$$
\begin{gathered}
\text { Vus } \\
\text { Paolo Franzini }
\end{gathered}
$$

Università di Roma, La Sapienza

Boston, 26 June 2004

1963

Volume 10, Number 12-P HYSICAL REVIEW LETTERS-15 June 1963

UNITARY SYMMETRY AND LEPTONIC DECAYS
 Nicola Cabibbo
 CERN, Geneva, Switzerland
 (Received 29 April 1963)

... we should call it the Cabibbo angle... Tini Veltman
We still do not know its value to better than 1\%!!!

$$
V_{u s}=0.9999 \ldots \times \sin \theta_{C}, \text { CUSB, } 1983
$$

OUTLINE

1. History
 2. Where are we today
 3. Errors
 4. What is needed
 5. KLOE
 6. Conclusions

History

1947: Rochester and Butler: $K^{0} \rightarrow \pi^{+} \pi^{-}, K^{+} \rightarrow \pi^{+} \pi^{0}$
1953: Gell-Mann (Nisijima) strangeness
1963: Cabibbo: $s-d$ mixing. $\sin \theta_{c}=0.26\left(K_{\mu 2} / \pi_{\mu 2}\right)$
1964: Gell-Mann, Zweig: 3 quarks
1970: GIM: 4 quarks, 2×2 matrix
1973: Kobayashi and Maskawa, 3 quark-family mixing

CKM quark mixing

In the Standard Model the weak current is given by

$$
J_{\mu}^{+}=(\bar{u} \bar{c} \bar{t}) \gamma_{\mu}\left(1-\gamma_{5}\right) \mathbf{V}_{\mathrm{CKM}}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

with

$$
\mathbf{V}^{\dagger} \mathbf{V}=1
$$

which we would like to verify. Only four real \#'s describe the weak interactions.

Verify, for instance, by proving the closing of triangles...

"Unitarity" triangle(s)

There are many triangles, they must all have the same area, also called the cost of $\& \subset$, which is very poorly known

$$
J_{12} \quad h=A^{2} \lambda^{5} \eta(\times 10)
$$

$$
\lambda
$$

$\Delta S=\Delta Q=1$ transitions, e.g. K meson decays, measure $\left|V_{u s}\right|^{2}=\lambda^{2}=\sin ^{2} \theta$.
$K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ measures $\left(\Im\left(V_{t d} V_{t s}\right)\right)^{2}=\left(A^{2} \lambda^{5} \eta\right)^{2}$

$$
\begin{aligned}
& J_{13} \\
& \stackrel{1}{4}_{A \lambda^{3}}^{\longleftarrow} h=A \lambda^{3} \eta
\end{aligned}
$$

CKM and K mesons

The CP violation parameters add more information to the above. Usually they are shown as correlations in the " $\eta-\rho$ " plane.

In fact, $K^{0}-\overline{K^{0}}$ and $B^{0}-\overline{B^{0}}$ mixing, together with $V_{b u}$ had led to predictions for the angle β beautifully verified at the B-factories.

1 is better than 0

Instead of the " 0 's" in $\mathbf{V}^{\dagger} \mathbf{V}$ we can look at the " 1 's" The first row must satisfy

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1
$$

From $\left|V_{u s}\right|=0.2196 \pm 26\left(K_{\ell 3}\right),\left|V_{u d}\right|=0.9734 \pm 0.0008\left(0^{+} \rightarrow 0^{+}\right.$ β-decays) and $\left|V_{u b}\right|^{2}$ of $\mathcal{O}\left(10^{-5}\right)$ one finds

$$
1-\left|V_{u d}\right|^{2}-\left|V_{u s}\right|^{2}\left(-\left|V_{u b}\right|^{2}\right)=0.0042 \pm 0.0019
$$

a $\sim 2.2 \sigma$ deviation from 0.
Was 1.8σ in ' $96,2.3 \sigma$ in '02. Small changes in $V_{u d}$ and its error.
By far the most stringent check of unitarity
It is beginning to change now.

