

Selected topics in High-energy QCD physics

Bernd Surrow

NEPPSSR 2009 Craigville, MA, August 14, 2009

QCD - Features

 $\mathcal{L}_{QCD} = \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - m \right] \psi - g_s \bar{\psi} \gamma^{\mu} G^a_{\mu} \frac{\lambda_a}{2} \psi - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$

- $G^a_{\mu\nu} = \partial_\mu G^a_\nu \partial_\nu G^a_\mu g_s f^a_{bc} G^b_\mu G^c_\nu$
- Interactions arise from fundamental symmetry principles: SU(3)_c
- Visible phenomena (e.g. proton) emerge through complex structure of the vacuum (e.g formation of Hadrons from quarks/gluons)
- Fundamental differences to QED:
 - O Self-interacting: highly nonlinear
 - O Interaction increases at large distances: Confinement
 - O Interaction decreases at small distances: Asymptotic freedom
 - O Strong coupling: as >>aem
 - O Topological excitations

NEPPSSR 2009 Craigville, MA, August 14, 2009

- QCD Profound differences between hadrons and other many-body systems
 - Atoms, molecules, nuclei,...:
 - O Constituents can be removed
 - Exchanged boson generating interaction may be subsumed into static potential (e.g. photon into Coulomb potential)
 - Most of mass from fermion constituents

• Nucleons:

- O Quarks are confined
- O Gluons are essential degrees of freedom
- Most of mass generated by interactions (~99%)
- Exploration of QCD: Analytical (e.g. perturbative) / non-perturbative (e.g. Lattice QCD -Numerical solution on space-time lattice) methods in comparison to experimental results

NEPPSSR 2009 Craigville, MA, August 14, 2009 Forcedominated matter

matters

QCD - Perturbative Side

Photo PRAS

Discovery of asymptotic freedom in the theory of strong interaction (Quantum Chromo Dynamics): Nobel prize in physics 2004

4 tracks 4.1 GeV 4.3 GeV 4.3 GeV 4.3 GeV 4.3 GeV 4.3 GeV 4.3 GeV

TASSO Collaboration, R. Brandelik et al., Phys. Lett. B 86 (1979) 243.

O as large at large distances (low energy)

 \circ as small at small distances (high energy)

- QCD Non-Perturbative Side
- Lattice QCD: Numerical solution of path integrals on space-time lattice
- Successful description of various hadron properties (e.g. mass spectrum in the context of lattice QCD calculations)
- For a large class of problems (e.g. hadron formation from quarks), phenomenological methods and modeling are indispensable

NEPPSSR 2009 Craigville, MA, August 14, 2009

Y. Kuramashi, Lattice 2007, PACS-CS Collaboration

- QCD Questions (The Frontiers of Nuclear Science Long Range Plane 2007)
 - What is the internal landscape of the nucleons?
 - What does QCD predict for the properties of strongly interacting matter?
 - What governs the transition of quarks and gluons into hadrons?
 - What is the role of gluons and gluon selfinteractions in nucleons and nuclei?
 - What are the phases of strongly interacting matter?
 - What determines the key features of QCD?

NEPPSSR 2009 Craigville, MA, August 14, 2009

http://www.er.doe.gov/np/nsac/docs/ Nuclear-Science.Low-Res.pdf

Exploring the proton structure and dynamics

Structure and dynamics of proton (mass) (\rightarrow visible universe) originates from QCD-interactions!

What about spin as another fundamental quantum number?

Synergy of experimental progress and theory (Lattice QCD / Phenomenology incl. phenomenological fits / Modeling) critical!

Mass in QCD

Quote from Nobel prize lecture in physics, 2004, given by Professor Frank Wilczek (MIT):

Stated as $m=E/c^2$: Possibility of explaining mass in terms of energy.

Einstein's original paper does not contain the equation E=mc², but rather m=E/c²: "Does the Inertia of a Body Depend Upon its Energy Content? "(A. Einstein, Annalen der Physik, 18 (1905) 639.)"

Modern QCD: Mass of ordinary matter derives almost entirely from energy - the energy of massless gluons and nearly massless quarks, which are the ingredients from which protons, neutrons, and atomic nuclei are made.

NEPPSSR 2009 Craigville, MA, August 14, 2009

Spin in QCD

- Traditional way to introduce spin in QM textbooks: Stern-Gerlach experiment (1922)
- Concept of spin: Long and tedious battle to understand splitting patters and separations in line spectra
- Anomalous magnetic moment of proton by Stern et al. (1933)

Proposal of self-rotating electron by Goudsmit and Uhlenbeck (1925):

How do we probe the structure and dynamics of matter in ep / pp scattering?

