Quarkonium Production and Decay (Selected Topics in $Q\overline{Q}$)

Richard S. Galik Cornell University

Physics in Collision 2004 Boston University 27-29 June 2004

Why Study Quarkonia (bound states of $q\overline{q}$)?

- the QCD equivalent of positronium
- simplest strongly interacting systems
- non-relativistic for heavy quarks (QQ):

Q=c: $\beta^2 \sim 0.25$; Q=b: $\beta^2 \sim 0.08$

- V(r) = $-4/3 \alpha_s/r + k r$ (free v. confined)
- Wells much deeper than for QED
- Important tests of Lattice QCD techniques

The Heavy Quarkonia Spectra

Rich spectroscopy, various production schemes, interesting decay scenarios

Topical Seminar School on Heavy Quarkonia at Accelerators New Theoretical Tools and Experimental Techniques Organized by the Quarkonium Working Group

October 8-11, 2004 ITP, Beijing

Organizing Committee:

- K.T. Chao (Peking Univ.)
- Y.P. Kuang (Tsinghua Univ.)
- W.G. Li (IHEP, CAS)
- J.P. Ma (ITP, CAS)
- C.F. Qiao (GSCAS)
- X.Y. Shen (IHEP, CAS)
- C.Z. Yuan (IHEP, CAS)
- M.Mangano (CERN)
- V.Papadimitriou (FNAL)
- \bullet the QWG conveners

QWG Conveners:

Nora Brambilla (Milano U.) Michael Krämer (Edinburgh U.) Roberto Mussa (Torino INFN) Antonio Vairo (CERN) Quarkonium Working Group CERN Yellow Report ... based on first two workshops ... available this summer !!!

Followed (12-15 Oct) by QWGIII Wkshp [www.qwg.to.infn.it]

27 June 2004

News on the $Q\bar{Q}$ Spin-Singlets

Production of QQ Spin-Singlets:

27 June 2004

$Q\bar{Q}$ Spin-Singlets:

- $b\overline{b}$ (η_b 's and h_b): limits from CLEO in '03 ... no news
- h_c (1P_1 , 1^{+-}): not yet (maybe that is news?)
- η_c (¹S₀, 0⁻⁺): Ground state of charmonium
 Still only ~30% of decays known ... some updates
 - New publ'd mass determinations ... no big shifts

Seen by CLEO in $\psi' \rightarrow \gamma \eta_c$ (>8 σ) [LP03:hep-ph/0311243]

See QWG Yellow Report for up-to-date information

QQ Spin-Singlets: Biggest singlet news ... the (re)discovery of η_c' !! Four published observations: (Belle[2]/CLEO/BaBar) ...

... but not seen by CLEO in radiative ψ' decays, despite ~same sensitivity as Crystal Ball!

Belle PRL**89(2002)**102001, PRL**89**(2002)142001 CLEO PRL**92**(2004)142001 BaBar PRL**92**(2004) 142002

Δ_{hf} (spin-spin splitting)

For J/ψ and η_c , Δ_{hf} is nicely established at 117 ± 2 MeV; deep in "Coulombic" QCD well

 ψ' and η_c' sample the QCD "confinement" region.

 Δ_{hf} ' is 49 ± 2 MeV, or ~ half the value using the older CrystalBall η_c ' mass !!!

Older theory values seem high ... models assumed scalar QCD potential ... recent lattice (quenched) result[§] gives Δ_{hf} ' spanning 40-74 MeV ... ball back in theorists' court!

[§] M. Okamoto, et al. PRD**65**, 094508

Sampling of $Q\bar{Q}$ Vector Results

 $J^{PC}=1^{--}...$ directly produced in e^+e^- annihilation

${\pmb B}_{\mu\mu}$ for the Υ States

• Importance beyond knowing B(Y(nS) $\rightarrow \mu^+\mu^-$)

• Needed to get $\Gamma_{\rm tot}$ for narrow resonances from Γ_{ee} ; CLEO hopes to measure Γ_{ee} to a few percent

• Many analyses use the $\mu^+\mu^-$ final state for cleanliness; $B_{\mu\mu}$ affects many branching fractions and partial widths ,

$B_{\mu\mu}$ for the Y States [CLEO Preliminary]

