
Why Julia?
There are traditionally two categories of computer languages:
Compiled - script file translated to machine code and linked to libraries once
- the executable program file is static, data types static

Interpreted - the script file is translated line-by-line at run time
- there is no static executable, allows more flexible functionality

- examples: C/C++, Fortran
- fast, suitable for demanding high-performance computing
- not user-friendly handling of external packages, e.g., graphics

- examples: Python, Perl, R
- slow; most time is spent translating the script over and over again
- more flexible handling of data (dynamic, automatic data typing)
- friendly integration of packages, graphics, notebooks,…
- not user-friendly for improving efficiency (e.g., precompiled parts)

Julia: first successful “best of both worlds” language

Key: Just-in-time (just-ahead-of-time) compilation
- goes through the script line-by-line, but saves

compiled machine code for efficiency-critical parts
(loops, entire functions)

Almost as fast as C/C++ and Fortran (within ~10%)
- designed specifically for high-performance scientific computing
As dynamic as Python
- data types can change dynamically, but can also be declared
Good mechanism for incorporating external packages/libraries

Library module “Base” is automatically included, extensive functionality
Other modules can easily be imported and used
- growing user community, many packages available in different fields

https://julialang.org

- C/C++ and Fortran codes can also be incorporated easily

- v0 launched in 2012, v1.0 in 2018, now v1.10.5

https://julialang.org

Introduction to Julia

https://julialang.org

The language has many features; here we just cover the basics
- PY502 is not a software engineering course
- We will not cover advanced programming
- We will (later) pay attention to code performance (execution speed)

9/1/21, 7:39 PMPY 502, Julia program examples

Page 1 of 1http://physics.bu.edu/py502/lect1/examples/index.html

Julia Program Examples

Some of the Julia code examples discussed during the lectures are available here. Comments in each file
explain the functionality and the concepts illustrated.

Variable types and elements to get started

[int1.jl] Integer declaration and wrap-around (mod) behavior
[int2.jl] Integer declarations; modified version of int1, run-time error due to type mismatch
[randomarray.jl] Function with two methods; generates array of Float32 or Float64 random numbers
[matrix.jl] Matrices and matrix operations

http://physics.bu.edu/py502/lect1/examples/

Teaching method: brief general principles + code examples
- commented codes available on the course web site

There are not yet any good Julia books (?)
Documentation on the Julia site is quite good
- please read and practice elements we do not cover here!

Three ways to run Julia
1) Code written in file, run from terminal command line

$ julia yourcode.jl
This is the way for serious work

(list of arguments may follow)

- Package manager (import modules with specific functionality)
3) Run in Jupyter notebook

- Install the Julia kernel first http://docs.juliaplots.org
Examples with animations:

- Useful for learning and testing (small code pieces)

2) Using interactiv REPL (read-execute-print-loop) session
$ julia (opens interactive session)

Bit representation of integers

. . . .0 0 0 01 1 1
B-1 3 2 1 0

bit values b(i) = 0/1
bit index i = 0,1,…,B-1

A “word” representing a number in a computer consists of B bits
- normally B=32 or 64, also in some cases 16 or 128
- a group of 8 bits is called a “byte” (normally a word is 4 or 8 bytes)

For signed integers, the last bit (B-1) is called the “sign bit”
- bB-1 = 0 for positive (or zero) values, bB-1 = 1 for negative values

00 …. 0000 = 0
00 …. 0001 = 1
00 …. 0010 = 2,….

11 …. 1111 = -1
11 …. 1110 = -2
11 …. 1101 = -3,….

- most practical way for computer algebra

For I < 0, “two’s complement” representation:
<latexit sha1_base64="TR07+Q4vG3Vw4AVYQSojW6TkO+M=">AAACFnicbZDLSgMxFIYz9VbrbdSlm2AR2sWUmVLUTaHUjd1VsBfoZcikaRuazAxJRijDPIUbX8WNC0XcijvfxvSy0NYDgY//P4eT83sho1LZ9reR2tjc2t5J72b29g8Oj8zjk6YMIoFJAwcsEG0PScKoTxqKKkbaoSCIe4y0vMnNzG89ECFp4N+raUh6HI18OqQYKS25plWDZdiVEXdjWraTfly1ign0cjQPi30KLY1Vy8kXZ4aTuGbWLtjzguvgLCELllV3za/uIMARJ77CDEnZcexQ9WIkFMWMJJluJEmI8ASNSEejjziRvXh+VgIvtDKAw0Do5ys4V39PxIhLOeWe7uRIjeWqNxP/8zqRGl73YuqHkSI+XiwaRgyqAM4yggMqCFZsqgFhQfVfIR4jgbDSSWZ0CM7qyevQLBacy0LprpSt1JZxpMEZOAc54IArUAG3oA4aAINH8AxewZvxZLwY78bHojVlLGdOwZ8yPn8AsLybVQ==</latexit>

I =
B�2X

i=0

b(i)2i � b(B � 1)2B�1

For positive (or 0) integer I, the value corresponding to the bits is
<latexit sha1_base64="QCZH16pXJqzFB0KBbjHRbzLOmvg=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQF5akFHVTKHWjuwr2AW0aJtNJO3QmCTMToYSu3Pgrblwo4tZvcOffOG2z0NYDFw7n3Mu993gRo1JZ1reRWVldW9/Ibua2tnd298z9g6YMY4FJA4csFG0PScJoQBqKKkbakSCIe4y0vNH11G89ECFpGNyrcUQcjgYB9SlGSkuueXwLK7ArY+4mtGJNeknt3J5Ar0DPYKlHXTNvFa0Z4DKxU5IHKequ+dXthzjmJFCYISk7thUpJ0FCUczIJNeNJYkQHqEB6WgaIE6kk8zemMBTrfShHwpdgYIz9fdEgriUY+7pTo7UUC56U/E/rxMr/8pJaBDFigR4vsiPGVQhnGYC+1QQrNhYE4QF1bdCPEQCYaWTy+kQ7MWXl0mzVLQviuW7cr5aS+PIgiNwAgrABpegCm5AHTQABo/gGbyCN+PJeDHejY95a8ZIZw7BHxifP8P3lsU=</latexit>

I =
B�1X

i=0

b(i)2i

- integer operations have“wrap around” behavior (mod 2B for unsigned)

Positive to negative:
- reverse all bits
- add 1 (ignore overflow)

Example: integer declarations and operations
function integertest()
 a::UInt32=typemax(UInt32)
 b::UInt32=1
 c=a+b
 return a,c
end
x,y=integertest()
println(x)
println(y)
function “integertest” with no arguments is declared
variables a, b declared as unsigned 32-bit integers and given values
two integers are returned by the function
Base function println writes a line to standard output

$ 4294967295
$ 0

Output: 232 - 1
(232 - 1 + 1) mod 232

Try also with “Int32” instead of “UInt32”!

[int1.jl]

Base function typemax gives largest value

- typemin gives smallest

Example with an error
Changing the function to (keep the rest of the previous example)
function integertest()
 a::UInt32=typemax(UInt32)
 b::UInt32=1
 b=a+1
 return a,b
end
Running gives this error message (+ more):

ERROR: LoadError: InexactError: trunc(UInt32, 4294967296)
Reason: My computer (and likely yours) is based on 64-bit architecture
- the constant “1” is then of type Integer64
- a+1 also is of type Integer64 (the “larger” of the two types involved)
- b is declared as UInt32 and cannot represent the value pf a+1
Integer types in Julia
Int8, Int16, Int32, Int64, Int128
UInt8, UInt16, UInt32, UInt64, UInt128

Int is the default integer type

- normally same as Int64

[int2.jl]

