
Composite types

struct System
 size::Int
 temp::Float64
 conf::Array{Int,1}
end

The constructor ‘struct’ for creating a composite type named System

These are the fields of System

The fields are accessed as: sys.size, sys.temp, sys.conf

An object of type system can now be created, e.g.,
sys=System(a,b,c)

where a,b,c must match the field types of System

sys can be passed as an argument to a function like any object
A struct is an unmutable object
- but in sys the array field is still mutable (can be changed in a function)

Example in struct.jl

There is a function fieldnames() that returns the field names

There is also mutable struct

More about mutable/unmutable, variable bindings
A variable in julia is bound to (refers to, points to) a value

var value - var is a memory address

- value is stored at that address

when an unmutable object is changed (e.g., var=var+1)
- ‘value’ may not change, but var points to another address with new value
when a mutable object changes
- the address does not change but the contents of that address change
An array is an example of a mutable object
- the binding is to the first memory address where the array is stored
Of relevance to how arguments are passed (from Julia doc):

- var2 = var means that var2 will point to the same value as var

Julia function arguments follow a convention sometimes called "pass-by-sharing", which
means that values are not copied when they are passed to functions. Function
arguments themselves act as new variable bindings (new locations that can refer to
values), but the values they refer to are identical to the passed values. Modifications to
mutable values (such as an array) made within a function will be visible to the caller.

More about functions
function func(a,b,c)
. . .
return d,e
end

without return, the last evaluated expression is returned

return or return nothing returns object ‘nothing’
Single-expression function
func(arguments) = expression
func(a,b,c) = a+b-c

expression can be

multiple statements between

begin … end

Anonymous function
Example from Julia documentation

9/14/21, 9:25 AMFunctions · The Julia Language

Page 7 of 22https://docs.julialang.org/en/v1/manual/functions/

arguments. A classic example is map , which applies a function to each value of an array and returns a

new array containing the resulting values:

julia> map(round, [1.2, 3.5, 1.7])
3-element Vector{Float64}:
 1.0
 4.0
 2.0

This is fine if a named function effecting the transform already exists to pass as the first argument to

map . Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous

function construct allows easy creation of a single-use function object without needing a name:

julia> map(x -> x^2 + 2x - 1, [1, 3, -1])
3-element Vector{Int64}:
 2
 14
 -2

An anonymous function accepting multiple arguments can be written using the syntax (x,y,z)->2x+y-

z . A zero-argument anonymous function is written as ()->3 . The idea of a function with no arguments

may seem strange, but is useful for "delaying" a computation. In this usage, a block of code is wrapped in

a zero-argument function, which is later invoked by calling it as f .

As an example, consider this call to get :

get(dict, key) dodo
 # default value calculated here
 time()
endend

The code above is equivalent to calling get with an anonymous function containing the code enclosed

between do and end , like so:

get(()->time(), dict, key)

map(function,collection)

is a Base function, performs

function on each element of

collection

Read about: optional arguments, Varargs (arbitrary number of arguments), keywords…

Functions are objects that can be assigned, passed to other functions, etc
func2=func somefunction(func,…)

Modules
Can be used to organize codes
- make modules with functions and data structures for specifc tasks

module ModName
...
export vari1, func1
...
end

- variables and functions can be exported to code block using the module

 include(“modname.jl”)
using .ModName using .ModName
if module declared in same file if in a different file

- include() inserts the contents of the fileEven functions/data not exported
can be accessed: ModName.vari2

Modname.func2
Those exported do not

need ModName

. before module name required if the module is not installed as a package
- only make a package if you have developed a stable module
Example in module.jl, to be used with main.jl

Using modules available in the “community”
Packages (which may involve several modules) that are registered can be
added with the REPL package manager

https://github.com/JuliaRegistries/General
Information about the registry and all its packages available here

You can register your own package if you make something useful!
There is a search function, but just googling “Julia whatyouwant” may be better

https://juliapackages.com/p/quadgk
Example: after googling “Julia integration” I quickly found QuadGK

Installation in the REPL package manager (“]” at the Julia prompt)

Now we can integrate
functions of one variable:

The “let” block; a simple way to store values in functions
We often want to store the “internal state” of some function
without having to pass that state as an argument
For example, rand() can be called without any argument
- but clearly there must be some internal state that is somehow saved
References to data (pointers) can be permanently saved in “let” blocks
- functions defined inside a let block can access these pointers

let
 r = Ref(convert(UInt64,1))
 global function ran64()
 r[]=r[]*a+c
 end
end

Example, part of letblock.jl (random number generator, inside a module)
r is a reference (pointer) to an unsigned integer

- the value at r is accessed by r[]

- would be r[i] for element i of a 1-dim array

The function must be declared global to make it accessible outside let-end
- global function objects are treated as constants, not slowing things down
- the integers a and c are declared as constants before let
The let block is a local hard scope, many other uses (see Julia doc)

Why not just use r declared in the global scope?

- for efficiency, avoid using global variables