	Β _{μμ} (%)		$\Gamma_{\rm tot}$ (keV)	
	CLEO preliminary	PDG	CLEO preliminary	PDG
Ύ(1S)	$2.53 \pm 0.02 \pm 0.05$	2.48 ± 0.06	52.1 ± 1.5	52.5 ± 1.8
Ύ(2S)	$2.11 \pm 0.03 \pm 0.05$	1.31 ± 0.21	28.0 ± 1.4	44 ± 7
Ύ(3S)	$2.44 \pm 0.07 \pm 0.05$	1.81 ± 0.17	19.9 ± 2.0	26.3 ± 3.5

$Q\overline{Q}$ to $Q'\overline{Q}'$: $\Upsilon(15) \rightarrow (c\overline{c}) X$

- onia production and onia decay
- test of color-octet v. color-singlet models similar rate predictions very different momenta spectra
- may have some relevance to cccc production

 $\Upsilon(1S) \rightarrow J/\psi X$

p/p_{max} much too soft for octet model

 $B(\Upsilon(1S) \rightarrow J/\psi X) =$ (6.4 ± 0.4 ± 0.6) × 10⁻⁴

This includes feed-down from other charmonia

Rate consistent with either octet or singlet model

Production and helicity angular distributions also determined

27 June 2004

"14% Rule" or " $\rho\pi$ Puzzle"

Decay through $c\overline{c}$ annihilation and production via e^+e^- both depend on $|\Psi(0)|^2$... therefore naively expect ...

$$\begin{array}{c}
 J/\psi \\
 3.1 \text{GeV} \\
 \psi(2S) \\
 3.7 \text{GeV} \\
 \hline
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\$$

$$Q_h = \frac{\mathcal{B}(\psi' \to h)}{\mathcal{B}(J/\psi \to h)} = Q_{ee} = \frac{\mathcal{B}(\psi' \to e^+e^-)}{\mathcal{B}(J/\psi \to e^+e^-)} = 1 \sim 12 \%$$

Complications, considerations, caveats ...

- running of α_s
 FF dependence on √s
 NR effects
 interference
- ... so compliance within "factor of two" is probably "agreement".
- Biggest offenders: $\pi\rho$ and $K^*\overline{K}$... both PV ... limits on $Q_h/Q_{ee} < 0.1$ Big data sets of BES and CLEO to the rescue!!

Results have no continuum subtracted (need more!)

Also have events for $\omega\pi^0$

27 June 2004

Richard S. Galik

20

ψ (3686) $\rightarrow \rho \pi, \pi^+ \pi^- \pi^0, ...$

Results based on E_{vis}/\sqrt{s}

ρπ:

4.2 σ , $Q_h/Q_{ee} = 0.016\pm0.006$ Equal signals in both modes

$\pi^{-}\pi^{+}\pi^{0}$:

>60, Q_h/Q_{ee} = 0.053±0.011

Also see >3 σ signals in $\omega \pi^0$ (IV), $\rho^0 \eta$ (IV), $K^{*0} \overline{K}^0$, and $b_1 \pi$ (AP).

All have continuum subtraction, but assume no interference. Status of "Puzzle"

ρπ **and K*K measured !!!**

K*⁺K̄⁻ much more suppressed than K*ºK̄º; I-spin violation large

I-spin "violating" states obey "12% Rule"

AP states not suppressed

VT states at about 1/5

Do the suppressed states show up in the $\psi(3770)$?!

27 June 2004

Status of "Puzzle"

 $\rho\pi$ and K*K measured !!!

K*⁺K⁻ much more suppressed than K*ºKº; I-spin violation large

I-spin "violating" states obey "12% Rule"

AP states not suppressed

VT states at about 1/5

Do the suppressed states show up in the $\psi(3770)$?!

27 June 2004

Status of "Puzzle"

 $\rho\pi$ and K*K measured !!!

K*+K⁻ much more suppressed than K*⁰K⁰; I-spin violation large

I-spin violating states obey "12% Rule"

AP states not suppressed

VT states at about 1/5

Do the suppressed states show up in the $\psi(3770)$?!

