

First Observation of a New Narrow D_s^+ Meson at 2632 MeV/c²

Peter S. Cooper

Fermi National Accelerator Laboratory

Batavia, IL

(for the SELEX collaboration)

Heavy-light spectroscopy

•Model predicts mass and widths – works well for D(cd), but not for all $D_s(cs)$

•2003 – e^+e^- found Ds(2317), Ds(2463) – below DK threshold, inconsistent with model

•Higher states – expected above D^(*)K threshold – therefore broad and hard to observe

SELEX(E781) Experiment

SEgmented LargE X_F ($x_F > 0.1$) Experiment

•SELEX(E781) is a multi-stage charged particle spectrometer with high acceptance for forward production and decays

•1996-1997 Fixed Target Run at Fermilab Hyperon Beam with 600 GeV/c Σ^- , π^-

125 participants from 20 institution in 11 countries

Peter S. Cooper Fermilab

SELEX Collaboration

G.P. Thomas Ball State University, Muncie, IN 47306, U.S.A.

E. Gülmez Bogazici University, Bebek 80815 Istanbul, Turkey

R. Edelstein, S.Y. Jun, A.I. Kulyavtsev¹, A. Kushnirenko², D. Mao³, P. Mathew⁴, M. Mattson, M. Procario⁵, J. Russ, J. You¹ Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.

A.M.F. Endler Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

P.S. Cooper, J. Kilmer, S. Kwan, J. Lach, E. Ramberg, D. Skow, L. Stutte Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

V.P. Kubarovsky, V.F. Kurshetsov, A.P. Kozhevnikov, L.G. Landsberg, V.V. Molchanov, S.B. Nurushev, S.V. Petrenko, A.N. Vasiliev, D.V. Vavilov, V.A. Victorov Institute for High Energy Physics, Protvino, Russia

Li Yunshan, Mao Chensheng, Zhao Wenheng, He Kangling, Zheng Shuchen, Mao Zhenlin Institute of High Energy Physics, Beijing, P.R. China

M.Y. Balatz⁶, G.V. Davidenko, A.G. Dolgolenko, G.B. Dzyubenko, A.V. Evdokimov, M.A. Kubantsev, I. Larin, V. Matveev, A.P. Nilov, V.A. Prutskoi, A.I. Sitnikov, V.S. Verebryusov, V.E. Vishnyakov Institute of Theoretical and Experimental Physics, Moscow, Russia

U. Dersch⁷, I. Eschrich⁸, I. Konorov⁹, H. Krüger¹⁰, J. Simon¹¹, K. Vorwalter¹² Max-Planck-Institut f
ür Kernphysik, 69117 Heidelberg, Germany

> I.S. Filimonov⁶, E.M. Leikin, A.V. Nemitkin, V.I. Rud Moscow State University, Moscow, Russia

A.G. Atamantchouk⁶, G. Alkhazov, N.F. Bondar, V.L. Golovtsov, V.T. Kim, L.M. Kochenda, A.G. Krivshich, N.P. Kuropatkin¹, V.P. Maleev, P.V. Neoustroev, B.V. Razmyslovich¹³, V. Stepanov¹³, M. Svoiski¹³, N.K. Terentyev¹⁴, L.N. Uvarov, A.A. Vorobyov Petersburg Nuclear Physics Institute, St. Petersburg, Russia

> I. Giller, M.A. Moinester, A. Ocherashvih¹⁵, V. Steiner Tel Aviv University, 69978 Ramat Aviv, Israel

J. Amaro-Reyes, J. Engelfried¹, A. Morelos, I. Torres, E. Vázquez-Jáuregui Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

> M. Luksys Universidade Federal da Paraíba, Paraíba, Brazil

V.J. Smith University of Bristol, Bristol BS8 1TL, United Kingdom

U. Akgun, A.S. Ayan, M. Kaya¹⁶, E. McCliment, K.D. Nelson¹⁷, C. Newsom, Y. Onel, E. Ozel, S. Ozkorucuklu¹⁸, P. Pogodin University of Iowa, Iowa City, IA 52242, U.S.A.

> L.J. Dauwe University of Michigan-Flint, Flint, MI 48502, U.S.A.

