-dimensional numerical integrations

Monte Carlo sampling of high-dimensional integrals

- includes some aspects of analysis of statistical data

Numerical integration in one dimension

Function of one variable x, assume no singularities

$$I = \int_{a}^{b} f(x)dx$$

Discretize the x-axis

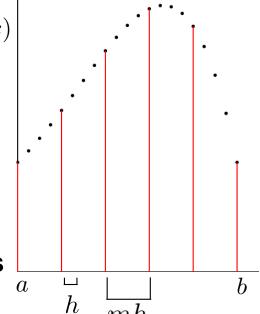
- n+1 equally spaced points including a,b:

$$[a,b] \rightarrow \{x_0, x_1, \dots, x_n\} \quad h \equiv x_i - x_{i-1}$$

Consider groups of m+1 points (m intervals of size h)
Construct the order-m polynomials fitting the m+1 points

$$I = \sum_{i=1}^{n/m} I_i, \quad I_i = \int_{a+(i-1)mh}^{a+imh} P_i(x)dx$$

Simple formulas exist to construct the polynomials P_i(x) Integrate the polynomials exactly and add up Leads to simple integration formulas (sums) for small m Error for one window typically of order O(h^{m+1}) or O(h^{m+2})



Simplest case; m=1 (trapezoidal rule)

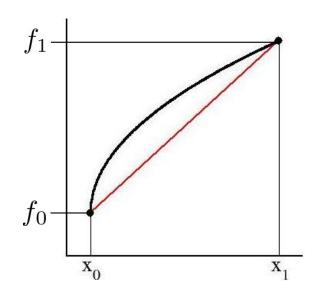
$$f(x_0 + \delta) = a + b\delta, \quad 0 \le \delta \le h$$

$$f(x_0) = f_0, \quad f(x_0 + h) = f_1$$

$$a = f_0, \quad b = (f_1 - f_0)/h$$

$$I_1 = \int_{x_0}^{x_1} P_1(x) dx = \int_0^h P_1(\delta) d\delta = \left[a\delta + b\delta^2/2\right]_0^h$$

$$= h(a + bh/2) = \frac{h}{2}(f_0 + f_1)$$



Here we also see that the error ("step error") is O(h3)

For the total error, we have to sum up step errors from (general m)

$$I = \sum_{i=1}^{n/m} I_i, \quad I_i = \int_{a+(i-1)mh}^{a+imh} P_i(x) dx \qquad n/m = \frac{x_n - x_0}{mh}$$

Assuming no "lucky" error cancellations (from sign oscillations)

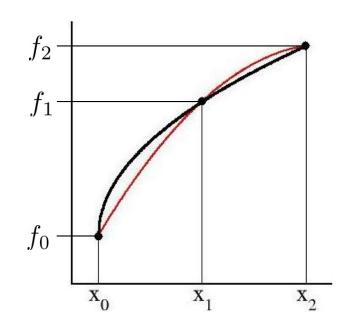
- error is $O(h^{m+2})O(h^{-1}) \sim O(h^{m+1})$

Second order; m=2 (Simpson's rule)

$$f(x_0 + \delta) = a + b\delta + c\delta^2$$
, $0 \le \delta \le 2h$
 $f(x_0) = f_0$, $f(x_0 + h) = f_1$, $f(x_0 + 2h) = f_2$
 $f_0 = a$, $f_1 = a + bh + ch^2$, $f_2 = a + 2bh + 4ch^2$

Solve for a,b,c, integrate polynomial →

$$I_1 = \int_{x_0}^{x_2} P_1(x)dx = \frac{h}{3}(f_0 + 4f_1 + f_2)$$



What is the order of the error?

- from the polynomial it may seem $O(h^4)$ (from missing integrated δ^3 term) Write expansion around x_1 instead:

$$f(x_1 + \delta) = a + b\delta + c\delta^2 + d\delta^3 + e\delta^4, \quad -h \le \delta \le h$$

When integrated in the symmetric window, all odd powers give 0 Same formula for I_1 as above when a,b,c terms included, d term gives 0 Error is $O(h^5)$, becomes $O(h^4)$ for range $[x_0,x_n]$

Extended formulas

$$\int_{x_0}^{x_n} f(x) dx = h(\frac{1}{2}f_0 + f_1 + f_2 + f_3 + \dots f_{n-1} + \frac{1}{2}f_n) + O(h^2) \qquad \text{trapezoid}$$

$$\int_{x_0}^{x_n} f(x) dx = \frac{h}{3}(f_0 + 4f_1 + 2f_2 + 4f_3 + \dots 4f_{n-1} + f_n) + O(h^4) \qquad \text{Simpson}$$

For integrands with singularities at the end point(s); open interval formulas

$$\int_{x_i}^{x_{i+1}} f(x_{i+1/2} + \delta) d\delta = \int_{-h/2}^{h/2} (f_{i+1/2} + b\delta + c\delta^2) d\delta = h f_{i+1/2} + O(h^3)$$

$$\int_{x_0}^{x_n} f(x) dx = h(f_{1/2} + f_{3/2} + \dots f_{n-3/2} + f_{n-1/2}) + O(h^2)$$

Alternative:

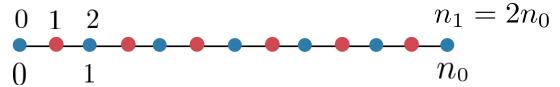
- interior points have O(h³) errors, sum to O(h²), end points contribute O(h²) errors

Romberg integration

Idea: Use two or more trapezoidal integral estimates, extrapolate

- step sizes (decreasing order) h₀, h₁, ..., h_m, integral estimates l₀, l₁, ..., l_m
- use polynomial of order n to fit and extrapolate to h=0
- error for given h scales as h² (+ higher even powers only)
- use polynomial P(x) with $x=h^2$

Simplest case: 2 points (m=1), using $h_0=(b-a)/n_0$ and $h_1=h_0/2$ ($x_1=x_0/4$)



Function evaluation once only for each point needed

$$I_0 = I_\infty + \epsilon x_0, \quad I_1 = I_\infty + \epsilon x_0/4 \qquad \text{reducing h by 50\%} \\ \rightarrow \quad I_\infty = \frac{4}{3}I_1 - \frac{1}{3}I_0 \quad + O(h_0^4) \quad [O(x_0^2)] \qquad \text{- error should be 1/4 of previous} \\ - \quad \epsilon \text{ is unknown factor, eliminated}$$

Computation cost doubled, error reduced by two powers of h₀! Generalizes easily to the case of m estimates (Friday)