
PY 502, Computational Physics, Fall 2024

Department of Physics, Boston University

Instructor: Anders Sandvik

INTEGRABLE SINGULARITIES

Consider the function

f(x) =
1

(ϵ+ x)α
, (1)

with ϵ ≥ 0 and 0 < α < 1. For ϵ = 0 this function has an integrable singularity at x = 0. In this
assignment you will investigate the convergence of two simple numerical integration schemes for
ϵ = 1, ϵ = 0, and ϵ ≈ 0. In the process, you will learn about the concept of “cross-over” behavior
(in part C), which is very common in physics.
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The integration range should be from x0 = 0 to an upper bound xN given by the user. Write the
program so that it carries out a series of integrations for different number of intervals N of the
form N = N0 × 2n with n = 0, 1, . . . , nmax, where N0 and nmax are numbers given by the user.

With the above definitions, the discretization step is h(N) = (xN − x0)/N . You will study the
rate of convergence of the first-order and second-order approximants I1(N) and I2(N) to the exact
value I of the integral by analyzing the error ∆k(N) = |Ik(N) − I|. If the error has a power-law
form;

∆k(N) = |Ik(N)− I| ∝ hγk ∝ N−γk , k = 1, 2, (4)

then data points [ln(h), ln(∆k(N))] calculated for different values of N (i.e., h) should fall on a
straight line with slope γk.

A) Convergence for a non-singular integrand

Confirm the leading-order error scaling ∼ h2 and ∼ h3 of the integration formulas (2) and (3),
respectively, for a non-singular integrand. Use the parameters ϵ = 1 and α = 1/2 in Eq. (1), upper
integration limit xN = 1, and initial number of points N0 = 10. Produce a graph showing results
for [ln(h), ln(∆k(N))] and lines corresponding to the expected exponents γ1=2 and γ2=3.

B) Convergence when the integrand is singular

Investigate the rate of convergence of the approximants I1(N) and I2(N) to the exact value of the
integral when ϵ = 0 and the upper integration limit xN = 1. Use N0 = 10. You should again find
that the error behaves as a power-law;

∆k(N) = |Ik(N)− I| ∝ hγk , k = 1, 2. (5)

What values do you obtain for the first and second order exponents γ1 and γ2 in the cases α = 1/2
and α = 3/4? You can find the exponent by fitting a straight line to the points [ln(h), ln(∆k(N))]
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(using some software of your choice or a simple program based on the simple formulas we discussed).
In this case the data have no relevant error bars and, depending on how you do the fitting, you will
either not need error bars or you can set them to an arbitrary non-zero constant, e.g., 1. Produce
graphs showing the data and line fits. How can you explain the power-laws with the exponents
obtained?

C) Convergence when the integrand is almost singular

Now consider ϵ = 10−5 and α = 1/2. Using the same values as in B) for the other parameters,
investigate the convergence rate in the same way as above. You should now see a different behavior
for small and large n (the maximum n will in principle be dictated by the double-precision floating-
point numerical accuracy, but in practice by the time you are willing to run the calculation; n ≈ 20
will be sufficient).

What are the exponents γ1 and γ2 for small and large n? How can you explain the results? How
do you explain the location of the “cross-over” region where the behavior (exponent) changes?

Produce graphs showing the data points [ln(h), ln(∆k(n))] and the lines you have fit to the data.
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