

# **Diffractive Scattering**

#### H. ABRAMOWICZ, TEL AVIV UNIVERSITY

#### OUTLINE

- Interest in diffraction
- Inclusive diffraction, from ep to  $p\bar{p}$
- Exclusive processes, from VM to DVCS
- Summary

#### DEEP INELASTIC SCATTERING



• x - Bjorken variable

$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{Q^2 + W^2}$$

•  $Q^2$  - virtuality of exchanged boson  $Q^2 = -q^2 = -(k - k')^2$ • *s* - *lp* centre of mass energy  $s = (k + P)^2$ • *W* - hadronic centre of mass energy  $W^2 = (q + p)^2$ 

• 
$$y$$
 - inelasticity

$$y = \frac{P \cdot q}{P \cdot k}$$

#### **INCLUSIVE DIFFRACTION - LARGE RAPIDITY GAPS**



**DIS-DGLAP** 

#### **DIS-Diffraction**

$$\begin{aligned} x_{I\!P} &= \frac{q \cdot (p - p')}{q \cdot p} \simeq \frac{Q^2 + M_X^2}{Q^2 + W^2} \\ \beta &= \frac{Q^2}{2q \cdot (p - p')} \simeq \frac{Q^2}{Q^2 + M_X^2} \\ t &= (p - p')^2 \qquad \qquad x = x_{I\!P} \cdot \beta \end{aligned}$$

#### DIFFRACTIVE STRUCTURE FUNCTIONS

$$\begin{aligned} \frac{d^3 \sigma^D}{dx_{I\!\!P} dx dQ^2} &= \frac{4\pi \alpha^2}{xQ^4} \left( 1 - y + \frac{y^2}{2} \right) \sigma_r^{D(3)}(x_{I\!\!P}, x, Q^2) \\ \sigma_r^{D(3)} &= F_2^{D(3)} - \frac{y^2}{1 + (1 - y)^2} F_L^{D(3)} \\ F_2^{D(3)} &= \frac{dF_2^D}{dx_{I\!\!P}} \\ F_2^D &= \frac{Q^2}{4\pi^2 \alpha} \sigma^D(\gamma^* p) \end{aligned}$$

• Is the origin of LRG of soft nature? Is the soft  $I\!\!P$  responsible for LRG?  $\rightarrow$  are LRG in the initial condition for DGLAP evolution?

#### Regge framework

• At high energy, *s*, hadron-hadron interactions proceed through exchange of *IP* trajectory:

$$\begin{aligned} \alpha_{I\!P}(t) &= \alpha_{I\!P}(0) + \alpha'_{I\!P} \cdot t \\ \sigma_{\text{tot}} &\sim s^{\alpha_{I\!P}(0)-1} \\ \frac{d\sigma_{\text{el}}}{dt} &\sim \frac{\sigma_{\text{tot}}^2}{16\pi} e^{2(b_0^{\text{el}} + \alpha'_{I\!P} \ln s)t} \\ \frac{d^2\sigma_{\text{D}}}{dtdx_{I\!P}} &\sim \left(\frac{1}{x_{I\!P}}\right)^{2\alpha_{I\!P}(t)-1} e^{2(b_0^{\text{D}} - \alpha'_{I\!P} \ln x_{I\!P})t} \end{aligned}$$

• Experimentally  $\alpha_{I\!\!P}(0) = 1 + \epsilon$  with  $\epsilon = 0.08 - 0.10$  and  $\alpha'_{I\!\!P} = 0.25 ({\rm GeV}^{-2})$ 

#### $F_2^D$ MEASUREMENTS





#### DIFFRACTIVE PARTON DISTRIBUTIONS DPDF

QCD factorization for diffractive DIS holds

(Collins, Berera & Soper, Trentadue & Veneziano)

$$\frac{d^2 F_2^D(x_{I\!\!P}, t, x, Q^2)}{dx_{I\!\!P} dt} = \sum_i \int dz \frac{d^2 f_{i/p}^D(x_{I\!\!P}, t, z, \mu^2)}{dx_{I\!\!P} dt} \quad \hat{F}_i(\frac{x}{z}, \frac{Q^2}{\mu^2})$$

$$\mathsf{DPDF} \qquad \mathsf{pQCD} \text{ as } F_2$$

- Diffractive parton distributions evolve in  $\mu^2$  following DGLAP equations
- If in addition postulate Regge factorization