Craigville, MA, August 14, 2009

Fundamental QCD ingredients

• Asymptotic freedom:

 $\alpha_s \rightarrow 0$ at short distances: \Rightarrow perturbative QCD

 α_s large at long distances: \Rightarrow non-perturbative QCD

• Factorization: hard scale Q^2 , m_c , m_b

• Evolution:

Beyond Quark-Parton model,
 Parton densities become
 functions of Q²

 Predict Q² dependence of parton distribution functions (DGLAP evolution equations)

 $\sigma^{ep} = \gamma(x, Q^2) \otimes f_j(x, Q^2) \otimes \hat{\sigma}(x, Q^2)$

non-perturbative part

NEPPSSR 2009 Craigville, MA, August 14, 2009

Evolution

The presence of QCD related diagrams leads to a modification of F_2 0

$$\frac{F_{2}(x,Q^{2})}{x} = \sum_{i} Q_{i}^{2} \int_{0}^{1} \left(\frac{dy}{y}\right) q(y) \left(\delta\left(1-\frac{x}{y}\right) + \left(\frac{\alpha_{s}}{2\pi}\right) P_{qq}\left(\frac{x}{y}\right) \log \frac{Q^{2}}{\mu^{2}}\right) \text{ Logarithmic violation of scaling}$$

$$q(y) \equiv f_{q}(y) \quad \text{Parton model} \quad \text{Gluon radiation} \quad \text{Splitting function}$$

$$\frac{F_{2}(x,Q^{2})}{x} = \sum_{i} Q_{i}^{2} \int_{0}^{1} \left(\frac{dy}{y}\right) \left(q(y) + \Delta q(y,Q^{2})\right) \delta\left(1-\frac{x}{y}\right) = \sum_{i} Q_{i}^{2} \left(q(x) + \Delta q(x,Q^{2})\right)$$

$$\sum_{i} Q_{i}^{2} \left(q(x) + \Delta q(x,Q^{2})\right) \quad \Delta q(x,Q^{2}) = \left(\frac{\alpha_{s}}{2\pi}\right) \log \left(\frac{Q^{2}}{\mu^{2}}\right) \int_{x}^{1} \left(\frac{dy}{y}\right) q(y) P_{qq}\left(\frac{x}{y}\right)$$

depend on x and Q^2 :

NEPPSSR 2009

Craigville, MA, August 14, 2009

13

 $F_2 = \nu W_2$

 $\nu =$

 $\underline{p \cdot q}$

 n_f

 $\Sigma(x, Q^2) = \sum_{i=1} \left[q_i(x, Q^2) + \bar{q}_i(x, Q^2) \right]$

- Evolution of parton distribution functions (1)
 - Consider the change of the quark density $\Delta q(x,Q^2)$ over an interval of $\Delta \log Q^2$
 - General including other types of splitting functions:

$$\frac{d}{d\log Q^2}q(x,Q^2) = \left(\frac{\alpha_s}{2\pi}\right)\int_0^1 \left(\frac{dy}{y}\right)q(y,Q^2)P_{qq}\left(\frac{x}{y}\right)$$

 $g(x,Q^2)$

Probability of finding a parton of type i with momentum fraction x which originated from parton j having momentum fraction y!

Singlet distribution

Gluon distribution

NEPPSSR 2009 Craigville, MA, August 14, 2009

- Evolution of parton distribution functions (2)
 - Types of splitting functions

Probability of finding a parton of type i with momentum fraction x which originated from parton j having momentum fraction y!

$$\frac{d\Sigma(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{qq}\left(\frac{x}{z}\right) \Sigma(z,Q^2) + P_{qg}\left(\frac{x}{z}\right) g(z,Q^2) \right]$$

 $\frac{dg(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{gq}\left(\frac{x}{z}\right) \Sigma(z,Q^2) + P_{gg}\left(\frac{x}{z}\right) g(z,Q^2) \right]$

DGLAP evolution equations:

G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298; V. Gribov and L.N. Lipatov, Soc. J. Nucl. Phys. 15 (1972)
438; L.N. Lipatov, Soc. J. Nucl. Phys. 20 (1975) 96; Y.L. Dokshitzer, Soc. Phys. JETP 46 (1977) 641.

NEPPSSR 2009 Craigville, MA, August 14, 2009

Global fits

- Determine F₂^{QCD} in terms of parton distribution functions
- Evolve F₂^{QCD} through parton distribution functions based on evolution equations
- Minimize χ^2 in terms of F_2^{QCD} and F_2^{data} by adjusting parameters in $xf_i(x,Q^2)$
- Net result: QCD prediction for xf_i(x,Q²) and therefore F₂(x,Q²)
- Various global pdf analysis:
 - GRV
 - CTEQ
 - MRST

NEPPSSR 2009 Craigville, MA, August 14, 2009 $xf_i(x, Q_0^2) = A_i x^{-\lambda_i} (1-x)^{\eta_i} F(x)$

