

 B_d mixing and prospects for B_s mixing at DØ

Tulika Bose (Columbia University)

SM or NP?

Constraining the CKM matrix

What is mixing?

 Δm_d has been precisely measured: the world average is

 $\Delta m_d = 0.502 \pm 0.007 \, ps^{-1}$

:: a direct measurement of $\Delta m_s + \Delta m_d$ (current value) + V_{ts}(relatively well known) \Rightarrow V_{td}

Current limits say that B_soscillates at least 30 times faster than B⁰ ! Though experimentally challenging, a B, mixing measurement will be precise.

The Tevatron *B*-factory and the new DØ

Essential ingredients of a mixing analysis

A typical oscillation analysis involves:

- Selection of final states suitable for the study
 - Tagging the meson flavor at decay time (final state)
 - · Tagging the meson flavor at production time (initial state)
- Proper time reconstruction for each meson candidate

Average statistical significance $S(\Delta m, \sigma_t)$

 $-(\Delta n \sigma_t)^2/2$ proper time resolution Flavor tagging signal purity

of reconstructed events