$\left|V_{u s}\right|$ from $K_{e 3 ; ~}(\mu 3)$

Being $0 \rightarrow 0$ transitions, these decays are protected by the AdemolloGatto theorem, i.e. $S U(3)$ breaking effects are absent to lowest order in $m(s)-m(u, d)$.

From

$$
\begin{gathered}
J_{\alpha}(U D)=\overline{\mathbf{U}} \mathbf{V}_{\mathrm{CKM}} L_{\alpha} \mathbf{D}=\ldots V_{u d} \bar{u} L_{\alpha} d+V_{u s} \bar{s} L_{\alpha} d \ldots \\
\langle\pi| J_{\alpha}^{H}|K\rangle=\left(p_{K}+p_{\pi}\right)_{\alpha} \times f_{+}(t) \\
f_{+}(t)=f_{+}(0) \times\left(1+\lambda \frac{t}{\pi^{2}}+\ldots\right) \\
f_{+}(0)<1
\end{gathered}
$$

The decay width is:

$$
\begin{aligned}
\Gamma\left(K_{\ell 3}\right)=\left|V_{u s}\right|^{2} \times G_{\mathrm{F}}^{2} & \times F_{1}(\text { masses, slopes }) \times \\
& F_{2}(\text { corrections })^{\dagger} .
\end{aligned}
$$

Apart from F_{2}

$$
\frac{\delta\left|V_{u s}\right|}{\left|V_{u s}\right|}=\frac{1}{2} \frac{\delta \Gamma}{\Gamma} .
$$

At present, however,

$$
\frac{1}{2} \frac{\delta F_{2}}{F_{2}}>\frac{1}{2} \frac{\delta \Gamma}{\Gamma} .
$$

mostly from $f_{+}(0)$. But there is hope.
\dagger There are two " F_{2} " functions for $K_{\mu 3}$ decays
There are 6 " F_{2} " functions for hyperon decays

Master Formula

$$
\mathrm{d} \Gamma=\frac{G_{\mathrm{F}}^{2} M_{K}^{5}}{768 \pi^{3}}\left|V_{u s}\right|^{2} S_{\mathrm{EW}}\left|f_{+}^{K^{0}}(0)\right|^{2} C_{K}^{2} I_{K}^{\ell}\left[1+\delta_{S U(2)}^{K}+\delta_{e m}^{K}\right]
$$

$S_{\text {EW: }}$: universal SD em correction at $\mu=m_{\rho},=1.0232$
$C_{K}:$ comb'n of clebsch's, $=1$ for $K_{S, L}, 1 / \sqrt{2}$ for $K^{ \pm}$
$f_{+}^{K^{0}}(0) \leq 1: S U(3)$ breaking correction
I_{K}^{ℓ} : Phase space integrals, depend on $\lambda_{+, 0}$, etc $\delta_{S U(2)}^{K}: S U(2)$ breaking $(m(u) \neq m(d))$ corrections $\delta_{e m}^{K}$: long distance em correction
$f_{+}^{K^{0}}(0)=0.961 \pm 0.08, L \& R, 1984$, is the only widely accepted estimate still. (New lattice result, Becirevic et al., $f_{+}^{K^{0}}(0)=$ $0.960 \pm 0.005 \pm 0.007$. Also good match to $f(t)$ shape.)

Up to 2002

From PDG one then gets

CKM1, G. I. conv., 2002

to be compared to $\sqrt{1-V_{u d}^{2}} \times f_{+}^{K^{0}}(0)=0.2202 \pm 0.0037$

however

1. $\Gamma \mathrm{s}$ are not measured. Values and $\delta \Gamma / 2 \Gamma=0.5-0.6 \%$ - from PDG fit. Taking the PDG average for $K_{e 3}$, the central value is quite different, higher. The error is also much larger.
2. For $K_{L}, \mathrm{BR}(e 3) / \mathrm{BR}(\mu 3)$ disagrees with value from slopes, λ_{+}, λ_{0}, and '01 KEK measurement by 4.4%
3. $\tau\left(K^{ \pm}\right)$not too reliable; $\mathrm{d} \tau / \tau=0.2$ or 0.8% ?
4. $\tau\left(K_{L}\right)$ is poorly known, $\mathrm{d} \tau / \tau=0.8 \%$

It is possible that

a more realistic picture is

and the unitarity violation is swallowed by realistic errors.

