Low background techniques in particle physics: an introduction

low background scientist?

Andrea Pocar - UMass Amherst

NEPPSR - August 12, 2009

Outline

- what is low background particle physics? (some definitions)
- low energy neutrinos, double beta decay, proton decay, direct cold dark matter (WIMPs) detection
- some history and milestones; the field today
- experimental techniques (how to detect very rare events with massive underground detectors)

Disclaimers

i. this is inevitably a slanted view of the subject(based on my personal experience with the Borexino and EXO experiments)

ii. the content listed above is presented in mixed order

iii. I do not always thoroughly present the physics of the experiments I use for examples - please ask if you need more details

what do we mean with 'low background' and 'low energy'?

low-background particle physics

- all measurements require low (enough) background (in one way or the other)

- typically, large accelerator experiments record an enormous quantity of data through which to sift to find the interesting signals (resonance peaks, vertices, etc)

- the filtering is performed by applying a series of non-trivial cuts to the data (energy, multiplicity, vertex separation, ...) to complicated events, rich of information

- in low energy experiments, the signal events are feeble and usually have pretty uninteresting topologies => need to have 'quiet' detectors to begin with

'quiet' detector

a detector is 'quiet' if (my personal definition):

- it is possible to extract the interesting signals applying relatively few, simple selection rules to the data set

- the trigger rate is low enough that no arbitrary choice has to be performed in the data acquisition at the trigger level (collect "all" data)

some examples

Fundamental fusion reaction: $4p \rightarrow ^{4}He + 2e^{+} + 2v_{e} + 26.73 \text{ MeV}$

Neutrino production in the sun

A. Pocar - NEPPSR - 8/12/09

37CI

Q_{EC}813.5

- Homestake Mine, Lead SD, 1400 m underground
- 615 tons of perchloroethylene (C_2Cl_4)
- 2.2*10³⁰ atoms of ³⁷Cl
- ³⁶Ar or ³⁸Ar added to the fluid as carrier gas
- data taken continuously: 1967 2002
- ~ one ³⁷Ar atom produced every 2 days !

solar neutrino detection proves that there are fusion reactions in the sun (Bethe, 1939)

problem (lesson):
 observed only ~1/3 of the expected
 flux ... of course, neutrinos oscillate!

solar neutrino detection

Solar neutrino spectrum

The SuperKamiokande detector

CONTRACTOR DESCRIPTION OF THE OWNER AND DESCRIPTION OF A DE

238,133999999999999999999

The sun imaged with neutrinos (courtesy R.Svoboda and the SK collab.)

solar neutrino experiments

solar neutrino experiments have pioneered:

- large (hundreds of tons), low radioactivity detectors
- single atom counting at these massive scales

first neutrino detection

1956: first direct (anti)neutrino detection via inverse β -decay of the proton (Reines and Cowan, Savannah River nuclear reactor)

the use of coincidences allowed to greatly enhance the signal over the 'singles rate' of the detector

A. Pocar - NEPPSR - 8/12/09

natural radioactivity

primordial (ie with lifetimes in the millions of years) radioactivity:

- 238 U, 232 Th chains and 40 K

- alpha, beta, gamma backgrounds affect experiments differently

E < 10 MeV

muon-related backgrounds

energetic muons are very penetrating and some survive the trip through several km of rock

- secondaries associated with muon showers react with nuclei in and around the detector: the product could be radioactive!

Three issues:

- 1. cosmic rays muons would blind a detector run on the surface
- 2. long-lived isotope activation (requires underground storage)

3. in-situ activation of fast decaying isotopes that could be a background

muon flux versus depth

[[]Mei and Hime, Phys. Rev. D 73 (2006) 053004]

Neutrinos don't interact much

- 1930: introduced/postulated by Pauli, as carriers of the apparent missing energy in β -decay

- 1934: Fermi develops the first theory of weak interactions (four-fermion interactions)

e

- at typical β -decay energies (1-10 MeV), the elastic scattering cross section of neutrinos on electrons is:

 $\sim G_F$

 $\sigma \sim G_F^2 s(\hbar c)^2 \sim 1.7 \text{ x } 10^{-44} \text{ E}_v \text{ [MeV] } cm^2$

(dimensional arguments, $s = 2m_e E_v + m_e^2$ invariant of the problem)

A. Pocar - NEPPSR - 8/12/09

Gran Sasso (LNGS) 3500 m.w.e. shielding muon flux ~ 1/h/m²

Borexino

Detector full, May 15 2007

A. Pocar - NEPPSR - 8/12/09

photo: BOREXINO calibration

an estimation of required purity

- Borexino's fiducial scintillator volume is m = 100 tons (3 meter sphere), in which a few tens of neutrino events per day are expected