--- CLEO Status of "Puzzle" $\pi^+\pi^-\pi^0$ ρπ $\rho\pi$ and K*K measured !!! $\omega \pi^{\circ}$ (IV) $\rho\eta$ (IV) I-spin violating states $\omega \eta$ obey "12% Rule" $\varphi\eta$ K⁰k⁰ $K^{*+}\overline{K}^{-}$ much more K*+K_ suppressed than K*⁰K⁰; b₁⁰π⁰ b₁⁺π⁻ I-spin violation large $\omega f_2(1270)$ AP states not suppressed $\omega \pi^+ \pi^$ φf₀(980) VT states at about 1/5 $f_{o}(980) \rightarrow \pi^{+}\pi^{-}$ φf₂(1525) Do the suppressed states 10⁻² 10⁻¹ show up in the $\psi(3770)$?! 10 10

25

ψ' and J/ ψ Decays to Two Pseudo-scalars

 ϕ_{AB} known for J/ ψ (90±10)° ... BES now determines ϕ_{AB} for ψ'

27 June 2004

[PRL 92, 052001 (2004), PLB567, 73(2003), PRD69, 012003 (2004)]

$Q\bar{Q}$ States with L=2 ("D")

 $\psi(3770): {}^{3}S_{1} - {}^{3}D_{1}$ mixing? Molecule? Y(1D): stable - tests models and LQCD at high L !!

27 June 2004

Final Y(1D) Analysis Results [CLEO]

Four γ cascade; exclusive $\Upsilon(1S)$ channel

Background thru 2³S₁

First reported ICHEP'02 with 80% of data ... now final

Accepted by PRD [hep-ex/0404021]

Final Y(1D) Analysis Results [CLEO]

27 June 2004

"D" State Impact on LQCD

Ratio = LQCD/Expt

Y(1D): What is NOT seen !!!

Search for $\Upsilon(1D) \rightarrow \pi^+\pi^-\Upsilon(1S)$

Large signal from $\Upsilon(2S)$... consistent with known rates

No events observed from $\Upsilon(1D)$; upper limits set

Limits ~7 times lower than predicted by Kuang-Yan model; ~3 times higher than Ko model [J.L.Rosner PRD67, 097504 (2003)]

Also see no evidence for enhancement of $\Upsilon(1D) \rightarrow \eta \Upsilon(1S)$ as postulated by Voloshin [PL B562, 68 (2003)]

More on Nature of $\psi(3770)$

 ψ (3770): Learning from Decays to $J/\psi \pi \pi$

- $\psi(3770) = \alpha {}^{3}S_{1} + \beta {}^{3}D_{1} + \gamma D\overline{D} + ...$
- ψ (3770) does couple to $e^+e^- \dots \Gamma_{ee} = 0.26 \text{ keV}$
- ψ(3770) → π⁺π⁻ J/ψ [J. L. Rosner hep-ph/0405196]
 MarkII and BES: Γ(π⁺π⁻ J/ψ) = (43 ± 14) keV
 CLEO 90% limit at this level too
 New BES result ... larger data sample ... "in preparation"
 Kuong-Yan predict 20 107 keV (depending on mixing)
 CLEO limit in Y(1D) x7 below K-Y prediction
- Angular distribution for $\pi^{+}\pi^{-}$ J/ ψ could sort out α , β , γ
- Very large CLEO data sample upcoming !!
- [Voloshin priv comm]

$Q\bar{Q}$ States with L=1 (" χ ")

Produced copiously by E1 decays of vector parents; ... also produced in $\gamma\gamma$ fusion and in hadron colliders Very little tabulated about decays

Observation of $\chi_b(2P) \rightarrow \omega \Upsilon(1S)$

New Y hadronic transition – not $\pi\pi!$

First hadronic transition for χ_b states!

Starts with E1 γ from Y(3S); ends with Y(1S) to lepton pairs

Preliminary results last summer; now final, with full Y(35) data sample

Final Results:

 $B(\chi_{b1}' \rightarrow \omega \Upsilon(1S)) = (1.63^{+0.35}_{-0.31} {}^{+0.16}_{-0.15})\%$ $B(\chi_{b2}' \rightarrow \omega \Upsilon(1S)) = (1.10^{+0.32}_{-0.28} {}^{+0.11}_{-0.10})\%$

J = 0 kinematically forbidden!

Roughly equal for J = 1 and 2 $r_{2/1}$ predicted to be 1.3 ± 0.3 [Voloshin - hep-ph/0304165]

Very large rate considering limited phase space!

