Cluster finding/flipping

Clusters can be constructed and flipped in the same process
> Decide whether or not to flip (50% probability) before starting

Store array with flags for spins visited

e Start with spin that has not been visited; seed of cluster

e Add connected (by filled bonds) neighbors to cluster

e Examine the non-visited neighbors of the new spins added

e Add connected neighbors to cluster

e Until no more spins in the cluster with non-visited neighbors

Use stack to store spins with neighbors to be examined



Wolltt cluster algorithm

Construct a single cluster, starting from randomly chosen
“seed” spin. Flip the cluster with probabiolity 1.

Cluster construction same as in Swendsen-Wang, but
generate filled/non-filled bonds at the same time as the
neighbors of added spins are examined.

The Wollf clusters are the same as in Swendsen-Wang, but the
probability 1s higher to flip large clusters

Leads to slightly smaller dynamic exponents

The Wolif method 1s easier to generalize to other models



Generality of Metropolis and cluster methods

The Metropolis method can be used for any system

> (Critical slowing down can be serious

> The dynamics can be slow also in non-critical systems,
e.g., 1n systems with “glassy” behavior

Cluster algorithms have been developed for many systems,
but there are still no working cluster methods for
> Magnets with frustration (competing interactions)

- the clusters span the whole system (percolate)

before the critical point is reached (T > Tc¢)

> Magnets 1n external magnetic fields
> Most systems of particles in continuous space

- Not known how to construct clusters in general



Programming the Swendsen-Wang algorithm

To construct clusters, we need arrays containing

* Neighbors of given site s: neighbor[i,s]

* Two spins connected by given bond b: bondspin[i,b]
* Bonds connected to given spin s: spinbond[i,s]

Labeling of spins and bonds; example in 2D

29 27 29 31

24 26 28 30
12 13 14 15

177 19 21 23

16 18 /20 22 Note: in Julia the labels
_<8> <9 IOJ \1 have to start from 1,

adjust accordingly




Storing spin and bond variables in one-dimensional vectors

spin[l:n], bond[l:d*n]

Construction of lattice arrays in 2D
subroutine lattice

for sO=1:n
xO0=mod (sO-1,11)
yO=div(s0-1,11
Xx1=mod (x0+1,11)
x2=mod (x0-1,11)
yl=mod(y0O+1,11)
y2=mod(y0-1,11)
sl=1+x1+y0*11
s2=1+x0+y1*11
s3=1+x2+y0*11
S4=1+x0+y2*11

neighbor
neighbor
neighbor
neighbor
bondspin
bondspin
bondspin
bondspin
spinbond
spinbond
spinbond
spinbond

end do

(1,s50]=s1
[2,50]=s2
[3,50]=s3
(4 ,50]=s4
[(1,2*s0]=s0
[2,2*%s0]=s1

[1,2*s0+1]=s0
[2,2%s0+1]=s2

[1,s0]
[2,50]
[3,51]

(4 ,52]

=2*s0
=2*s0+1
=2%*s0
=2*s0+1



Main program

bprob=1.d0-exp(-2.d0/temp)
for i1i=1:div(steps,h4)
castbonds ()
flipclusters()
end
for j=1l:bins
resetbindatal()
for i=1:steps
castbonds ()
flipclusters()
measure ()
end
writebindata(n,steps)
end



Generating bond configuration

function castbonds ()

for b=1:2"n
if spin[bondspin[l,b]]==spin[bondspin[2,b]]
if ran()<=bprob
bond[b]=true
else
bond[b]=false
end
else
bond[b]=F
end
end

For cluster finding/flipping, see program sw.jl



Construct/thp clusters

notvisited[s] = T for sites not yet visited
notvisited[s] = F for sites that have been visited

function flipclusters()
Notvisited[:] .= T
cseed=1

1 if (ran()<0.5d0) then
flipclus=.true.
else
flipclus=.false.
endif

notvisited(cseed)=.false.

if (flipclus) spin(cseed)=-spin(cseed)
nstack=1

stack(l)=cseed



do
1f (nstack==0) exit
s@=stack (nstack)
nstack=nstack-1
do i=1,nbors
sl=neighbor(i,s0)
if (bond(spinbond(i,s0)).and.notvisited(sl)) then
notvisited(sl)=.false.
if (flipclus) spin(sl)=-spin(sl)
nstack=nstack+1
stack(nstack)=s1l
endif
enddo
enddo

do i=cseed+1l,n-1 I find starting spin
if (notvisited(i)) then ! for the next cluster
cseed=1i
goto 1
endif
enddo



