
Cluster finding/flipping
Clusters can be constructed and flipped in the same process
➢ Decide whether or not to flip (50% probability) before starting

Store array with flags for spins visited

• Start with spin that has not been visited; seed of cluster
• Add connected (by filled bonds) neighbors to cluster
• Examine the non-visited neighbors of the new spins added
• Add connected neighbors to cluster
• Until no more spins in the cluster with non-visited neighbors

Use stack to store spins with neighbors to be examined

Wolff cluster algorithm
Construct a single cluster, starting from randomly chosen
“seed” spin. Flip the cluster with probabiolity 1.

The Wolff clusters are the same as in Swendsen-Wang, but the
probability is higher to flip large clusters

Leads to slightly smaller dynamic exponents

Cluster construction same as in Swendsen-Wang, but
generate filled/non-filled bonds at the same time as the
neighbors of added spins are examined.

The Wolff method is easier to generalize to other models

Generality of Metropolis and cluster methods
The Metropolis method can be used for any system
➢ Critical slowing down can be serious
➢ The dynamics can be slow also in non-critical systems,
 e.g., in systems with “glassy” behavior

Cluster algorithms have been developed for many systems,
but there are still no working cluster methods for
➢ Magnets with frustration (competing interactions)
 - the clusters span the whole system (percolate)
 before the critical point is reached (T > Tc)
➢ Magnets in external magnetic fields
➢ Most systems of particles in continuous space
 - Not known how to construct clusters in general

To construct clusters, we need arrays containing
• Neighbors of given site s: neighbor[i,s]
• Two spins connected by given bond b: bondspin[i,b]
• Bonds connected to given spin s: spinbond[i,s]

Labeling of spins and bonds; example in 2D

Programming the Swendsen-Wang algorithm

Note: in Julia the labels
have to start from 1,
adjust accordingly

subroutine lattice

 for s0=1:n
 x0=mod(s0-1,ll)
 y0=div(s0-1,ll
 x1=mod(x0+1,ll)
 x2=mod(x0-1,ll)
 y1=mod(y0+1,ll)
 y2=mod(y0-1,ll)
 s1=1+x1+y0*ll
 s2=1+x0+y1*ll
 s3=1+x2+y0*ll
 s4=1+x0+y2*ll

 neighbor[1,s0]=s1
 neighbor[2,s0]=s2
 neighbor[3,s0]=s3
 neighbor[4,s0]=s4
 bondspin[1,2*s0]=s0
 bondspin[2,2*s0]=s1
 bondspin[1,2*s0+1]=s0
 bondspin[2,2*s0+1]=s2
 spinbond[1,s0]=2*s0
 spinbond[2,s0]=2*s0+1
 spinbond[3,s1]=2*s0
 spinbond[4,s2]=2*s0+1
end do

Storing spin and bond variables in one-dimensional vectors
spin[1:n], bond[1:d*n]

Construction of lattice arrays in 2D

Main program

 bprob=1.d0-exp(-2.d0/temp)
 for i=1:div(steps,4)
 castbonds()
 flipclusters()
 end
 for j=1:bins
 resetbindata()
 for i=1:steps
 castbonds()
 flipclusters()
 measure()
 end
 writebindata(n,steps)
 end

Generating bond configuration

function castbonds()

for b=1:2^n
 if spin[bondspin[1,b]]==spin[bondspin[2,b]]
 if ran()<=bprob
 bond[b]=true
 else
 bond[b]=false
 end
 else
 bond[b]=F
 end
end

For cluster finding/flipping, see program sw.jl

Construct/flip clusters

function flipclusters()
Notvisited[:] .= T
cseed=1

 1 if (ran()<0.5d0) then
 flipclus=.true.
 else
 flipclus=.false.
 endif

 notvisited(cseed)=.false.
 if (flipclus) spin(cseed)=-spin(cseed)
 nstack=1
 stack(1)=cseed

notvisited[s] = T for sites not yet visited
notvisited[s] = F for sites that have been visited

 do
 if (nstack==0) exit
 s0=stack(nstack)
 nstack=nstack-1
 do i=1,nbors
 s1=neighbor(i,s0)
 if (bond(spinbond(i,s0)).and.notvisited(s1)) then
 notvisited(s1)=.false.
 if (flipclus) spin(s1)=-spin(s1)
 nstack=nstack+1
 stack(nstack)=s1
 endif
 enddo
 enddo

 do i=cseed+1,n-1 ! find starting spin
 if (notvisited(i)) then ! for the next cluster
 cseed=i
 goto 1
 endif
 enddo