[hep-ex/0311043, accepted by PRL]

Testing Color Octet Model with χ_c Decays

Predictions exist for $c\overline{c}$ decays to baryon-antibaryon

- contain color octet contributions
- color singlet alone cannot account for rate of $c\overline{c}$ \rightarrow $p\overline{p}$
- indicate suppression of $\Lambda\overline{\Lambda}$ with respect to pp
- define $R_B = \Gamma(\Lambda \overline{\Lambda})/\Gamma(p\overline{p})$
- R_B = 0.60 for J=1 and 0.45 for J=2

S. M. Wong, Eur. Phys. J. C14, 643 (2000)

Nice signals in $p\overline{p}$ - branching fractions consistent with PDG and same accuracy; weaker signals in $\Lambda\overline{\Lambda}$ - first measurements.

$$R_{\mathcal{B}} = \frac{n_{\Lambda\bar{\Lambda}}^{obs} / [\varepsilon_{\Lambda\bar{\Lambda}} \cdot \mathcal{B}(\Lambda \to \pi^{-}p)^{2}]}{n_{p\bar{p}}^{obs} / \varepsilon_{p\bar{p}}} \qquad J = 1: R_{b} = 4.6 \pm 2.3$$

$$J = 2: R_{b} = 5.1 \pm 3.1$$
Large uncertainties, but show $\Lambda\bar{\Lambda}$ enhanced, not suppressed !
$$\frac{27 \text{ June } 2004}{27 \text{ Bichard S. Galik}}$$

X(3872) - Just what IS it ??? cc? Molecule?

Four clear sightings ... two in $B^+ \rightarrow K^+X(3872)$...

$$m_{\pi\pi}$$
 in X \rightarrow J/ $\psi \pi^+\pi^-$

Both Belle/BaBar see similar $m_{\pi\pi}$ structure; this is used by CDF/DO to clean up background (next slide).

Is there a ρ component (C_X =+)? Or is the high-mass region a "copy" of ψ (3686) decay?

Is there really a second low- $m_{\pi\pi}$ peak similar to that observed in $\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi$?

No measures or limits (yet!) for $X \rightarrow J/\psi \pi^0 \pi^0 !!$ Would establish $C_X = -1$.

27 June 2004

Richard S. Galik

Basic X(3872) Parameters

Mass (GeV/c^2):

- ♥ Belle: 3872.0 ± 0.6 ± 0.5
- CDF: $3871.3 \pm 0.7 \pm 0.4$
- ♦ D0: 3871.8 ± 3.1 ± 3.0
- ♣ BaBar: 3873.4 ± 1.4

My average:

M(X) = 3872.2 ± 0.5

 $[M(D^{0}D^{0*}) = 3871.2 \pm 0.7$ $M(D^{-}D^{+*}) = 3879.3 \pm 1.0$

Width (Γ) (MeV/c²):

- ♥ Belle: < 2.3 (90% CL)
- CDF: consistent with resolution (5)
- D0: consistent with resolution (17)
- BaBar: smaller than resolution (~3)

NARROW!

X Production and Decay Characteristics (see also H. Evans' talk)

Similar studies underway at CDF.

More comparisons to ψ' [BaBar and Belle combined]

$$\frac{\mathcal{B}(B^+ \to K^+ X(3872)) \cdot \mathcal{B}(X \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(B^+ \to K^+ \psi'(3686)) \cdot \mathcal{B}(\psi' \to J/\psi \pi^+ \pi^-)} = 0.062 \pm 0.011$$

... or ...
$$\mathcal{B}(B^+ \to K^+ X(3872)) \cdot \mathcal{B}(X \to J/\psi \pi^+ \pi^-) = (1.37 \pm 0.25) \times 10^{-5}$$

Perhaps X(3872) = α (D⁰ \overline{D}^{0*} + C.C.) + β (cc)

- β² a few percent (?)
- α large (coincidence that $M_X = M_{D0} + M_{D0*}$?)
- J^{PC} = 1⁺⁺ ? (too narrow to have natural parity ?)
- minimal $D^+\overline{D^-}$ component (so much for isospin!)
- several other searches bear on J^{PC}

[Thanks to M.V., J.R., T.Skwarnicki]

More Attempts to Determine Nature of X(3872)

27 June 2004

Summary (of sorts)

New data, finished analyses, and renewed interest !! "D" State (L=2) established in Y system; agrees with LQCD η_c ' firmly established! Δh_f ' = 49 MeV to ~ 5% ; LQCD gives ... ? Several analyses confronting the color octet model PV states finally observed in ψ ' decay ... $Q_h/Q_{ee} \sim 1/50$ Nature of $\psi(3770)$ still a puzzle ... more data coming SOON! Very narrow X(3872) firmly established; many tests of J^{PC} done ... inconclusive; $c\bar{c}$? DD* molecule?

Interested ... join QWG!

Thanks to all from BES, BaBar, Belle, CDF, CLEO and DO