- ²³⁸U has a mean life $\tau = 7 \times 10^9$ years; if its concentration (by mass) is C, the number of its decays/day R in the fiducial volume is:

 $R = C[g/g] m[g] 6x10^{23} / 238[g/mol] \tau[d]$

In order to have one decay/day, C has to be: $C \sim 10^{-17} \text{ g/g} \quad !!!$

if you were wondering, we actually reached it :)

BX: scintillator purification

- petroleum derivative with ${}^{12}C/{}^{14}C \sim 10^{-18}$ (×10⁶ lower than surface carbon)
- fast shipment underground to minimize 7Be activation (EC, $t_{1/2}=53$ d, 478 keV γ -ray)
- 6-stage distillation + low Ar/Kr N₂ gas stripping for PC solvent
- separate filtration, distillation + stripping for concentrated PPO fluor solution
- all plants, tanks and lines precision cleaned (detergent + acid etching)

BX data: an example of simple cuts

- $4136 \text{ days} \times \text{tons exposure}$ (note: events with z > 1.8 mwere also excluded due to Rn contamination during detector top-off operations)

Main features:

¹⁴C: unaltered
²¹⁰Po: - sharper peak
- same amplitude

gamma background substantially reduced

¹¹C: muon produced positron emitter

Energy spectrum (fid. vol. + Rn cuts)

possible ⁷Be Compton shoulder already visible after these very simply cuts!

¹⁴C: an unavoidable cosmogenic

half life ~ 5000 years

in BX it is present at a few parts in 10^{18} , but it anyhow determines the trigger rate of the experiment (~ 10 Hz, 50 keV threshold)

its presence determines the low energy threshold for neutrino physics of the experiment KamLAND: Kamioka Liquid scintillator AntiNeutrino Detector

- •1 kton liq. Scint. Detector in the Kamiokande cavern
- •1325 17" fast PMTs
- •554 20" large area PMTs
- ·34% photocathode coverage
- $\cdot H_2O$ Cerenkov veto counter

$$\nu_e + p \rightarrow n + e^+$$

the KamLAND example - modest air contamination

In KamLAND, where little specific measures were taken to maximize radio-purity at low energy, the background was 5 orders of magnitude above the ⁷Be expected signal

general strategy includes:

- large target/source
- go deep (enough) underground

- build detectors with ultra-clean techniques (material selection, clean room environment, graded shielding design, low Rn, material purification, ...)

- avoid/minimize (long- and medium-lived) radioactive isotope activation

The EXO-200 detector

class 100 clean room

hermetic lead enclosure (25 cm, low activity Pb)

double, vacuum-insulated cryostat (low-background copper)

Refrigeration and HFE

feedthroughs

TPC with 200 kg of LXe in thin vessel (ultra pure Cu, 1.5 mm thick)

EXO-200 installation underground at WIPP

Fre

Martin String

A. Pocar - NEPPSR - 8/12/09

double beta decay

- standard, second order weak process
- predicted in 1935 by Goeppert-Meyer

possibility of non-standard $0\nu\beta\beta$ process

how is $0\nu\beta\beta$ measured in the laboratory?

very rare events: need to suppress
 non-ββ background with low
 radioactivity detectors and underground

- large mass: large source, isotope enrichment
- energy resolution: separate $0\nu\beta\beta$ mono-energetic peak from the $2\nu\beta\beta$ energy spectrum and fewer non- $\beta\beta$ background events in the peak

- tracking: identify individual electron tracks to discriminate between single- and 2-electron events (discrimination of β and γ background radiation)

- multi-isotope: measure different isotopes with the same detector to cross-check results and reduce systematic and theoretical uncertainties

- decay product identification: unambiguously from $\beta\beta$ events

Material screening - the EXO example

- γ (2449 keV) from ²¹⁴Bi decay (from ²³⁸U and ²²²Rn decay chains)
- γ (2615 keV) from ²⁰⁸Tl decay (from ²³²Th decay chain)
- γ (1.4 MeV) from ⁴⁰K (a concern for the $2\nu\beta\beta$)
- ⁶⁰Co: 1173 + 1333 keV simultaneous γ 's (from ⁶³Cu(α ,n)⁶⁰Co)
- in situ cosmogenics in Xe, neutron capture de-excitations, ...
- •²²²Rn anywhere (Xe, HFE, air gaps inside lead shield)

analytical methods: ICP-MS, NAA, direct gamma/alpha counting, Rn emanation counting