(Ingelman & Schlein)

$$\frac{d^2 F_2^D(x_{I\!\!P}, t, x, Q^2)}{dx_{I\!\!P} dt} = f_{I\!\!P/p}(x_{I\!\!P}, t) F_2^{I\!\!P}(\beta, Q^2)$$

• $F_2^{I\!\!P}(\beta,Q^2)$  evolves following DGLAP equations

#### DIFFRACTIVE PARTON DISTRIBUTIONS



Good description of data with NLO DGLAP evolution





#### Summary

- Large contribution of DIS diffractive events (10 to 20 %)
- W dependence of LT diffraction as that of inclusive DIS !!!
- Diffractive events mainly originate from gluons

#### TEST OF FACTORIZATION IN DIS



 Diffractive dijet and charm rates in DIS well reproduced by NLO calculations with DPDFs - factorization holds

#### Factorization breaking in hard diffractive $p\bar{p}$





1 β

#### Factorization tests in $\gamma p$



#### Factorization tests in $\gamma p$

#### Calculations by Klasen and Kramer



• For calculation to agree with data, in NLO resolved contribution suppressed by factor 3 relative to direct

#### UNITARITY PROBLEM

- At low x the gluon density in the proton is known to be large
- Diffraction in DIS is driven by gluons and does not rise with W as fast as expected
- Could it be that in the gluon sector unitarity effects are already present?

Estimates by Kaidalov et al.

• Pumplin limit:  $\sigma^D/\sigma \leq 0.5$ 

• With the present diffractive gluon pdf, limit exceeded in 2 jet production by gluons.

• Indication that unitarity effects may be present in the gluon sector



#### **GLUODYNAMICS - SATURATION**

Dipole picture of *ep* interactions

In the target rest frame:



 $au_{\text{fluctuation}} \simeq \frac{1}{2mx} \gg 1 \,\text{fm}$ The color dipole interacts with the target T•  $k_T$  large, small transverse size  $r \to p\text{QCD}$ 

$$\sigma_{q\bar{q}T} = \frac{\pi^2}{3} r^2 \alpha_S(Q^2) x G_T(x,Q^2 \simeq \frac{\lambda}{r^2})$$

Color transparency/opacity

•  $k_T$  small, large transverse r

 $\rightarrow$  non-perturbative

In the dipole frame:



fast partons produce a random color source -  $\rho^a(x)$  seen by soft gluons as frozen over short time scale  $\rightarrow$  glass gluons are densely packed - density  $\sim 1/\alpha_S \rightarrow$  Bose condensate

### COLOR GLASS CONDENSATE



With increasing energy gluons are forced to occupy higher momenta, so the coupling becomes weaker and the gluons are not seen by the probe

• Saturation and Unitarization are related

#### SATURATION MODEL FOR DIS

Golec-Biernat-Wuesthoff Model

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha} (\sigma_T + \sigma_L)$$
$$\sigma_{T,L} = \int dz d^2 r |\psi_{T,L}(z,r,Q^2)|^2 \sigma_{\text{dipole}}$$

$$\int dx dx + \left[ \varphi I, L(x), \cdot, \varphi \right] = dx dx$$

$$\sigma_{\text{dipole}} = \sigma_0 (1 - e^{-r^2 Q_s^2(x)/4})$$
$$Q_s^2(x) = \left(\frac{x_0}{x}\right)^{\lambda}$$

GBW model very successfull in reproducing  $F_2$ ,  $F_2^D$  and the constant ratio  $F_2^D/F_2$ ...