M. Gaspero, M. Iori University of Rome "La Sapienza" and INFN, Rome, Italy

- L. Emediato, C.O. Escobar¹⁹, F.G. Garcia¹, P. Gouffon, T. Lungov, M. Srivastava, R. Zukanovich-Funchal University of São Paulo, São Paulo, Brazil
 - A. Lamberto, A. Penzo, G.F. Rappazzo, P. Schiavon University of Trieste and INFN, Trieste, Italy

SELEX(E781) Tracking

This

analysis

uses D⁰

and D_s

data

SELEX single charm states

Each Spectrometer includes Lead-Glass Photon Calorimeter

2pcoverage in c.m. of primary interaction

Mass distributions - Exclusive trigger (N_{ch} 3-5)

Eg 2 GeV, Ng= 2, Egg>10GeV

ppg

2

0.8

0.9

1.1

1.2

Eg 2 GeV Ng= 2 Egg>10GeV

1.3 1.4 1.5 1.6 Μ(π⁺π⁻[η→γγ]), GeV

1.6

CHARM trigger $\langle n_{ch} \rangle = 10$, $\langle n_{\gamma} \rangle = 8$ Photon cuts: Eg>2 GeV, Ng£10

Peter S. Cooper Fermilab PIC2004, Boston Univ. June 28, 2004

Single Photon States

Use **S**⁰® A⁰+ **g**to test energy scale

 Photon energy scale agrees better than 2% for this decay

Study Ds (2112) \rightarrow Ds+ γ

- Fitted with Gaussian width taken from Monte-Carlo
- Good argeement
- \checkmark We understand detector response
- ✓ will use Monte-Carlo resolution in fits

h⁰ signal in CHARM trigger

- ✓ $E\gamma > 2 \text{ GeV},$
- ✓ Εγγ > 10GeV,
- ✓ Nγ < 10
- ✓ Fit to: exp + Gaussian + constant
- ✓ good fit

- MC resolution 30.2 ± 1.2
- \checkmark **h**⁰ mass agrees with PDG value.
- ✓ MC represents resolution well.

SELEX

η and D_{s} selection

- ✓ Eγ >2 GeV, Eγγ > 15GeV
 ✓ η⁰ mass region: M_{PDG}(η⁰) ± 60 MeV
 ✓ 5M η⁰ in 150M candidates S/N ~ 1/30
- ✓ 0.15 η^0 candidates /event

Peter S. Cooper Fermilab

New charm-strange meson

 $\mathbf{DM} + \mathbf{M}_{PDG}(\mathbf{D}_{s}) = \mathbf{M}(\mathbf{KKph}) - \mathbf{M}(\mathbf{KKp}) + \mathbf{M}_{PDG}(\mathbf{D}_{s})$

We combined our clean sample of Ds with η^0 candidates **h** mass constrained $p_{h} = [M_{PDG}(h), p]$

 \checkmark Reject events with N η > 5 candidates (small loss)

 \checkmark 384 η^0 cand in 554 D_s cand

- 52 \pm 33 η^0 signal events
- 317 on plot, 67 overflows

✓Clear peak near 2635 MeV/c²

Sideband studies

Sidebands:

- ✓Ds sidebands + real η
- $\checkmark \eta$ sidebands + real D_s
- Event mixed technique:
 - ✓ η^0 from previous event + D_s candidate
- ✓ No structure seen anywhere
- ✓ All distributions fit constant backgrounds.

Fit to D_{sJ} mass

✓M-C simulation gives resolution of 10.7 MeV

 Sideband studies show that background is flat

 Fit with fixed width Gaussian and constant background to data
 + mixed events background

 $\checkmark c^2$ for fit is good

Count S = 101, B = 54.4 \pm 2.5 (S-B)/ \sqrt{B} = 6.3 σ Fit events: 42.5 \pm 9.5 Mass 2635.9 \pm 2.9 MeV/c² σ (fixed MC) 10.7 MeV/c²

Peter S. Cooper Fermilab

Heavy-light spectroscopy now

Fitting D_s (2632) $\rightarrow D^0$ K⁺

- ✓ Strong selection criteria on D_s & K⁺
 - ✓ D⁰→ K⁻ π^+ only (S/N 4/1)
 - ✓ L/ σ >6, svtx χ^2 <3, pointback χ^2 <5
 - Prob(K+) >10 Prob(any other)

