Beauty physics with B_s and Λ_b

Rolf Oldeman

INFN Roma 1 "La Sapienza"

Selected topics

- Masses
- Lifetimes
- B_s lifetime difference
- Charmless B_{s} and Λ_{b} decays
- B_s oscillations

Rare decays covered today by YoungJoon Kwon CP violation covered today by Emmanuel Olaiya

The B hadron family

Not yet unambiguously observed:

Producing heavy B hadrons

Y(4S): B⁺ / B⁰ only B_s at Y(5S): \approx 10x smaller cross-section than B_d at Y(4S)_{3.0}

- e⁺ e⁻ above B_s threshold:
 •LEP ≈880k bb events/experiment
 •SLC ≈ 85k bb events
- Fixed target E_{cm} > 2m(B_s)
 •Tried unsuccessfully at HERA-B <u>σ(bb)/σ(total)</u>≈ 10⁻⁶
- Hadron colliders:
 - Operational: Tevatron, Chicago, 1.96 TeV $p\overline{p}~\sigma_{bb}/\sigma_{tot}\approx 10^{\text{-3}}$
 - Startup 2007: LHC, Geneve 14TeV pp $\sigma_{bb}^{-1}/\sigma_{tot}^{-2} \approx 10^{-2}$ Production ratio at high energy: $B^0: B^-: B_s: \Lambda_b: B_c \approx 4:4:1:1:0.01$

Reconstructing B-decays

Generally 3 types of B-decays accessible at hadron collider:

Tevatron detectors: CDF and DØ

CDF:

- Displaced track trigger PID: TOF and dE/dx
- Better mass resolution

DØ: Larger muon coverage Better forward tracking Strong in J/ψ modes

Strong in semi-leptonic modes

Forward is the future

pp collisions at E_{cm} =14TeV

$p\bar{p}$ collisions at E_{cm} =1.96TeV

Forward region:

- High cross-sections
- High boost \Rightarrow longer lifetimes
- Often both B's in acceptance
- Ring Imaging Cherenkov for π ,K,p identification

Mass measurements

D0 Runll preliminary. Luminosity ~ 225 pb⁻¹

New CDF m(B_s) and m(Λ_b) results

Dramatic improvements w.r.t to PDG2004:

Beauty hadron lifetimes

To first order: lifetime determined by fastest decaying quark $\Rightarrow \tau(B^{+}) \approx \tau(B^{0}) \approx \tau(B_{s}) \approx \tau(\Lambda_{b}) >> \tau(B_{c})$

Spectator effects can be calculated in Heavy Quark Expansion

Dominated by $(\Lambda_{QCD}/m_b)^3$ contributions

$$\frac{\tau(B^+)}{\tau(B_d)} = 1.06 \pm 0.02$$
$$\frac{\tau(B_s)}{\tau(B_d)} = 1.00 \pm 0.01$$
$$\frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.90 \pm 0.05$$

B_s and Λ_b lifetime measurements

Best B⁺,B⁰ lifetimes from Y(4S): \approx 1% accuracy

Best $\mathsf{B}_{\mathsf{s}},\,\Lambda_{\mathsf{b}}$ results from semi-leptonic decays at CDF1, LEP :

 $\tau(B_s)=1.46\pm0.06$ ps $\tau(\Lambda_b)=1.23\pm0.08$ ps

 $\tau(\Lambda_b)/\tau(B_d)=0.80\pm0.05$: shorter than predicted 0.90 ± 0.05

Needs correction for the missing neutrino.

- \Rightarrow irreducible systematics from:
 - decay model
 - production model

Fully reconstructed modes allow model-independent lifetime measurement

DØ/CDF B_s and Λ_b lifetime results

Latest DØ and CDF fully reconstructed lifetimes approach competitive precision:

CDF 220pb⁻¹: $\tau(B_s \rightarrow J/\psi \phi) = 1.37 \pm 0.10 \pm 0.01 ps$

DØ 115pb⁻¹: $\tau(B_s \rightarrow J/\psi \phi)=1.19\pm0.19\pm0.14$ ps

CDF 65pb⁻¹: $\tau(\Lambda_b \rightarrow J/\psi \Lambda) = 1.25 \pm 0.26 \pm 0.10 \text{ps}$

Look forward this summer:

- B_s , Λ_b lifetime with more data
- semi-leptonic modes
- hadronic modes: $B_s \rightarrow D_s \pi$, $\Lambda_b \rightarrow \Lambda_c \pi$

B_s lifetime difference

B_s has a large branching fraction to CP eigenstates Dominated by b→ cc̄s transition : B_s→ D_s^{(*)+}D_s^{(*)-} for B_d : b→ cc̄d : Cabibbo suppressed → 20× smaller

SM prediction $\Delta\Gamma_s/\Gamma_s = \Gamma_L - \Gamma_H = 0.074 \pm 0.024$ World average: $\Delta\Gamma_s/\Gamma_s = 0.07^{+0.09}_{-0.07}$ (< 0.29 at 95% CL) SLD,LEP,CDFI results + $\tau(B_s) = \tau(B_d)$ constraint

Three ways to measure:

• Fit CP-mixed decay distribution to double exponential Only sensitive to $(\Delta\Gamma)^2 \rightarrow poor at low \Delta\Gamma$

