TeVatron Results on Top Quark Physics

Andy Hocker University of Rochester for the CDF and D0 Collaborations PIC 2004

The Top Quark

- Discovery of top in 1995 ushered in a new experimental program
 - Fully explore the properties of this newest particle
- ~100 pb⁻¹ of Run I data left every analysis statistically challenged
- Top is intriguing enough to pursue aggressively at Run II

Top Quark Physics Opportunities

- A veritable cavalcade of interesting physics in the top sector
 - Studying EW interaction at high energy
 - Direct contact with V_{tb}
 - Unique opportunity to probe bare quark properties (spin? charge?)
- Top mass at EWSB scale (Yukawa coupling ~1)... what does this tell us?
 - Is top the gateway to new physics?

Top Production at the TeVatron

- Pair production
 - Main mode for top physics at Run II
 - σ=6.7 pb
 - ~30% increase w/r/t Run I

Single top

- Not yet observed
- Slightly different final states than pair production
- Larger background

29-JUN-2004

Top Quark Decays

- ~100% t →Wb in SM (we'll be testing that...)
- Categorize final states according to decay of the W bosons

- "DILEPTON:" lvlvbb
 - Both W's decay to e, μ (maybe through a τ)
 - Clean sample even w/o b-tagging
 - Main BGs: DY, fake leptons, dibosons
- "LEPTON+JETS:" lvjjbb
 - Something of a "golden mode"
 - ~3x as much BR as dileptons, good purity after b-tagging
 - Main BG: W+jets
- "ALL JETS:" jjjjbb
 - Largest BR
 - Huge BG from QCD multijets
- These final states determine what you need to do top physics...

29-JUN-2004

Experimental Tools for Top Physics

- MET measurement
 - Cleanly identify final states with neutrinos
- Jet E measurement
 - For good mass resol'n and accurate reconstr'n of kinematics
- Both require a well-calibrated calorimeter w/ as much of 4π as possible
 - Bottom-quark tagging
 - Exploit long lifetime of B hadrons
 - Requires precision tracking (Si microstrip detectors) with as much forward reach as possible

- Need EM calorimeters, muon chambers with as much coverage as possible
- Z,J/ψ→II decays provide useful samples for ID efficiency calibration
- Large jet samples to study fake rates

29-JUN-2004

CDF and D0 in Run II

29-JUN-2004

A lepton + jets event at D0

Not shown: MET (58 GeV)

29-JUN-2004

A dilepton event at CDF

Measuring the top pair cross section

- First step in any top physics program
 - Establish baseline event selection for defining the top sample
 - Validate top analysis tools (b-tagging, lepton ID, etc.)
- Interesting measurement
 - Test SM: is tt produced via good old QCD? More exotic mechanism (e.g. heavy tt resonance)?
 - Is there anything "unknown" in there with top?

Top Pair Cross Section -- dileptons

- Basic selection: two leps (e, μ), two jets, large MET
 - Second lep can be loose --- just an isolated track even!
- Main BGs are DY, dibosons, and j→lep fakes
- Counting experiment results: D0: σ(tī)

D0: $\sigma(t\bar{t}) = 14.3^{+5.1}_{-4.3}(stat)^{+2.6}_{-1.9}(syst) \pm 0.9(lum)$ pb CDF: $\sigma(t\bar{t}) = 7.0^{+2.4}_{-2.1}(stat)^{+1.6}_{-1.1}(syst) \pm 0.4(lum)$ pb

	CDF I+trk (197 pb ⁻¹)	CDF di-l (193 pb ⁻¹)	D0 di-l (140 pb ⁻¹)
Expected top+BG	18.4±2.5	10.9±1.4	10.8±0.8
Observed	19	13	17

Top Pair Cross Section -- inclusive dileptons

- New CDF technique to measure σ_{tt} in dileptons
- No cuts other than two-lep requirement
 - If same-flavor, Z→ee, μμ dominates --- require significant MET
- Fit data for tt, WW, $Z \rightarrow \tau \tau$ contribution in 2D (MET, N_{iet}) plane

Result
(~200 pb⁻¹):
$$\sigma(t\bar{t}) = 8.6^{+2.5}_{-2.4}(stat) \pm 1.1(syst)$$
 pbSignificant
improvement over
counting expt!29-JUN-2004A. Hocker, PIC 2004, Boston MA12

Top Pair Cross Section -- I+jets w/ b-tagging

- b quark ID separates top from dominant W+jets bkgd
 - Lifetime tag methods
 - Find displaced secondary vertex in jet
 - Find tracks with large impact parameters
 - Soft lepton tag methods
 - Find "soft" muons from semileptonic B decay
- Extract cross section from tagged event sample