Saturation scale

gluon recombination: $\sigma \sim \alpha_s/Q^2$ gluon density:  $\rho \sim xG(x,Q^2)/\pi R^2$ saturation scale  $Q_s^2$ :  $\sigma \rho = 1$ 

$$Q_s^2 = \alpha_s \frac{xG(x,Q^2)}{\pi R^2}$$

 $xG(x,Q^2)$  may be calculated from evolution equations In linear evolution  $xG(x,Q^2)\sim x^{-\lambda}$ 

The theory behind CGC legitimizes the GBW model

#### GEOMETRICAL SCALING



•  $Q_s^2 > 1 \text{ GeV}^2$  for  $x < 10^{-4}$ • Cure to  $F_2$  growth in pQCD? • Geometrical scaling valid for  $Q^2 < 450 \text{ GeV}^2$  and  $x < 10^{-2}$ , beyond saturation regime as expected for BFKL evolution with saturation bound

#### DIFFRACTION AND SATURATION MODELS

Calculations by Forshaw, Sandapen and Shaw with  $\sigma_{
m dipole}$  qfrom  $F_2$  fits



- Forshaw, Kerley and Shaw (soft/hard components) red and blue
- Iancu, Itakura and Munier (CGC) black
- Golec-Biernat and Wuesthoff orange

#### EXCLUSIVE PROCESSES IN *ep*

If  $q\bar{q}$  form small configuration  $\Rightarrow$  resolves gluons



either  $\gamma_L^*$  or  $V = c\bar{c}, \ b\bar{b}$ Expectations: • SU(4) restoration  $\rho: \omega: \Phi: J/\psi = 9:1:2:8$ •  $\sigma_L \sim \frac{\alpha_S^2}{Q^6} |xG(x,Q^2)|^2$   $\Rightarrow$  fast increase of  $\sigma(\gamma^*p \to Vp)$  with  $W^2$   $\Rightarrow$  universality of t dependence  $\sim e^{b_2gt}$   $b_{2g} \simeq 4 \text{ GeV}^{-2}$  and  $\alpha'_{IP} \simeq 0$  $\Rightarrow Q^2$  dependence slower than  $1/Q^6$ 



#### EXCLUSIVE VM PRODUCTION - SMALL DIPOLES



 $\sigma_L$  dominates at high  $Q^2$ 



Effective size of  $\gamma^*$  becomes smaller with  $Q^2$ 



#### EXCLUSIVE VM PRODUCTION - POMERON TRAJECTORY



### EXCLUSIVE VM PRODUCTION - HT CONTRIBUTION

 $\sigma_{\rho}/\sigma_{tot}$  independent of x

•  $\rho$  contribution is HT,  $J/\psi$  very small



### DVCS PROCESS IN QCD

Handbag diagram,  $x_1 \neq x_2$ 





Competing: QED Bethe-Heitler process



## WHY IS DVCS INTERESTING?

- Interference between QCD with QED amplitudes → rich structure in φ, angle between the hadronic and leptonic planes → asymmetries (angular, charge)
- BH-DVCS Interference term  $\propto {\it Re} {\cal A}_{\rm QCD}$
- $Re\mathcal{A}_{QCD}(x,Q^2) \sim \int \frac{dx_1}{x_1} ReC_i(x/x_1,Q^2)G_i(x_1,x,Q^2) \rightarrow$ Generalized Parton Distributions GPD



### **DVCS** CROSS SECTION



• DVCS hard process in spite of  $\gamma_T^{\star}$ 

### LARGE *t* EXCLUSIVE STATES - **BFKL** DYNAMICS











Expected cross section 600 nb

measured  $\sigma(p\bar{p} \rightarrow p + J/\psi + \gamma + \bar{p}) = 58 \pm 18(\text{stat}) \pm (\text{syst}) \text{ pb}$ 

## DIFFRACTION AT HIGH $Q^2$

#### **Charged Currents**



### SUMMARY

- Diffractive scattering in the presence of a hard scale offers a unique opportunity to study
  - the structure of the proton in 3-dimensions,
  - the helicity struture of the proton,
  - the structure of strong interactions,
  - the wave functions of vector mesons.
- Diffraction may signal the signs of the onset of unitarity effects.
- A new form of weakly interacting hadronic matter may have been discovered.
- Diffractive scattering may facilitate the discovery of the light Higgs.
- Diffraction appears whenever x Bjorken is small enough.