• Compare $\tau(B_s \rightarrow CP \text{ even})$ to $\tau(B_s \rightarrow CP \text{ mixed or } CP \text{ odd})$ Angular analysis of $B_s \rightarrow J/\psi \phi$ separates CP even and CP odd Semileptonic $B_s \rightarrow D_s \mu v$ and hadronic $B_s \rightarrow D_s \pi$ are CP mixed

• Indirect: measure Br ($B_s \rightarrow D_s^{(*)+} D_s^{(*)-}$)

$B_s {\rightarrow} J/\psi \, \phi$ angular analysis

CDF angular analysis

Using \approx 180 $B_s \rightarrow J/\psi ~\varphi$ in 180pb^1 CDF finds:

 $\begin{array}{l} A_{0} = 0.767 \pm 0.045 \pm 0.017 \\ A_{||} = (0.424 \pm 0.118 \pm 0.013)e^{(2.11\pm0.55\pm0.29)i} \end{array} \begin{array}{l} \mathsf{CP} \text{ even} \\ \Rightarrow \text{ short-lived} \\ |A_{\perp}| = 0.482 \pm 0.104 \pm 0.014 \\ \mathsf{B}_{s} \rightarrow \mathsf{J/\psi} \phi \text{ is } \approx 80\% \text{ CP-even} \\ \Rightarrow \mathsf{expect} \tau(B_{s} \rightarrow \mathsf{J/\psi}\phi) < \tau(B_{s} \rightarrow D_{s}\mu\nu) \end{array} \begin{array}{l} \mathsf{CP} \text{ even} \\ \Rightarrow \text{ long-lived} \\ \Delta\Gamma_{s} \text{ is imminent} \end{array}$

Charmless decays

Rare b \rightarrow u transitions probe $|V_{ub}|$ and its phase γ In practice: spoiled by penguin transitions

Compare B_s , B_d decays to disentangle penguin, V_{ub} contributions

New CDF search for $\Lambda_b \rightarrow pK, p\pi$

Prediction: Mohanta, Giri, Khanna 2001

- $Br(\Lambda_b \rightarrow pK) = (1.4-1.9) \times 10^{-6}$
- $Br(\Lambda_b \rightarrow p\pi) = (0.8-1.2) \times 10^{-6}$

Previous best limit from ALEPH: Br($\Lambda_b \rightarrow p\pi + pK$) < 50×10⁻⁶ @90%CL

Compare to $Br(B^0 \rightarrow K^+\pi) = (18 \pm 1) \times 10^{-6}$

First observation of $B_s \rightarrow \phi \phi$

 $B \rightarrow s\bar{s}s$ penguin transition,

The B_s equivalent of $B_d \rightarrow \phi K^0_S$

Predicted BR($B_s \rightarrow \phi \phi$):

- Factorization: (0.4-25)×10⁻⁶ Chen, Chen, Tseng 2003
- QCD factorization: (18-37)×10⁻⁶

Li, Lu, Yang 2003

Blind search: cuts optimized on signal MC and ϕ sidebands

12 observed, 1.95±0.62 background

 $BR(B_s \rightarrow \phi \phi) =$ (14 ± 6(stat.) ± 2(syst.) ± 5(BR's)) × 10⁻⁶

Wonderful channel with bright future for:

- Angular analyses
- $\Delta\Gamma_{\rm s}$ measurement
- CP violation

B_s oscillations

B_d oscillations are sensitive to |V_{td}| Compromised by hadronic uncertainties

Most cancel in B_d/B_s oscillation ratio:

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_s}{m_d} (1.15 \pm 0.06 \frac{+0.12}{-0.00})^2 \left| \frac{V_{ts}}{V_{td}} \right|^2$$

Double motivation:

New physics may affect $\Delta m_s / \Delta m_d$

 Δm_s measurement prerequisite for time-dependent CP violation measurements with B_s

Current status of B_s mixing

Heavy Flavor Averaging group: Combined LEP,SLD,CDF1

Towards B_s oscillations

DØ has the largest yields in semileptonic modes:

CDF has fully reconstructed hadronic decays

Flavor tagging at hadron colliders

For oscillations: compare flavor at production with flavor at decay

measured total momentum p (GeV/c)

Compare to B factories: ε D² \approx 30%

Conclusion

 $\Lambda_{\rm b}$ and especially ${\rm B}_{\rm s}$ gives unique window on B physics

CDF, DØ improved mass, lifetime using up to $> 2 \times \text{Run1}$ data

 $B_s{\rightarrow}J/\psi~\phi$ mostly CP even. $\Delta\Gamma_s$ measurements imminent

New modes : •Charmed hadronic: $B_s \rightarrow D_s \pi$, $\Lambda_b \rightarrow \Lambda_c \pi$ •Charmless hadronic: $B_s \rightarrow K^+K^-$, $B_s \rightarrow \phi \phi$, new limit $\Lambda_b \rightarrow pK, p\pi$

Ingredients for B_s mixing getting ready...

The future for B_s looks strange but beautiful

BACKUP

Rudolf Oldeman (INFN Roma 1 'La Sapienza') Physics in Collision 2004, Boston

June 27, 2004 26

Mass scale calibration

Critical: calibration of momentum scale to <1\times10⁻⁴ level

Two components:

- B field calibration
- Material calibration

use $\approx 5{\times}10^5~J/\psi{\rightarrow}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ decays

Tevatron performance

High luminosity has a dark side:

- •Less trigger bandwidth for B-physics
- •Overlapping events degrade performance