Top Pair Cross Section -- I+jets topological

- Use higher-statistics "pre-tagged" W+jet data
- Exploit large top mass
 - Top decay products more energetic than generic W+jets
- Simple: fit a discriminant distribution for top, BG
 - H_T: scalar sum of jet E_T, lepton E_{T} , MET

29-JUN-2004

events

Top Pair Cross Section -- All-jet

- Challenging channel --- QCD multijet BG several orders of magnitude larger than top
- Exploit
 - Topological differences between top and BG (preselect top-like events)
 - b-content of top (requires good understanding of tagging rates for BG --- determine from data)
- D0: count single-tagged preselected events with high topo. ANN output

 $\sigma(t\bar{t}) = 7.7^{+3.4}_{-3.3}(stat)^{+4.7}_{-3.7}(syst)$ pb

 CDF: count excess tags in preselected N_{iet} ≥ 6 events

 $\sigma(t\bar{t}) = 7.8 \pm 2.5(stat)$ $^{+4.7}_{-2.3}(syst) \text{ pb}$

29-JUN-2004

Measuring the top mass

- Large mass makes top intimately connected with the Higgs boson
- m_t combined with precision EW data constrains possible value of m_H

• Ex: $\delta m_W^2 \propto (m_t^2, \log m_H)$

- Precision measurement of m_t allows us to squeeze the Higgs mass even further
 - Run II goal:∆m_t = 2--3 GeV/c²

New Run I D0 Top Mass

Catch that article in Nature a few weeks ago? (429, pp. 638-642)

$m_t = 180.1 \pm 3.6(stat) \pm 3.9(syst) \text{ GeV/c}^2$

- Statistical uncertainty reduced from 5.6 to 3.6 GeV/c²
 - Equivalent to a 2.4x larger dataset!
- Form an event-by-event likelihood vs. m_{t:}

CDF Run II Top Mass Measurements

- Run-I-like "template" methods have been resurrected
 - Reconstruct one top mass per event
 - Compare resulting mass distribution with parameterized templates from simulated top of varying mass, form Lhood vs. m_t
 - Minimize -In L to extract top mass

29-JUN-2004

Run II Top Mass -- CDF DLM

- "Dynamical Likelihood Method" --- similar to new D0 method
 - Form event-by-event Lhood vs. m_t based on LO ME for tt→I+4j, transfer functions for quark E_T → jet E_T
 - Minimize -In L (joint likelihood of event sample)
- No BG ME used, instead correct pull on m_t due to BG:

Mapping function: from measured mass to true mass for a given BG fraction (19% for b-tagged I+4j sample)

29-JUN-2004

A. Hocker, PIC 2004, Boston MA

Top Mass Summary

- New combined Run I mass
 - m_t=178.0 ± 4.3 GeV/c²
 - was: 174.3 ± 5.1 GeV/c²
 - Has implications for allowed Higgs mass --- see talk from S. Mattingly
- New mass measurement techniques being explored for Run II
 - Systematics (read: jet energy scale) quickly becoming limiting factor for individual results
 - In situ calibration with Z→bb?
 W→qq in double-tagged top events?

29-JUN-2004

Top Branching Ratios -- t→τvb

- Taus generally excluded from the dilepton / lepton +jets / all-jets triumvirate
- BR($\tau \rightarrow$ hadrons) $\approx 65\%$
 - Difficult to distinguish from a low-multiplicity jet
- BUT, worth the challenge!
 - Leave no stone unturned
 - t→Wb →τvb is all 3rd-generation --- good place for new physics to appear!

- Cleanest signature: tt →lvτ_hvbb (dilepton-like)
 - τ_h+jets: no results yet!

29-JUN-2004

t→τvb in Dilepton Channel

- Select events with high- p_T e or μ , 2 jets, MET, and a τ
- τ ID mainly exploits tendency for taus to be more isolated than jets

Need to ensure that this is adequately modelled by simulation

29-JUN-2004

Top Branching Ratios -- t->Xb

- Does top decay into something besides Wb?
 - Like Xb, where $X \rightarrow qq'$? Or Yb, where $Y \rightarrow lv$?
 - If so, then dilepton and I+jets cross sections will disagree
- Measure the ratio of cross sections $R_{\sigma} = \sigma_{\parallel} / \sigma_{\parallel}$
 - Assume efficiency for detecting X,Y decays the same as for W decays (*i.e.* similar masses), then

$$R_{\sigma} = \frac{1}{1 + \frac{1}{B} \frac{\beta}{1 - \beta}} \quad \text{or} \quad R_{\sigma} = 1 + \frac{1}{(1 - B)} \frac{\beta'}{(1 - \beta')} \quad B=BR(W \rightarrow \text{hadrons})$$

$$\beta=BR(t \rightarrow Xb)$$

$$\beta'=BR(t \rightarrow Yb)$$
Many systematics cancel in ratio!
$$Many systematics cancel in ratio!$$

