Kaon Physics

Ivan Mikulec HEPHY Vienna June 27 2004 – PIC2004, Boston

Active Experiments

→ Rare decays: FCNC and related processes

- Semileptonic kaon decays
- →CP violating decays

→Summary

June 27 2004

I. Mikulec: Kaon Physics

Rare decays FCNC and related processes

Goals

- Kaon decays contributed significantly to the development of Standard Model (SM)
- → Main interest today: Search for New Physics
- Measurement of rare decays is complementary to the search for new particles or precision measurements
- Violation of SM symmetries can be observed directly on decay rates
- Short-distance processes proceeding through flavour-changing neutral currents (FCNC) are the most sensitive to New Physics
- Long-distance processes must be sometimes subtracted – successfull application of chiral Perturbation Theory (χPT)

FCNC processes

→ Unique measure of CP-Violation (CPV) in SM: $J_{CP} = 2x CKM \Delta Area = Im(V_{ud} V_{us} V_{ts} V_{td}) \sim \cos\theta_{c} \sin\theta_{c} Im \lambda_{t}$

Decays $K_{L,S} \rightarrow \pi^0 II$

Analysis of $K_L \rightarrow \pi^0 II$

ee channel: Buchalla, D'Ambrosio, Isidori, NPB 2003. (BDI) μμ channel: Isidori, Smith, Unterdorfer, hep-ph/0404127 (ISU)

Search for $K_S \rightarrow \pi^0 II$

→ Why?: Determination of the indirect-CPV Amplitude of the decay K_L→π⁰II

 $\mathsf{K}_{\mathsf{s}} \sim \mathsf{K}_{1} + \varepsilon \mathsf{K}_{2} \quad \mathsf{K}_{\mathsf{L}} \sim \mathsf{K}_{2} + \varepsilon \mathsf{K}_{1} \rightarrow \mathsf{BR}(\mathsf{K}_{\mathsf{L}} \rightarrow \pi^{0}\mathsf{II})_{\mathsf{ICPV}} \sim \varepsilon^{2}\mathsf{BR}(\mathsf{K}_{\mathsf{s}} \rightarrow \pi^{0}\mathsf{II})$

 K_1, K_2 - CP Eigenstates

Main goal of the NA48/1 run 2002 (high intensity near target beam)

→ χPT predicts BR(K_S→π⁰II) to the level of 10⁻⁹ Unknown form factor: W_S~a_S+b_S(m_{II}/m_K)²

→ Vector-meson Dominance Model (VMD) predicts: $a_S/b_S=0.4$ and $BR(\kappa_s \rightarrow \pi^0 \mu\mu)/BR(\kappa_s \rightarrow \pi^0 ee)=0.23$ Exp. supported by: $BR(\kappa^+ \rightarrow \pi^+ ee)/BR(\kappa^+ \rightarrow \pi^+ \mu\mu)=0.167\pm0.036$

Search for $K_S \rightarrow \pi^0 II$

Search for $K_S \rightarrow \pi^0 II$

 $BR(K_S \rightarrow \pi^0 ee)_{mee>165MeV} = (3.0 + 1.5 - 1.2 \text{ stat} \pm 0.2 \text{ syst}) \times 10^{-9}$ Extrapolated with form factor $W_S(m_{ee})=1$:

BR(K_S
$$\rightarrow \pi^{0}ee$$
) = (5.8^{+2.8}_{-2.3 stat} ± 0.8_{syst}) x10⁻⁹ PLB 2003

→ BR(K_L→
$$\pi^{0}$$
ee)_{CPV} ≈ (17_{IND} ± 9_{INT} + 4_{DIR}) x10⁻¹²

In $\pi^0\mu\mu$ no extrapolation necessary:

$$\mathsf{BR}(\mathsf{K}_{\mathsf{S}} \rightarrow \pi^{0} \mu \mu) = (2.8^{+1.5}_{-1.2 \text{ stat}} \pm 0.2_{\text{syst}}) \times 10^{-9}$$

Subm to PLB

→ BR(K_L→
$$\pi^{0}\mu\mu$$
)_{CPV} ≈ (8_{IND} ± 3_{INT} + 2_{DIR}) x10⁻¹²

$$\frac{\mathsf{BR}(\mathsf{K}_{s} \to \pi^{0} \mu \mu)}{\mathsf{BR}(\mathsf{K}_{s} \to \pi^{0} e e)} = 0.50 \pm 0.33$$
Compatible with $\chi \mathsf{PT+VMD:} 0.23$