From PDG

$$
\begin{gathered}
\frac{\delta V_{u s}}{V_{u s}}=\frac{1}{2} \frac{\delta \Gamma}{\Gamma} \oplus \frac{1}{20} \frac{\delta \lambda_{+}}{\lambda_{+}} \oplus \frac{\delta f_{+}(0)}{f_{+}(0)} \\
\text { but, too often } \\
\left.\left.\frac{\delta \Gamma}{\Gamma}=\frac{\delta \mathrm{BR}}{\mathrm{BR}}\right]_{\text {meas. }} \oplus \frac{\delta \mathrm{BR}}{\mathrm{BR}}\right]_{\text {ref }} \oplus \frac{\delta \tau}{\tau} \\
\text { Must }
\end{gathered}
$$

1. Avoid/improve $[\delta B R / B R]_{\text {ref }}$
2. Improve on τ
3. Measure λ_{+}(also λ_{0}, and $\lambda^{\prime}, \lambda^{\prime \prime} \ldots$)

There are important question about the slope and curvature parameters, which I will however ignore.

$2003-2004$

E865 $K_{e 3}^{+} \quad 0.2189 \pm 0.0021{ }^{\prime} 03+{ }^{\prime} 72+' 71$
PDG $K_{e 3}^{+} \quad 0.2133 \pm 0.0016{ }^{\prime} 72+{ }^{\prime} 71$
KLOE $K_{e 3}^{S} 0.2157 \pm 0.0018{ }^{\prime} 04+{ }^{\prime} 02+{ }^{\prime} 03$
PDG $K_{e 3}^{L} \quad 0.2095 \pm 0.0013$ PDG $\begin{aligned} & \text { fit } \\ & \text { ave }\end{aligned}$
${ }^{\mathrm{PDG}} K_{\mu 3}^{+} \quad 0.2142 \pm 0.0040 \quad{ }^{\prime} 72+{ }^{\prime} 71$
PDG $K_{\mu 3}^{L} \quad 0.2109 \pm 0.0026$

1. No problem with unitarity, with new results.
2. E865 depends on tainted PDG fit results.
3. KLOE, K_{S}, uses all new BR measurements.

Very recent results

KTeV has just submitted their new results for publication. There is a huge discrepancy with PDG fit. Other results are on the way.

With K_{L} liftime

The much improved accuracy is however spoiled by the poor knowledge of $\tau\left(K_{L}\right)$

Coming soon

PDG (Vosburg, '72): $\tau\left(K_{L}\right)=51.5 \pm 0.4 \mathrm{~ns}$ KLOE:
$\tau\left(K_{L}\right)=51 . -- \pm 0.20 \mathrm{~ns}$

$V_{u s}$ today

Must check $\tau\left(K^{ \pm}\right)$

From PDG

Other ways

- Hyperon Ieptonic decays. Cabibbo et al. find $V_{u s}=0.2250 \pm$ 0.002 , without having to apply any $S U(3)$ breaking corrections, estimated to be .975-.987. This is not well understood.
- τ-decays should allow a good determination of the Wsu coupling. The result is $V_{u s}=0.2210 \pm 0.0026$ in poor agreement with unitarity.
- The ratio $\Gamma(\pi \rightarrow \mu \nu) / \Gamma(\pi \rightarrow \mu \nu)$, using recent calculations of f_{K} / f_{π} yields $\left|V_{u s} / V_{u d}\right|^{2}=0.0527 \pm 0.0015$, in good agreement with unitarity and the value of $V_{u d}$.