Wrong sign background constant

 Fit with 2 [BW convolved with Gaussian] + constant background

✓ Fix resolution from MC (4.9 MeV)

New state is narrow (resolution only)

Count S = 21, B = 7.0 \pm 0.6, (S-B)/ \sqrt{B} = 5.3 σ

3 bin Poisson excess probability = 1×10^{-4}

Fit events: 14 \pm 4.5, Mass 2631.5 \pm 1.9 MeV/c²

✓A 90% CL upper limit Γ<17MeV/c²

Peter S. Cooper Fermilab

D_{sJ}(2632) Branching Ratios

- Most models say that D⁰K⁺ coupling should be much bigger than D_s⁺ h⁰
- Phase space favors D⁰K⁺ mode by 2.3x
- Acceptances given a detected D(s) meson are comparable
- We see 3x as many D_s⁺ h⁰ decays as D⁰K⁺

SURPRISE: $\Gamma(D^{0} \text{ K}^{+}) / \Gamma(D_{s}^{+}\eta^{0}) = 0.16 + -0.06$

Ds (2632) summary

State	Ds (2632) ® Dsh	Ds(2632) ® D⁰K
mass	2635.9 ± 2.9	2631.5 ± 1.9
Sign.	6.3 s	5.3 s
Events	42.5 ± 9.5	14 ± 4.5
c²/ n _d	1.00	0.77

 ✓ Average D_{sJ}+(2632) mass 2632.6 ± 1.6 MeV/c²
 ✓ Γ<17 MeV/c² @ 90% CL(D⁰K⁺)
 ✓ Γ(D⁰K⁺)/ Γ(D_s⁺η⁰) = 0.16 +/- 0.06

Conclusions

- We combined our clean sample of D_s⁺ mesons with photon pairs made h⁰ candidates
- We observed a clear peak of 42.5 ± 9.5 events with a significance of 6.3 s at a mass difference 667.4 ± 2.9 MeV/c² above ground state
- ✓ We combined our clean sample of D⁰ mesons with pure K⁺
- We observed a clear peak of 14 ± 4.5 events with a significance of 5.3 s at a mass difference 767.0 ± 1.9 MeV/c² above ground state
- Clear evidence for a new state D_{sJ} + (2632) !
- $\checkmark\,$ Combined of the mass is 2632.6 \pm 1.6 MeV/c^2 $\,$
- A 90% CL upper limit for the width of this state from D⁰K⁺ G < 17 MeV/c²

We await news from our experimental colleagues !

Extra Slides - Recent Questions

- How does the 2632 asymmetry compare with the overall Σ⁻ D_s asymmetry
 Consistent with overall (~ -0.4)
 - Interaction Ds Beam Yield Raw Yield particle fraction fraction asymmetry Σ^{-} 67% 613±38 100% -0.42 ± 0.04 π^{-} 14% 10% 60±16 -0.06±0.13 р 19% 86±16 19% -0.28±0.10
- ? What about the D_s's from pions Only adds 10% with ½ S/N
- ? Have we broken up the D_s 's into $\phi \pi$ and K*K No; background is small (slide 12)
- ? η^0 economics
- ? Fitting

Something interesting: CLEO results on $D_s(2573)$

η^0 in events with D_s^+ candidates

n candidates	N(n)	$N(D_{r})$
	- '(·1/	$\Gamma(\mathbf{D}_{S})$
/ event	c and idates	events
0	0	205
1	158	158
2	174	87
3	117	39
4	76	19
5	90	18
6	30	5
7	7	1
8	48	6
9	0	0
10	40	4
11	22	2
sum	762	544

sum	762	544
	615	526
$< N(\eta) > / D_s$		1.17

$D_s^+\eta^0$ Fitting Variations

 ✓ Fit signal and mixed event background simultaneously.

Adopt Likelihood fit

Seems χ^2 underestimates background.

 Running more mixed event background now

✓ Fitting aside

If that thing were sitting on my chair I wouldn't sit down!