χPT : Determination of the form factor W_{S}

 $W_{S} \sim a_{S} + b_{S} (m_{II}/m_{K})^{2}$

Prediction of BR($K_L \rightarrow \pi^0 II$)

Prediction of $BR(K_{L} \rightarrow \pi^{0}II)_{CPV}$ assuming **constructive** interference between direct and indirect CPV amplitudes

Favored by two groups:

Buchalla, D'Ambrosio, Isidori, Nucl.Phys.B672,387 (2003)

Friot, Greynat, de Rafael, hep-ph/0404136

Prediction of BR($K_L \rightarrow \pi^0 II$)

Status of the search for $K_L \rightarrow \pi^0 II$

→ 1997 Data (PRL 2001): 2 candidates with 1.06±0.41 background

BR(K_L→ π^{0} ee) < 5.1x10⁻¹⁰ (90%CL)

→ 1999 Data (hep-ex/0302072):1 candidate with 0.99±0.35 background

 $BR(K_L \rightarrow \pi^0 ee) < 3.5 \times 10^{-10} (90\% CL)$

Combined:

BR(K_L→
$$\pi^{0}$$
ee) < 2.8x10⁻¹⁰ (90%CL)

→ 1997 Data (PRL 2000): 2 candidates with 0.87±0.15 background

$$BR(K_L \rightarrow \pi^0 \mu \mu) < 3.8 \times 10^{-10}$$

→An order of magnitude above SM predictions

Decay $K^+ \rightarrow \pi^+ \nu \nu$

Search for $K^+ \rightarrow \pi^+ \nu \nu$

Search for $K^+ \rightarrow \pi^+ \nu \nu$

→ Prospects

E949(02) – combined E787/949

E949 - projection with full running period

Decays
$$K_L \rightarrow \gamma \gamma$$
, $K_L \rightarrow \gamma^* \gamma^{(*)}$

Analysis of the decay $K_L \rightarrow \mu \mu$

 $K_{I} \rightarrow \gamma^{*} \gamma^{(*)} BR's$

June 27 2004

I. Mikulec: Kaon Physics

 $K_{I} \rightarrow \gamma^{*} \gamma^{(*)}$ form factors

$$\begin{split} &\alpha_{\text{K}^{*}}(\text{ee}\gamma \;)\text{= -0.186\pm0.011\pm0.009} \\ &\alpha_{\text{K}^{*}}(\text{eeee}\;)\text{= -0.03\pm0.13\pm0.04} \\ &\alpha_{\text{K}^{*}}(\text{ee}\mu\mu \;)\text{= -0.19\pm0.11} \end{split}$$

α(DIP)= -1.611±0.044

no sensitivity to $\beta(DIP)$

Measurement of $K_L \rightarrow \gamma \gamma$

New measurement from KLOE: (PLB 2003) $\Gamma(K_{L} \rightarrow \gamma \gamma)/\Gamma(K_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}) =$ (2.79 ± 0.02_{stat} ± 0.02_{syst}) × 10⁻³

Good agreement with NA48: (PLB 2003) $\Gamma(K_L \rightarrow \gamma \gamma)/\Gamma(K_L \rightarrow \pi^0 \pi^0 \pi^0) =$ (2.81 ± 0.01_{stat} ± 0.02_{syst}) × 10⁻³

Consequence for $K_L \rightarrow \mu\mu$ (Isidori, Unterdorfer 2003): -0.5 < $\bar{\rho}_{CKM}$ < 2.1 (2.9)

CKM unitarity triangle today

➔ Any exclusion of the red ellipse by rare K decays would signal New Physics

Semileptonic kaon decays

Measurement of |V_{us}|

→ PDG2002: test of CKM unitarity:
 1-(|V_{ud}|²+ |V_{us}|²+ |V_{ub}|²) = (4.3±1.9)x10⁻³ (>2σ)
 → K→πIv (K_{I3}) decays – best determination of |V_{Us}|

Several new theoretical and experimental results

$K_L \rightarrow \pi I_V$ measurement by KTeV

→KTeV presented recently a complete measurement of the main K_L BR's

→ Measure 5 ratios: hep-ex/0406002

Main features:

- •Rely on particle ID and kinematics
- •Heavy use of MC
- •Each ratio with same trigger
- •No use of muon system
- In π⁺π⁻π⁰ only π⁺π⁻ reconstructed
 Main sys. uncertainties from reconstruction efficiency and material simulation

Modes	Partial Width Ratio
Г _{Кµ3} / Г _{Ке3}	0.6640±0.0014±0.0022
Γ ₀₀₀ / Γ _{Ke3}	0.4782±0.0014±0.0053
$\Gamma_{ m +-0}$ / $\Gamma_{ m Ke3}$	0.3078±0.0005±0.0017
Γ_{+-} / $\Gamma_{{ m Ke}3}$	(4.856±0.017±0.023)×10 ⁻³
Γ ₀₀ / Γ ₀₀₀	(4.446±0.016±0.019)×10 ⁻³

$K_L \rightarrow \pi I_V$ measurement by KTeV

Significant differences between KTeV and PDG!

- ➔Implications on BR's, |V_{us}| and |η₊₋|
- ➔A cross check would be very welcome

June 27 2004

$$K_L \rightarrow \pi I_V$$
 form factors and $|V_{us}|$ KTeV

→ KTeV measure their own form factor shape (more precise) to determine the phase space integral for |V_{us}|:

$$f_{+}(t) = f_{+}(0) \left(1 + \lambda'_{+} \frac{t}{M_{\pi}^{2}} + \frac{1}{2} \lambda''_{+} \frac{t^{2}}{M_{\pi}^{4}} \right)$$

$$f_{0}(t) = f_{+}(0) \left(1 + \lambda_{0} \frac{t}{M_{\pi}^{2}} \right),$$
where $t = (P_{K} - P_{\pi})^{2} = (P_{\ell} + P_{\nu})^{2}$
First time quadratic slope at 4σ

→ Combining K→ π ev and K→ $\pi\mu$ v results: hep-ex/0406001

$$|V_{us}| f_{+}(0) = 0.2165 \pm 0.0012$$

$K_S \rightarrow \pi ev$ measurement by KLOE

 $BR(\pi^{-}e^{+}v) = (3.54 \pm 0.05_{stat} \pm 0.05_{syst}) \times 10^{-4}$ BR(\pi^{+}e^{-}v) = (3.54 \pm 0.05_{stat} \pm 0.04_{syst}) \times 10^{-4} BR(\pi e v) = (7.09 \pm 0.07_{stat} \pm 0.08_{syst}) \times 10^{-4} CPT Test: First measurement of the charge asymmetry in K_s :

δ_S(e) = (-2±9±6) x10⁻³

δ_L(e) = (3.32±0.07) x10⁻³

$$K_S \rightarrow \pi ev$$
 measurement by KLOE

 \rightarrow Test of the Δ S= Δ Q rule:

Re x₊ = (
$$\Gamma_{S\pi ev}$$
- $\Gamma_{L\pi ev}$)/2($\Gamma_{S\pi ev}$ + $\Gamma_{L\pi ev}$)

KLOE preliminary:

 $\begin{array}{l} \mbox{Re x+ = } 0.0136 \pm 0.0031_{stat} \pm 0.0029_{syst} & \mbox{with PDG BR}(K_{Le3}) \\ \mbox{Re x+ = } 0.0017 \pm 0.0029_{stat} \pm 0.0029_{syst} & \mbox{with KTeV BR}(K_{Le3}) \end{array}$

CPLEAR: Re x+ = $-0.0018 \pm 0.0041_{stat} \pm 0.0045_{syst}$

\rightarrow Calculation of $|V_{us}|$ using CKMwg recipe:

$$|V_{us}| f_{+}(0) = 0.2157 \pm 0.0018$$

KLOE preliminary

NA48 $K_{I} \rightarrow \pi e v$ measurement by

NA48 preliminary:

$$\mathsf{R} = \frac{\Gamma(\mathsf{K}_{\mathsf{L}} \rightarrow \pi e_{\mathsf{V}})}{\Gamma(\mathsf{K}_{\mathsf{L}} \rightarrow 2 \text{track})} = 0.497 \pm 0.004$$

$$K_L \rightarrow \pi ev$$
 measurement by NA48

$$BR(K_{L} \rightarrow \pi ev) = \mathbf{R} * BR(K_{L} \rightarrow 2 \text{ track})$$

where

BR(2tr) = 1 - **BR(3\pi^{0})** - BR(2 π^{0}) - BR($\gamma\gamma$) + BR(3 π^{0}_{D})

- → depends strongly on BR(3π⁰) now with two measurements in
 6σ discrepancy
- → need a third measurement or scaling of errors a la PDG by 4.8!