EXO Materials Testing Summary

[EXO	collaboration;	D.	Leonard	et al.,	arXiv:0709.4524]
L					

(Status 8/31/2006) 287 entries

 ~ 330 entries

Material	Information Source	MD#	K conc. [10 ⁻⁹ g/g]	Th conc. [10 ⁻¹² g/g]	U conc. [10 ⁻¹² g/g]			
TPC and Internals								
SNO acrylic, batch 48, panel 09.	<u>UA, NAA</u> 8/26/06	<u>59</u>	<3.1	<16	<22			

A. Pocar - NEPPSR - 8/12/09

Radon - ubiquitous enemy

3.8235 d	$\begin{array}{c} ^{222}_{86}\mathbf{Rn} \\ 100 \downarrow \alpha \end{array}$	$ \begin{vmatrix} \alpha : 5.4895 \ (99.92) \\ \alpha : 4.986 \ (\ 0.078) \end{vmatrix} $		γ : 511 (0.076)
3.10 m	$\begin{array}{c} 218 \\ 84 \\ 0.020 \\ 99.980 \\ 3 \\ 6 \\ \end{array}$	α: 6.0024 (100)	eta: no data	NO γ -RAYS
1.6 s 26.8 m	$\begin{array}{c c} \rho \swarrow & \searrow \alpha \\ 218 \text{At} & 214 \text{Pb} \\ 99.9 & 100 \\ \alpha \searrow & \swarrow \beta \end{array}$	α: 6.694 (90)	$eta: 0.728 (42.2) \ eta: 0.670 (48.9) \ eta: 1.030 (-6.3)$	$\begin{array}{l} \gamma: & 351.93 \ (35.1/37.6) \\ \gamma: & 295.22 \ (18.2/19.3) \\ \gamma: & 242.00 \ (\ 7.12/7.43) \end{array}$
19.9 m	$\begin{array}{c} & 214\\ & 83 \\ \textbf{0.021} & \textbf{99.979} \\ \alpha \swarrow & \searrow \beta \end{array}$	α : 5.452 (53.9) α : 5.516 (39.2)	β : 3.275 (18.2) β : 1.542 (17.8) β : 1.508 (17.02) β : 1.425 (8.18) β : 1.894 (7.43)	$\gamma: 609.31 (44.6/46.1)$ $\gamma: 1764.49 (15.1/15.4)$ $\gamma: 1120.29 (14.7/15.1)$ $\gamma: 1238.11 (5.78/5.79)$ $\gamma: 2204.21 (4.98/5.08)$
1.3 m 164.3 μs	$\begin{array}{ccc} 210 \\ 81 \\ 100 \\ \beta \searrow & \swarrow \alpha \end{array} \begin{array}{c} 214 \\ 84 \\ 100 \\ \beta \end{array} $	α: 7.6868 (99.99)	β : 4.209 (30) β : 1.863 (24)	$\gamma: 799.7 (0.0104)$ $\gamma: 799.7 (0.021)$
22.3 y	${210 \atop 82}{ m Pb}$ $100\downarroweta$		β: 0.017 (80) β: 0.063 (20)	<i>γ</i> : 46.54 (4.25)
5.013 d 138.376 d	$ \begin{array}{c} \begin{array}{c} 210\\ 83\\ \hline 100 \downarrow \beta\\ \begin{array}{c} 210\\ 84\\ \hline 100 \downarrow \alpha\\ 206\\ \hline \end{array} $	α: 5.3043 (99.99)	β: 1.162 (99)	NO γ -RAYS γ : 803.10 (1.22*10 ⁻³)
stable	$\begin{array}{c} 100 \downarrow \alpha \\ \begin{array}{c} 206 \\ 82 \end{array} \mathbf{Pb} \end{array}$			

* γ -emission: intensity per 100 decays in equilibrium/absolute;

** α -, β -decay: absolute intensity $\Sigma \approx 100\%$; for intensity per 100 decays multiply by branch

Radon - ubiquitous enemy

different decays in the Rn chain affect different experiments:

- Kamland: ¹³C (alpha,n) ¹⁶O
- CDMS: ²¹⁰Pb decays, low energy surface electrons
- COUPP: alpha decays
- EXO (and other double beta decay experiments): gamma rays

Radon daughters

Radon daughter surface contamination

 → only direct measurement available (data are the ultimate test!)
 → a naïve model is to say that all radon daughters decaying in the air column above the surface stick to it:

~1300 ev/d/(hr of exposure) (in 100 tons)

(assumptions: 3m air column, air at 20 Bq/m3, 100% plate out, 100% wash off)

BX nylon vessels

nylon pellets with 10⁻¹² Th, U concentration in weight (ppt) [C. Arpesella et al., Astropart. Phys. 18, 1 (2002)]