$\left|V_{u s}\right|$ from $\pi_{\mu 2}$ and $K_{\mu 2}$

$$
\begin{aligned}
& \Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)=\frac{G_{\mu}^{2}\left|V_{u d}\right|^{2}}{8 \pi} f_{\pi}^{2} m_{\pi} m_{\mu}^{2}\left(1-\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{2}\left[1+\frac{\alpha}{\pi} C_{\pi}\right] \\
& \Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)=\frac{G_{\mu}^{2}\left|V_{u s}\right|^{2}}{8 \pi} f_{K}^{2} m_{K} m_{\mu}^{2}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2}\left[1+\frac{\alpha}{\pi} C_{K}\right]
\end{aligned}
$$

$\frac{\Gamma(K \rightarrow \mu \nu(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))}=\left|\frac{V_{u s}}{V_{u d}}\right|^{2} \times G_{1}($ masses, etc $) \times \frac{f_{K}}{f_{\pi}} \times G_{2}($ corrections $)$
$V_{u s}=0.2238 \pm 0.0003_{\text {exp!!?? }} \pm 0.0004_{\mathrm{rc}} \pm 0.0030_{\text {LQCD }}$ - Davies et al., (2004)

W. Marciano

$\phi \rightarrow K_{S} K_{L}$

From $e^{+} e^{-} \rightarrow \phi \rightarrow K_{S} K_{L}$ one gets

1. Monochromatic
2. Pure
3. Tagged
beams of K_{L}, K_{S} and $K^{ \pm}$mesons.
This offers unique possibility for measuring absolute branching ratios as well as lifetimes of all kaon species.

The first events

$K_{S} \rightarrow \pi^{+} \pi^{-}, K_{L} \rightarrow \pi^{+} \pi^{-}$ \&

$K_{S} \rightarrow \pi^{0} \pi^{0}, K_{L}$ interacts in ECal $C P$-conserving

KLOE performance

For tagged K_{L} measure path from $t(I \rightarrow A)$ and K_{S} direction

Tag K_{S} from＂$K_{L^{-}}$crash＂

$K_{S} \rightarrow \pi e \nu$

For tagged $K_{S}, \pi^{+} e^{-} \bar{\nu}$ and $\pi^{-} e^{+} \nu$ are identified by $\operatorname{TOF}(+)$, TOF(-) and kinematics closure.

IR finite radiative corrections are necessary for 1. agreement with shape, 2. correct event counting and 3. determination of $\mathrm{BR}(\pi e \nu[\gamma])$.

Charge asymmetry in $K_{S} \rightarrow \pi e \nu$

$\mathrm{BR}\left(\pi^{-} e^{+} \nu\right)=(3.54 \pm 0.05 \pm 0.05) \times 10^{-4}$
$\operatorname{BR}\left(\pi^{+} e^{-} \bar{\nu}\right)=(3.54 \pm 0.05 \pm 0.04) \times 10^{-4}$
$\mathrm{BR}(\pi e \nu)=(7.09 \pm 0.07 \pm 0.08) \times 10^{-4}$

$$
\begin{aligned}
A & =\frac{N^{+}-N^{-}}{N^{+}+N^{-}}=2\left(\Re \epsilon \pm \Re \delta+\Re y \pm \Re x_{-}\right) \\
A_{S} & =(-2 \pm 9 \pm 6) \times 10^{-3} \mathrm{KLOE}, 1^{\text {st }} \mathrm{meas} \\
A_{L} & =(3.322 \pm 0.058 \pm 0.058) \times 10^{-3} \mathrm{KTeV}
\end{aligned}
$$

$K_{L} \rightarrow \pi \ell \nu(\gamma)$, MC comparison

$K_{L} \rightarrow \pi \ell \nu(\gamma), \mathrm{MC}$ comparison

KLOE

Magnet
SC Coil, B=0.6 T

Magnet

 SC Coil, B=0.6 T EM Calor. Pb-scint fiber 4880 pm

Magnet SC Coil, B=0.6 T EM Calor. Pb-scint fiber 4880 pm

Drift Ch.
12582 sense wires 52140 tot wires

Magnet
SC Coil, B=0.6 T EM Calor. Pb-scint fiber 4880 pm

Drift Ch.
12582 sense wires
52140 tot wires $\mathrm{d} E / \mathrm{d} x$

Al-Be beam pipe $r=10 \mathrm{~cm}, 0.5 \mathrm{~mm}$ thick

Drift chamber

$$
\begin{aligned}
& \sigma_{E} / E=5.7 \% / \sqrt{E(\mathrm{GeV})} \\
& \sigma_{t}=54 / \sqrt{E(\mathrm{GeV})} \mathrm{ps}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma\left(p_{\perp}\right) / p_{\perp}=0.4 \% \\
& \sigma_{x, y}=150 \mu \mathrm{~m} ; \sigma_{z}=2 \mathrm{~mm} \\
& \hline
\end{aligned}
$$

