
Homework 5; due Thursday, November 7

PY 502, Computational Physics, Fall 2024

Department of Physics, Boston University

Instructor: Anders Sandvik

SCHRÖDINGER EQUATION IN TWO DIMENSIONS

Confining potentials can be realized in semi-conductor nano-structures by combining materials with
different band gaps. In a quantum dot, one or several electrons are confined to a finite volume, the
shape of which can be taylored using nano-fabrication technologies. Due to the confinement, the
electrons exhibit discrete energy levels and are therefore some times called “artificial atoms”. In
this assignment you will calculate the lowest energy eigenstates and wave functions for a rectangular
quantum dot with an internal structure, as shown in the figure. The dot is assumed to be very
thin in the third direction, so that it is effectively two-dimensional. The shaded areas have a lower
(negative) potential −V0 than the rest of the structure (at potential V = 0), and hence an electron
will be attracted to these regions.
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Figure 1: Geometry of the semiconductur nano-structure. The potential V = −V0 in the shaded
areas an V = 0 elsewhere inside the quantum dot. The two low-potential areas are identical and
symmetrically located as shown. Outside the boundaries of the Lx × Ly structure the potential is
assumed to be infinite.
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We write the Schrödinger equation in two dimensions in the form

−1

2

(
∂2

∂x2
+

∂2

∂y2

)
Ψ(x, y) + αV (x, y)Ψ(x, y) = αEΨ(x, y), (1)

where α = m/h̄2. It will be convenient to measure lengths in units of nm (10−9 m), and energies
in eV (1.602 · 10−19 J). With the electron mass m = 9.109 · 10−31 kg and h̄ = 1.055 · 10−34 Js, we
then get
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2

(
∂2

∂x2
+

∂2

∂y2

)
Ψ(x, y) + βV (x, y)Ψ(x, y) = βEΨ(x, y), (2)

where

β =
(10−9m/nm)2(1.602 · 10−19(J/eV) · 9.109 · 10−31kg

1.11302 · 10−68J2s2
=

13.11

eVnm2
. (3)

You should use two different methods to solve the two-dimensional Schrödinger equation approx-
imately: A) Using a variational method with the particle-in-a-box eigenstates as a basis set, and
B) using the Lanczos method to solve the real-space discretized equation. You should write your
programs so that any values of the parameters defined in the figure can be studied. You should
then compare results obtained with the two methods for the four lowest eigenstates of a structure
explained in the figure, with the following parameters:

Lx = 5nm, Ly = 10nm, a = 1.0nm (corresponding to x0 = 2nm), b = 0.5nm, y0 = 2nm, and
V0 = 0.1eV (and note the sign; V = −V0 in the regions of the attractive internal potential).

A) Variational calculation

The particle-in-a-box eigenfunctions for a rectangular infinite-wall box wiht x ∈ [0, Lx] and y ∈
[0, Ly] are

ϕkx,ky(x, y) = fkx(x)gky(y), kx, ky = 1, 2. . . . , (4)

where

fkx(x) =

√
2

Lx
sin (kxπx/Lx), gky(y) =

√
2

Ly
sin (kyπy/Ly). (5)

In the variational calculation, you should use the basis set consisting of the N = NxNy functions
ϕkx,ky with kx = 1, . . . , Nx and ky = 1, . . . , Ny, where Nx and Ny should be given as input to the
program. Note that in the program the two indices kx, ky should be combined into a single index
labeling the states, e.g., k = kx + (ky − 1)Nx, so that k = 1, 2, . . . , N and the hamiltonian can be
constructed as an N ×N matrix.

The energies of these wavefunctions are, keeping the constant β as defined in the Schrödinger
equation (2),

βEkx,ky =
π2

2

[(
kx
Lx

)2

+

(
ky
Ly

)2
]
. (6)

The integrals needed for the potential-energy part of the variational Hamiltonian are

V
px,py
kx,ky

=

∫ ∫
dxdy ϕpx,py(x, y)V (x, y)ϕkx,ky(x, y), (7)
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which can be easily calculated analytically since the potential inside the box is non-zero only in
rectangular regions. To this end, you will need the following indefinite integrals:∫

sin2(ax)dx =
1

2
x− 1

4a
sin(2ax), (8)∫

sin(ax)sin(bx)dx =
sin[(a− b)x]

2(a− b)
− sin[(a+ b)x]

2(a+ b)
, |a| ≠ |b|. (9)

In addition to the eigenvalues βEn obtained by diagonalizing the Hamiltonian, you should also ex-
tract the eigenfunctions corresponding to the four lowest eigenvalues. They are linear combinations
of the basis functions, with weights given by the eigenvectors H that are obtained in the form of a
transformation matrix in the diagonalization. Chose a reasonable grid, e.g., 100×200 (x, y) points,
for writing the wave functions to files.

B) Lanczos calculation

In the real-space discretized 2D Schrödinger equation the kinetic energy acting on a localized state
gives

K|j⟩ = 2

∆2
|j⟩ − 1

2

1

∆2

∑
δ[j]

|δ[j]⟩, (10)

where δ[j] is a nearest-neighbor of element j. For interior elements there are 4 neighbors, but on
the edges there can be no “hopping” out of the dot. The potential energy is diagonal;

βV |j⟩ = −βV0|j⟩, if (xj , yj) inside low−potential region, 0 else. (11)

From these expressions the matrix elements ⟨j|K|l⟩ and ⟨j|V |l⟩ are obtained.

The discretization ∆ should be chosen in a such a way that the system dimensions are integer
multiples of ∆; Lx = Nx∆, Ly = Ny∆.

Use the variant of the lanczos method where the normalized basis states |ϕm⟩ are generated directly.
This avoids problems with large numbers when computing the normalization constants of the un-
normalized states |fm⟩.

Your program should write all the Lanczos eigenvalues to disk, and also produce the wave functions
corresponding to the four lowest energies.

Specific instructions (A and B)

Consider the four lowest energy eigenvalues and the corresponding states. Give all energies in eV
(i.e., divide out the constant β from the calculated eigenvalues βEn—note that with the units we
are using the unit of βE is nm−2).

You should check the energy convergence as the size of the basis is increased in the variational
calculation. You should carry out the Lanczos calculation for different discretizations ∆ (e.g., ∆ =
0.2, 0.1, 0.05, 0.025 and smaller if you can with your computer resources) and check the convergence
of the energies as the number of Lanczos iterations is increased. You may not be able to completely
converge the calculations before the computational effort becomes too large, or instabilities related
to non-orthogonality (due to build-up of numerical truncation errors) start to plague the Lanczos
calculation. Mention any numerical problems you encounter in the report.
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Write a short report on the results and interpretations, including graphs showing your energy
convergence tests. You should also produce plots showing the probability densities (absolute-square
of the wavefunctions) inside the quantum dot for the four lowest states (resulting from the most
accurate calculations you are able do in the variational as well as the Lanczos calculation)). You
can use elements from example codes on the course web sites.
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