Measurement of form factors (preliminary):

$$\lambda_{+} = 0.0288 \pm 0.0005$$

Assuming V-A Only linear slope

Consistent with previous measurements and KTeV (0.0281± 0.0005)

Without V-A assumption scalar and tensor FF's compatible with 0

Summary on |V_{us}|

Decay $K_{I} \rightarrow \pi e v \gamma$

- → <u>Situation up to now</u>: significant difference between KTeV and theory
- Radiative corrections important
- → NA48 trying to make a model independent measurement: MC weighted with kaon energy and θ_{eγ}* from data

NA48 preliminary:

NA48

 $\Gamma(K_L \rightarrow \pi e v \gamma) / \Gamma(K_L \rightarrow \pi e v) = (9.60 \pm 0.07 + 0.12_{-0.11}) \times 10^{-3}$

Decay $K_{I} \rightarrow \pi^{0} \pi e v$

→Interesting for χ PT: e.g. $\pi\pi$ scattering

CP violating decays

Decay $K_S \rightarrow \pi^0 \pi^0 \pi^0$

KLOE

→ Direct search by tagging K_S by opposite K_L from $e^+e^- \rightarrow \phi \rightarrow K_S K_L$

$|\eta_+|$ measurement

KTeV

$$\left|\eta_{+-}\right|^{2} = \frac{\Gamma(K_{L} \to \pi^{+}\pi^{-})}{\Gamma(K_{S} \to \pi^{+}\pi^{-})} = \frac{\tau_{S}}{\tau_{L}} \frac{B_{\pi^{+}\pi^{-}}^{L} + B_{\pi^{0}\pi^{0}}^{L} \left[1 + 6\operatorname{Re}(\varepsilon'/\varepsilon)\right]}{1 - B_{\pi\ell\nu}^{S}}$$
Assuming $\Gamma(K_{S} \to \pi e\nu) = \Gamma(K_{L} \to \pi e\nu)$

hep-ex/0406002

 $|\eta_{+}| = (2.228 \pm 0.005_{\text{KTeV}} \pm 0.009_{\tau\text{KL}}) \times 10^{-3}$

Direct CPV in $K^{\pm} \rightarrow 3\pi$ - status NA48/2

$$|M(u,v)|^2 \sim 1 + gu + O(u^2,v^2)$$

•
$$K \rightarrow \pi^+ \pi^- \pi^{\pm}$$
: g = -0.2154±0.0035

•
$$K \rightarrow \pi^0 \pi^0 \pi^{\pm}$$
: g = 0.652 ± 0.031

→ Direct CP-violation:

$$A_{g} = (g_{+}-g_{-})/(g_{+}+g_{-}) \neq 0$$

→Measure: $R(u) = N(K^+ \rightarrow 3\pi)/N(K^- \rightarrow 3\pi) \sim 1+2gA_gu$

- Goal: measure A_g to better than 2x10⁻⁴
- Previous experiments precision few x 10⁻³
- SM predictions $A_q < 5x10^{-5}$
- Enhancement possible in models beyond SM

Direct CPV in $K^{\pm} \rightarrow 3\pi$ - status NA48/2

- Simultaneous K⁺ and K[−] beams
- Acceptance cancels by changing the polarity of spectrometer magnet
- Beam geometry effects cancel by changing achromat polarity
- Data taking 2003-2004 \rightarrow already more than 1 billion K[±] \rightarrow 3 π collected
- Experiment dominated by statistical uncertainty

Summary

- → The new NA48/1 measurements of K_S→π⁰II clarified the relative strength of the indirect and direct CP violating contribution to the decay K_L→π⁰II.
- → E949 has observed a third $K^+ \rightarrow \pi^+ \nu \nu$ event
- New theoretical and experimental results on |V_{us}| are attempting to clarify a potential deviation from unitarity in the 1st row of CKM matrix
- → The field of kaon physics still very active
 - → other new results are expected in the near future
- → Long term projects for new kaon experiments exist
 → concentrating on decays K→πνν free from long distance contributions and highly sensitive to models beyond SM