EM Calorimeter

To get to $\delta\left|V_{u s}\right| /\left|V_{u s}\right|$ of $\mathcal{O}(0.1 \%)$

Must measure

1. $\Gamma\left(K_{L}, K^{ \pm}\right)_{e, \mu 3}$ to $\leq 0.2 \% \quad$ I-spin corrections to $<0.1 \%$
2. $\tau\left(K^{ \pm}, K_{L}\right)$ to $\leq 0.2 \%$
3. $\lambda_{+}\left(K_{L}, K^{ \pm}\right)$to $\leq 4 \%$
4. $\lambda_{0}\left(K_{L}, K^{ \pm}\right)$to $\leq 4 \%$

KTeV, NA48, KLOE

Must compute SU(3) corr., $f(0)$ to $<0.1 \%$ f_{K} / f_{π} to $<0.1 \%$

LATTICE?
χ PT?

Lattice results appears today particularly promising. $f_{+}(0)$ has been computed on the lattice by the Rome group with the same result as L\&R, 2 unquenched calculations under way. f_{K} / f_{π}.

THEN

1. Comparison of K_{L} and $K^{ \pm}$verifies I-spin corrections
2. $\left|V_{u s}\right|$ with $\left|V_{u d}\right|$ verifies $S U(3)$ corrections.

And, when you can believe everything, you can check unitarity.

The rewards are large, whether it is chiral perturbations or lattice calculations, one can check for the first time calculations of hadronic effects. It is quite time that we learned how to do them.

A gross violation of CKM unitarity would certainly be a big surprise. There are quantities, such as the $K_{S^{-}} K_{L}$ mass difference and the branching ratio for $K_{L} \rightarrow \mu^{+} \mu^{-}$, which make such surprises quite unlikely.

I would be very careful before accepting the present, almost gone, discrepancy $1-\left|V_{u d}\right|^{2}-\left|V_{u d}\right|^{2}=.99 ? ? \pm 0.00 ? ?$. Better measurements are becoming available and we need more experience in computing corrections both for β-decay and strange decays.
"Possible" problems with the quark mixing scheme, as well as with the SM, have gone away thus far.

What form factor?

$$
f(t)=1+b \times t / m\left(\pi^{2}\right)+d \times t^{2} / m\left(\pi^{4}\right) \quad \text { or }=M^{2} /\left(M^{2}-t\right)
$$

$\iint \rho \mathrm{d} x \mathrm{~d} z=$
$0.563371+1.9467 b+2.6990 b^{2}+5.37985 d+18.5425 b d+36.4182 d^{2}=$ $0.563371+0.055481+0.002185+0.004035+0.000396+0.000020$

$$
8.87 \% \quad 0.35 \% \quad 0.65 \% \quad 0.06 \% \quad 0.003 \% .
$$

Fits with slope, slope + curvature and pole all give different phase space integrals.

Correlations

$$
\left(\begin{array}{ll}
\overline{(\delta \lambda)^{2}} & \overline{\delta \lambda \delta \lambda^{\prime}} \\
\overline{\delta \lambda^{\prime} \delta \lambda} & \overline{(\delta \lambda)^{2}}
\end{array}\right)=\frac{1}{N}\left(\begin{array}{cc}
0.475 & -0.121 \\
-0.121 & 0.035
\end{array}\right)=\frac{1}{N}\left(\begin{array}{cc}
0.689^{2} & -0.121 \\
-0.121 & 0.187^{2}
\end{array}\right)
$$

Compared to $\delta \lambda=0.24 / \sqrt{N}$ and $\delta \lambda^{\prime}=0.065 / \sqrt{N}$ for no correlations, both the λ and λ^{\prime} errors are approximately tripled and the correlation is $\sim 100 \%$ in the PDG notation.