Upper limit on $R_{\sigma} \rightarrow upper$ limit on β'

SM:
$$R_{\sigma}$$
=1

29-JUN-2004

acceptance

ratio

3000

2500

2000 1500

1000

A. Hocker, PIC 2004, Boston MA

w. correlation

CDF Preliminary

R_{σ} Results

Create ensemble of pseudoexpts w/ mean N_{obs} equal to the data
 Note: these results based on earlier (smaller) datasets

Top Branching Ratios -- t->Wq_{light}

- Assuming three-generation CKM unitarity, |V_{tb}|=0.999
 ♣ Implies b = BR(t→Wb)/BR(t→Wq) > 0.998
- Can measure "b" by checking the b-quark content of the top sample --- is it "polluted" with light quarks?
- If efficiency to tag a b-quark is ε_b (0.453 at CDF), then

 $\epsilon_2 = (b\epsilon_b)^2$ "double-tagged" $\epsilon_1 = 2b\epsilon_b(1-b\epsilon_b)$ "single-tagged" $\epsilon_0 = (1-b\epsilon_b)^2$ "no-tag"

- Strategy: Take four subsamples of tt I+jets sample
 3 jets, single- and double-tagged
 4 jets, single- and double-tagged
- Form likelihood for observed number of events in each sample, maximize joint likelihood w/r/t bε_b

$b = BR(t \rightarrow Wb)/BR(t \rightarrow Wq)$ Results

- Several events in Run I dilepton sample had large MET, lepton p_T --not very compatible with top
- Suggestion that the events are better described by cascade decays of heavy squarks [Barnett and Hall, *Phys. Rev. Lett.* **77** 3506 (1996)]
- Develop search for this kind of anomaly in Run II
 - Stay general --- frame search as null-hypothesis test (SM = H₀)

Run II Dilepton Kinematics

Four kinematic variables chosen a priori to test against SM

Probability of consistency w/ SM (based on KS probabilities) = 1.0-4.5%
Low probability driven by excess of *low*-p_T leptons --- likely fluctuation of top

W Helicity in Top Decays

- Testing V-A in top decays
- Angular momentum conservation: top decays only into LH (negative-helicity) or longitudinally-polarized (0helicity) W bosons

$$F_0 = \frac{\Gamma(t \to W_0 b)}{\Gamma(t \to W_0 b) + \Gamma(t \to W_T b)} = \frac{1}{1 + 2(m_W / m_t)^2} = 0.70$$

Helicity of W manifests itself in decay product kinematics

F₀ Results

- New D0 I+jets result from Run I
- Use m_t technique
 - Event-by-event likelihood based on observables' consistency with ME
 - Maximize joint likelihood w/r/t F₀

Result: F₀=0.56±0.31

29-JUN-2004

CDF result from Run II (I+jets and dilepton)

Fit lepton p_T spectrum for W₀ fraction

Result:
$$F_0 = 0.27^{+0.35}_{-0.24}$$

Low-p_T lepton excess seen in dileptons pulls result down

Search for Single Top Production

- Single top production is a direct probe of |V_{tb}|²
- SM cross section too small to observe (for now) but could be increased by new physics (*e.g.* W', anomalous couplings)
- Signature is lepton, MET,
 2 jets w/ at least one b-tag
 - Select events based on these requirements
 - Sandwiched between tt and a large non-top BG --- can't just do a counting expt

Single Top in Run II

MC templates

Fit data distributions for these components

29-JUN-2004

Run II Single Top Fit Results

σ_t < 8.5 pb @ 95% CL

Will be reporting observations with 2 fb⁻¹...

...all on deck for Run II...

Search for Narrow M_{tt} Resonances

- No SM particle decays to tt
 - M_{tt} resonance = new physics
- Example model: topcolor-assisted technicolor (Harris, Hill, Parke, hep-ph/9911288)
 - Predicts leptophobic Z' w/ strong 3rd-gen coupling
- Assume a top mass and go bump hunting!

Spin Correlations in tt

- Particular choice of spin basis ("off-diagonal") provides ~100% correlation between spin of t, tbar produced from qqbar annihilation
- Top decays before hadronization perturbs spin
 - $1/\Gamma_t \ll m_t/\Lambda^2_{QCD}$
 - Observation of correlations limits Γ_t , and therefore $|V_{tb}|$

Conclusions

- A full-fledged experimental top program is underway at the TeVatron
- Analyses have been re-established, and...
- Lots of progress in "taking them to the next level"
 - New techniques to better exploit the data
- Nothing unexpected about top turned up so far
 - Attacking from many sides, but need to squeeze harder with more data
- The top picture will get clearer and clearer in the coming years