Low x: λ_i

High x: η_i

Factorization

 Unpolarized proton structure:

 f_1, f_2

- Three step process:
 - Partons (quarks/gluons) in initial state: Long distance (non-perturbative QCD domain)

17

- ⇒ Parton (quarks/gluons) distribution functions
- Hard interaction: Small distances (high energies) (perturbative QCD domain)
 - \Rightarrow Cross-section prediction (LO,NLO,NNLO)
- Quarks in final state: Long distance (non-perturbative QCD domain):
 - ⇒ Quarks fragment into observable hadrons described by fragmentation functions

 \boldsymbol{q}

e

Û

Overview

• Collider programs:

- Hadron-Hadron: Tevatron/ RHIC
- Electron-Hadron: HERA
- Electron/Positron: LEP

O QCD topics

- QCD factorization
- D Parton-distribution functions / Fragmentation functions
- Strong-coupling constant
- Jet algorithms
- QCD matrix elements in LO, NLO, NNLO
- Multi-leg final states
- Low-x physics
- Soft processes: Underlying event / Hadronization / Diffraction

Experimental QCD tests in ep

- \Box Measurement of α_s
- Fragmentation functions
- Extraction of parton distribution functions
- Color/spin dynamics
- Quark-Gluon jet properties
- Event shape variables (Sphericity, thrust, ...)
- Diffraction

NEPPSSR 2009 Craigville, MA, August 14, 2009 DESY

 $E_{e} = 27.5 \, GeV$ $E_p = 920 \text{ GeV}$

Experimental QCD tests in ee

- \Box Measurement of α_s
- Fragmentation functions
- Color/spin dynamics
- Quark-Gluon jet properties
- Event shape variables (Sphericity, thrust, ...)

LEP: Centre-of-mass energy (e^+e^-) up to 205GeV

BNL

- Experimental QCD tests in pp
 - \square Measurement of α_s
 - Fragmentation functions
 - Extraction of parton distribution
 functions
 - Color/spin dynamics
 - Quark-Gluon jet properties
 - Event shape variables (Sphericity, thrust, ...)
 - Diffraction

RHIC: Centre-of-mass energy 200-500GeV (polarized protons)

□ Precision measurements (e.g. F_2) \Rightarrow Precision on quark/gluon structure

- Precision on quark/gluon structure
 - Enormous precision reached over a wide kinematic region
 - Large uncertainties for all distribution functions at large momentum fractions:
 - Impact of W/Z program at
 LHC
 - □ Impact of high-E_T jet production

Cross Section Results - RHIC (Hadrons)

 Good agreement between data and NLO calculations for neutral pion production at forward and central rapidity

Cross Section Results - RHIC (Jets / Photons)

What do we know about the polarized quark and gluon distributions?

D. de Florian et al., Physpl 08.00.04,2094018 (2005).

$$\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx$$

NEPPSSR 2009 Craigville, MA, August 14, 2009

Gluon polarization - Extraction

Craigville, MA, August 14, 2009

Bernd Surrow

Gluon polarization - Correlation Measurements

• Correlation measurements provide access to partonic kinematics through Di-Jet/Hadron production and Photon-Jet production

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left(p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$$

- O Di-Jet production / Photon-Jet production
 - Di-Jets: All three (LO) QCD-type processes contribute: gg, qg and qq with relative contribution dependent on topological coverage
 - Photon-Jet: One dominant underlying (LO) process with large partonic aLL at forward rapidity
 - Larger cross-section for di-jet production compared to photon related measurements
 - Photon reconstruction more challenging than jet reconstruction
 - \Box Full NLO framework exists \Rightarrow Input to Global analysis

NEPPSSR 2009 Craigville, MA, August 14, 2009

• GRSV-STD: Higher order QCD analysis of polarized DIS experiments!

 $\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$

□ STAR Inclusive Jet production - RUN 6: ALL ⇒ Gluon spin contribution

O RUN 6 results: GRSV-MAX / GRSV-MIN ruled out - A_{LL} result favor a gluon polarization in the measured x-region which falls in-between GRSV-STD and GRSV-ZERO

• Consistent with RUN 5 result (Factor 3-4 improved statistical precision for pt>13GeV/c)

Recent results in high-energy QCD _F

Run 9 STAR Beam-Use Request: Di-Jet projections

NEPPSSR 2009 Craigville, MA, August 14, 2009 0.40

M/√s

0.35

0.40

- Summary
 - Enormous precision reached for unpolarized distribution functions Large uncertainties remain at larger momentum fractions - Impact for LHC program
 - Higher-order QCD calculations needed (Beyond NLO) for precision pdf extraction and as
 - Generally large uncertainties and model dependence on soft processes such as underlying event and hadronization
 - Evidence for a small gluon polarization ⇒ Renaissance of constituent quark model!
- Outlook
 - Electron-Ion Collider: Precision measurement of polarized ep and eA scattering