- clean extrusion and post-extrusion surface cleaning to level 25 Mil. Std. 1246C (226 Ra contamination of final film < 21 μ Bq/kg) [M. Wójcik et al., NIM A 498, 240 (2003)]

- nylon vessels (inner for scintillator containment, outer Rn barrier) made in a class 100 clean room

- surfaces kept covered as much as possible during assembly, shipping and installation

- each vessels assembled as a self-covering stack and assembled into a nested set

- radon-scrubbed clean room make up air, via a room temperature vacuum swing adsorption (VSA) on activated charcoal device (first of its kind)

- clean room air humidified with aged water
- detector turned into a class 10,000 clean room

[J. Benziger et al., Nucl. Instr. Meth. A 582, 509 (2007)]

²¹⁰Po background - learn some chemistry

- ²¹⁰Po (τ = 200 d) activity is
 ~ 60 events/d/ton
 (> 100× the predicted ⁷Be solar neutrino rate!)
- 210 Po is out of equilibrium with 210 Pb and 210 Bi, since the decay rate of the latter is >100 times smaller (β and γ decays of 210 Pb are < 100 keV and buried under 14 C)

²¹⁰Po has a very complicated chemistry, certainly different than that of ²¹⁰Pb:

- confirms tests performed with the latest CTF runs
- also seen during recent KamLAND scintillator purification
- contamination and wash-off patterns studied in the lab
- needs dedicated purification strategy

[Kishimoto, TAUP 2007, Sendai, Japan]

tiny Rn contamination is sometimes handy ...

Certain isotopes can be readily identified as they produce coincident decays in rapid succession at the same location in the detector

$$\beta + \gamma \quad \alpha$$

$$^{214}\text{Bi} \rightarrow 2^{14}\text{Po} \rightarrow 2^{10}\text{Pb} \quad (\tau = 237 \text{ }\mu\text{s}, \text{ }^{238}\text{U chain}, \text{}^{222}\text{Rn daughter})$$

$$^{3.3 \text{ MeV}} \quad 7.7 \text{ MeV} \quad (\tau = 431 \text{ ns}, \text{ BR} = 64\%, \text{}^{232}\text{Th chain})$$

$$^{3.3 \text{ MeV}} \quad 8.8 \text{ MeV} \quad (\tau = 431 \text{ ns}, \text{ BR} = 64\%, \text{}^{232}\text{Th chain})$$

$$^{85}\text{Kr} \stackrel{\beta}{\rightarrow} \text{}^{85m}\text{Rb} \stackrel{\gamma}{\rightarrow} \text{}^{85}\text{Rb} \quad (\tau = 1.46 \text{ }\mu\text{s}, \text{ BR} = 0.43\%)$$

free calibration tool!

event topology is poor, but some discrimination is possible

- alpha/beta separation in organic scintillators (discriminate on the decay time of the scintillation light)

- electron + gamma vs nuclear recoils in noble liquids (different primary scintillation pulse shape as well as different partition between primary scintillation and ionization)

- single/multiple site events

- tracking (modest but non-trivial topology: double beta tracks, directional WIMPs, ...)

- cosmogenic background subtraction

example: ¹¹C subtraction

use discrimination for designing your detector

every experiment tries to exploit some discrimination techniques to improve sensitivity

some examples

dark matter: identify nuclear recoils vs electron events (xenon/argon 1 or 2-phase, cdms, cresst, dama,)

double beta decay: sharp energy resolution, tracking, (exo, SNO+, cuore, gerda, ...)

solar neutrinos: liquid scintillator, lxe, lens, sno+,

a crazy idea: Ba ion tagging

136
Xe $\rightarrow ^{136}$ Ba⁺⁺ + 2e⁻

•Ba⁺ system best studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980)

•Very specific signature

•Single ions can be detected from a photon rate of 10⁷/s

Ba⁺ tagging would allow for the elimination of all backgrounds except the background from $2\nu\beta\beta$.

single ion trapping

~9 σ discrimination in 25s integration

M.Green et al., Phys Rev A 76 (2007) 023404 B.Flatt et al., NIM A 578 (2007) 409

_ Differentially pumped aperture

low background particle physics achievements

- detection of (anti)neutrinos
 - detection of solar neutrinos and (some of) its various components
 - observation of neutrino oscillations and its mixing parameters
 - stringent limits (detection?) of neutrinoless double beta decay
 - ever tighter limits (detection?) on cold dark matter
 - tight limits on the existence of proton decay (relevant to discard grand unification theories)
 - detection of neutrinos from nuclear reactors and the Earth's radioactivity
 - possible monitoring of nuclear reactors and nuclear fuel
 - and

.... now you have all the tools to design the next successful experiment!

choose well and GOOD LUCK!